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Abstract: Diversification portfolio selection problem is an important issue in uncertain economic environment. In this paper,
this problem is discussed within the framework of uncertainty theory. First, an uncertain extension mean-variance diversification
model is proposed, in which the mean is chosen as the objective function, and variance and proportion entropy as risk and diversity
constraints. Then two variations are investigated on the purposes of minimizing the risk and maximizing the diversity measure,
respectively. Furthermore, the corresponding analytical mathematical models are deduced via the convenient operational law of
uncertain variables. Finally, several numerical examples are given to illustrate the modeling idea. The results showed that the
diversification models had higher diversification than the uncertain mean-variance model. The proposed models provide a new
method to make decision-making in uncertain portfolio selection problem.
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1. Introduction

Portfolio selection discusses the problem of how to allocate
one’s capital to a large number of securities so that the
investment can bring a most profitable return. In 1952,
Markowitz [8] initialized the portfolio selection problems by
mean-variance methodology. After that, many extensions to
the mean-variance model have been proposed [16, 22]. As
is well known, the variance is a common and useful risk
measure in portfolio selection models. However, it is only
an average deviation measure of information. In order to
solve this problem, it is necessary to introduce a measure
of diversification to portfolio selection models. Inspired
by the Shannon entropy [6], for investment proportions in
the securities, some researchers introduced the proportions
entropy. It is an effective tool as the diversification measure.
Golan et al. [2] used the entropy itself as the objective
function to obtain maximum diversification. Bera and Park
[1] chose the cross entropy measure as the objective function
to investigate the optimal portfolio diversification through

the maximum entropy approach. Usta and Kantar [9] and
Jana et al. [15] added entropy as one of the objectives
to discuss the the multi-objective models and generated the
well diversification portfolio. Huang [18] used mean as the
objective function and proposed the diversification models via
random entropy constraint. In addition, Kapur and Kesavan
[11], Fang et al. [17] successively improved the traditional
mean-variance models with the help of the entropy.

In the above portfolio selection, a randomness label was
put on the security returns and the security returns were
regarded as random variables. Obviously, the investor should
have enough historical data when using probability theory.
However, for various reasons not all returns data are observed.
For example, for the security return of a new type of stock, it
is impossible to obtain a large number of historical data about
it. Thus it is difficult to estimate the probability distribution of
the security return. In order to deal with such problems, the
domain experts are invited to evaluate the belief degrees about
it. Then this may lead to a counterintuitive result if to model
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these belief degrees by probability.
Next, a numerical example is provided to explain it. Within
a month, assume the returns of every day from this new type

of stock are iid uniform random variables on [0, 10] in dollar
terms. Obviously, it is easy to verify that

Pr{ “the return of every day is less than 10 dollars in a month” } = 1. (D

That is, we are 100% sure that the returns are less than 300
dollars within a month.

However, when there are no samples for the return, some
insurance experts are invited to evaluate the belief degrees
about it. It follows from the view of Kahneman and Tversky
[7] that the insurance experts usually provide a much wider
range of return than the actual return. Assume the belief degree

function of the return to be

0, ifz<0
O(z) = 135 if0<z<15
1 ifz>15.

If the belief degree function is treated as a probability
distribution of uniform random variable [0, 15] in dollars, then

Pr{ “the return of every day is less than 10 dollars” } = 0.67. (2)

And

Pr{ “the return of every day is less than 10 dollars in a month” } = 0.67%° ~ 0. (3)

That is, it is almost impossible that the returns are less than
300 dollars within a month. The opposite results (1) and (3)
show that a sure event becomes an impossible one. It seems
unacceptable. So the belief degrees cannot be regarded as
probability.

In order to deal with the above problem, Liu [3] founded
uncertainty theory. If the belief degree function is treated as a
linear uncertainty distribution on [0, 15] in dollars (See Figure
1), then

M{ “the return of every day is less than 10 dollars in a month” } = 0.67 A 0.67 A --- A 0.67 = 0.67. 4)

That is, the returns less than 300 dollars within a month is
67%. Although the degree 67% is smaller than the true value
100%, this is a more realistic result.

067 .......................... E
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Figure 1. Belief degree function of “the daily return”.

As a branch of mathematics to cope with the uncertainty in
human systems, uncertainty theory provides a new approach
to study the portfolio selection problems. Based on the
assumption that security returns are uncertain variables, Yan

30

[14] proposed an uncertain mean-variance model in which
the variance was a risk measure. Zhang et al. [5] built an
uncertain expected-variance-chance portfolio selection model,
where the objective was to maximise the result of expected
value of the portfolio divided by variance. Ning et al. [21]
discussed an uncertain mean-variance model with an uncertain
triangular entropy constraint. Chen et al. [13] proposed the
semivariance concept of uncertain variables, and gave mean-
semivariance model. Chang et al. [10] discussed an uncertain
multi-period portfolio selection problem with mental accounts
and realistic constraints. Here the entropy will be introduced
as the diversification measure into uncertain mean-variance
portfolio selection model and build uncertain diversification
portfolio selection models.

The remainder of this paper is organized as follows. In
Section 2, some concepts and properties from uncertainty
theory are recalled. The concept of Shannon entropy and
its properties are recalled in Section 3. Some uncertain
diversification models for portfolio selection are proposed in
Section 4. Several numerical examples for understanding the
new models are given in Section 5. The last section contains a
brief summary.
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2. Preliminary

Let I" be a nonempty set and £ a o-algebra over I'. Each
element A € L is assigned a number M {A}. The set function
M is called by Liu [3] an uncertain measure if it satisfies
the normality, duality, and subadditivity axioms. The triplet
(T, L, M) is called an uncertainty space.

Definition 2.1. (Liu [3]) An uncertain variable is defined as
a measurable function from an uncertainty space (I', £, M)
to the set of real numbers, i.e., for any Borel set B of real
numbers, the set

{¢e B} ={yeTl|(y) € B}

is an event.
Definition 2.2. (Liu [3]) The uncertainty distribution & :
R — [0, 1] of an uncertain variable £ is defined by

o) =M{yeT |&(y) <z}

for every real number z.

Peng and Iwamura [23] have proved that a function is
an uncertainty distribution function if and only if it is an
increasing function except ®(z) = 0 and ®(z) = 1.

Definition 2.3. (Liu [3]) Let £ be an uncertain variable. Then
the expected value of uncertain variable ¢ is defined by

“+oo 0
Bl = [ afezrar- [ g<na
provided that at least one of the two integrals is finite.
Let £ be an uncertain variable with finite expected value
E[€]. The variance of ¢ is defined as V[¢] = E[(¢ — E[¢])?].
The standard deviation of ¢ is defined as+/V'[].

U a) = (@7 (a), -, @ (@),

Liu and Ha [20] proved the following formula of the
expected value of functions of uncertain variables.

Theorem 2.3.(Liu and Ha [20]) Let &1,&s,---,&,
be independent uncertain variables with  regular
uncertainty distributions @, $s,--- , P, respectively. If

Bl =/0 F@ @), Bt (a), Bk (1 — ),

Provided that E[¢] exists.

Recently, Yao [12] proved a formula to calculate the
variance of an uncertain variable.

Theorem 2.4. (Yao [12]) Let &1, &2, - - , &, be independent
uncertain variables with regular uncertainty distributions

o, ),

? m

Ve = / f(@7 @), -

7n+1(1 - Oé), T

An uncertain variable £ is called normal if it has a normal
uncertainty distribution

oo (1o (D)) em

denoted by N (e, o), where e and o are real numbers with
o > 0. The expected value and variance are E[{] = e and
V€] = o2, respectively.

Definition 2.4. (Liu [3]) An uncertainty distribution ® is said
to be regular if its inverse function ® ~! () exists and is unique
foreach o € (0,1).

It follows from Definition 2.4 that a normal uncertainty
distribution is regular and its inverse uncertainty distribution
is

-1 \/ga' o
O (a)=e+ - lnl—a’ 0<a<l).

Theorem 2.1. (Liu [4]) Let £ be an uncertain variable with
regular uncertainty distribution ®. If the expected value exists,
then

In order to calculate the uncertainty distribution of
monotone functions of uncertain variables, the operational law
of independent uncertain variables was proved by Liu [4].

Theorem 2.2. (Liu [4]) Let &1,&2, -+, &, be independent
uncertain variables with regular uncertainty distributions

Oy, Py, -+, P, respectively. If f(z1,z2,- - ,2,) is a
strictly increasing function with respect to x1, xo, - - - , X, and
strictly decreasing with respect to 41, Tim+2, -+ , Tn, then

& = f(&,&, -+ ,&,) is an uncertain variable with inverse
uncertainty distribution

(I);zlJrl(l —OZ),“- 7<D7_Ll(1 - a))

f(xy,29, -+ ,x,) is a strictly increasing function with
respect to x1, 9, - - , Ty, and strictly decreasing with respect
t0 Tyn41, T2, - ,Tn, then the uncertain variable £ =
f(&1,&2, -, &) has an expected value

, @, (1 - a))da

&y, g, - -+, D, respectively. If f(x1,x9, -+ ,x,)is astrictly
increasing function with respect to x1, xo, - - - , X, and strictly
decreasing with respect t0 T,,41,Tm42, - , Ty, then the
uncertain variable £ = f(&1, &, -+ ,&,) has a variance

,@;1(1 —a))?da — €,
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where e is the expected value of £ = f(&1,&a,- - -

,€n), €.,

3. Shannon Entropy

Let P be a partition of unity, i.e., P is a collection of finitely
n
many nonnegative numbers {p1, pa, - - , pn } with Z p; = 1.
i=1

Then the Shannon entropy of P is defined by
H[P| ==Y pinp:. )
i=1

Obviously, the Shannon entropy represents the average
amount of information gained by observing the partition, and
it has some properties a follows:

(a) The entropy of a partition does not depend on the order in
which the elements of the partition are numbered.

(b) The entropy of a partition is nonnegative and equals zero if
and only if there exists a value p; € {p1,p2,-- -, pn} such that
p; = 1 (and all other are 0).

(¢) The entropy of a partition is maximum Inn when p; =

pr=-=py=1/n.

Let 1,22, -+ ,x, be the investment proportions in the
securities. Then we have x; > 0, ¢« = 1,2,---,n and
n
in =1
i=1

Definition 3.1.Let xi1,x9,---,x, be the investment

proportions in the securities. Then the proportion entropy is
defined by

H:—inlnxi. (6)
=1

It follows from the properties of Shannon entropy and
Definition 3.1 that the greater the value of the proportion
entropy, the more diversely the capital is allocated to the
alternative securities. Next, we will propose the uncertain
diversification models with uncertain returns proportion
entropy.

4. Uncertain Diversification Models

Assume that the portfolio is z1&1 +z2&o+- - -+ 2, &, Where
&1,&, -+, &, are the independent uncertain return rates and
T1,%9,- - , Ty are the corresponding investment proportions.
The return and the risk of the portfolio ;&1 +x28o+- - -+x,&n
are quantified as the mean and variance, respectively. Let 8 be
the maximum risk level and  be the diversity measure level.

! a(I);Ll(a)a @

il —a), -, 211 — a))da

Then we have the following model

max Efr1&1 + x2&a + - - + 2p6]
subject to:

V[l‘lgl + -’172£2 + -+ m77,51'7,] < /6

n
—Ziﬁilniﬂi >y
i=1

m1;m2+---+xn:1

z;>0,1=1,2,--- n.

)

In this model, the objective is to maximize the return at
the desired levels of risk and diversity. This model is an
extension of the uncertain mean-variance model. If the second
constraint does not exist, then the above model degenerates to
the uncertain mean-variance model proposed by Yan [14].

In portfolio problems, another common objective is to
minimize investment risk subject to the given expected return
0 and level measure of diversity . This leads to the first
variation of model (7) as follows,

min V[$1§1 +x2bo+ -+ xn{n]
subject to:

Elz1& + 2282+ +a20€n] >0

fixi Inz; >~
i=1

Ti+ T2+t =1

2;>0,i=1,2,-,n.

®)

Sometimes, the aim of the investor is to maximize the level
measure of diversity when expected return is no less than some
given target values ¢ and the variance level no more than /3,
respectively. Then we obtain the second variation of model (7)

n
max — E z; Inx;
i=1

subject to:

E[-rlfl + 37252 + -+ xnfn] Z 0 (9)
V[xlfl + {,C2£2 + -+ xngn} S B
Trtaettz,=1
x; >0, 1=1,2,--- ,n.

Theorem  4.1.Let &1,§2,---,&, be independent

uncertain variables with regular uncertainty distributions
by, Py, -+, P, respectively. Then the model (7) can be
converted into the following deterministic model,
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1 n
max / Zxﬁbfl(a)da
0 =1
subject to:
1/.n 2 1n
/ ind)i_l(a) da — (/ Zmiq)i_l(a)da)Q <pB
o \i7 0

i=1
n
- Z zilnx; >
i=1

T1+T2+ -+ xn =1

>0, i=1,2,-- n.

Proof. Since f(y1,Y2, " ,Yn) = T1y1 + T2y2 + - - - + T, Yy is strictly increasing with respect to y1, ya, - - -
n

from Theorem 2.2 that the inverse uncertainty distribution of Z ;& 18
i=1

n
U a) = Zxﬂ{%a).
i=1
By using Theorem 2.3 and Theorem 2.4, we obtain
n 1 n
E[Y i) Z/ > 2@ (@)da,
i=1 0 =1
and
n 1 n 2 n
V[ingi} :/ (Zmﬂ%%a)) da — (E[Z:Eifi])Q.
i=1 0 \i=1 i=1

Substituting these equations into model (7), the theorem is proved.

51

(10)

, Yn, it follows

Similarly, when security returns are all independent uncertain variables, model (8) is converted into the following deterministic

mathematical programming,

nﬁnull<§21H®;1Q0>2da——{41§;JQ®;1QQdaf

subject to:

1 n
/inCDi_l(a)daz(S
0 =1

n
7217,;111177; >
i=1

T+ T+t x, =1

$i20> 7;:1,2,"',7’1,

and model(9) is converted into the following deterministic mathematical programming,

n
max — E z; Inz;
i=1

subject to:
1 n
/ Zmi@fl(a)da >0
0 =1
1 n 2 1 n
/ <Z xi@;l(a)> da — (/ Zziq)i_l(a)da)Z <g
0 \i=1 0 =1

T+ x2 A+t x, =1

2;>0,i=1,2,-,n.

(1)

(12)
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Example 4.1 Suppose that &; ~ N (e;, 0;) are independent
normal uncertain variables for i« = 1,2,--- ,n. Then model
(10), model (11) and model (12) respectively degenerate to the
following deterministic programming models,

n
max E €T;€;

subject to:

Zm 0; < \f
—szlnxl>7

331+x2+ otz =1

IZZO7 7;:1727”'571

n
min E €Ti0;

subject to:

Zm e; >0
—lelnx1>’y

l”1+l"2+ otz =1
.'1%207 221727 y Ty

(13)

)

(14)

and

n
max — g z; Inx;

subject to:
n
Z €T;€; Z 0
i=1
n
Z%Ui <\/B

1+ a0+ +z,=1
371207 i:1727"'7n

Proof. Note that & ~ N(e;,

(3 O-’L
normal uncertain variables for ¢ = 1,2,---  n.
n

5)

;) are independent
It follows

from Theorem 2.2 that Zzifi has the inverse uncertainty
i=1
distribution

n
fcn a
le ei+ l—a

), (0<a<1l).

Using the expected value formula and variance formula
in Theorem 2. 3 and Theorem 2 4, respectlvely, we have

Zmzfl leei and Vlefi = Z%’Ui . The
i=1

proof is complete

Mean-Variance-Entropy Portfolio Selection Models with Uncertain Returns

If the security returns are general uncertain variables, then
it is difficult to obtain the uncertainty distributions of the
portfolio returns. Therefore, we can use uncertain statistics
to determine the uncertainty distribution and calculate its
expected value and variance, respectively. Uncertain statistics
first introduced by Liu [4] is a methodology for collecting
and interpreting expert’s experimental data by uncertainty
theory. With the help of the designed questionnaire survey,
the uncertainty distribution can be determined from expert’s
experimental data by the principle of least squares, the linear
interpolation method, among others [4, 19].

5. Numerical Examples

In this section, the uncertain diversification models are
applied to the data from Yan [14]. The data is composed of
5 security returns, which is shown in Table 1. The returns of 5
securities are normal uncertain variables.

Table 1. Uncertain returns of 5 securities.

Security 7 1 2 3 4 5

Uncertain return N(0,1) N(1,2) N(2,3) N(3,4) N(4,5)

Example 5.1 In order to compare the results of uncertain
diversification model and mean-variance model (16) of Yan
[14], we can use model (13) to search for an optimal portfolio.
max To + 2x3 + 3x4 + 45
subject to:

T1 + 2x9 + 3x3 +4x4 + 515 < 1.5 (16)
$1+£C2+£L'3+£L’4+1’5 :1

2;>0,i=1,2,-- 5.

When the bearable maximum risk S and the minimum level
measure of diversity v are set to 5 = 1.5 and v = 1,
respectively, model (13) becomes the following model (17),

max xo + 2x3 + 3x4 + 4xs
subject to:

T1 + 2x9 + 3x3 +4x4 + 515 < 1.5

5
—Zmilnxi >1

T1+Tot+r3+T4+25=1
x; >0, t1=1,2,---,5.

We use LINGO to solve models (16) and (17) and the
computational results are shown in Table 2 and Table 3,
respectively.  The two models obtain different optimal
portfolios which have the same expected return 0.5 and the
same bearable maximum risk 5 = 1.5. However, the second
portfolio has higher diversification than the first one, which is
desired by the investor.

a7




International Journal of Management and Fuzzy Systems 2021; 7(3): 47-54 53

Table 2. Optimal portfolios of model (16).

1 2 3 4 5 B
87.50% 0.00% 0.00% 0.00% 12.50% 15

Table 3. Optimal portfolios of model (17).

1 2 3 4 5 B v
65.93%  22.61%  1.80%  2.68%  092% 15 1

Example 5.2 Suppose that an investor wishes the level
measure of diversity of his portfolio to be at least 1, and the
minimal expected return to be 2. If he accepts variance as risk,
then the uncertain diversification model (14) is equivalent to
the following model (18),
min 1 + 2x2 + 3x3 + 4x4 + 525

subject to:

To + 23 + 3x4 + 425 > 2

5
—inlnxi >1
i=1

r1+ax2+rst+ratas=1

(18)

2;>0,i=1,2,--,5.

Note that if we do not consider the diversity of the portfolio,
then the model generates the model (19) in Yan [14].

min xy 4 2x9 4+ 3x3 + 44 + dxs
subject to:

$2+2I3+3I4+4$5 22 (19)

T1+xo+r3+a4+25=1
z; > 0, Z:]-aQa 35

With the help of LINGO, we find that model (18) and model
(19) have the same minimum risk 3.00. In addition, under
the expected return 2, we find that the minimum risk is still
3.00 when we decrease (increase) the preset entropy value
v = 0.5(1.5). In the other words, the results show that
diversification using entropy has no effect on minimum risk.
The results are given in Table 4 and Table 5.

Table 4. Results of model (18) with different preset entropy values.

¥ 1 2 3 4 5 B d

0.5 4.21% 11.33% 69.74% 9.69% 5.03% 3 2

1 6.39% 15.04% 53.44% 2241% 2.71% 3 2

1.5 1441% 1647% 37.42% 18.13% 13.57% 3 2
Table 5. Results of model (19).

1 2 3 4 5 B )

50.00% 0.00% 0.00% 0.00% 50% 3 2

However, it can be seen that without the entropy constraint,

the solution of the mean-variance model (18) is only
concentrated on the security 1 and security 5. With the
entropy constraint, it is found from Table 4 that the greater
the value of the preset entropy value is, the higher the portfolio
diversification will be.

Example 5.3 Assume that the minimum expected return the
investor can accept is 0.5 and the bearable maximum risk is
2.25. Based on the second variation of model (15), we obtain
the following model (20),

5
max — E z;Ilnxz;
i=1

subject to:
T2 + 2x3 + 3x4 + 45 > 0.5 (20)
T, + 222 + 3x3 + 4x4 + D5 < 1.5

1+ zetr3taatas=1

.171207 Z:172775

In this model (20), we calculate the maximum proportion
entropy to be 0.95, i.e., the maximum level measure of
diversity is 0.95.

6. Conclusions

In this paper, the diversification problem of portfolio
selection was discussed in an uncertain environment. An
uncertain mean-variance-entropy diversification model was
proposed which is an extension of Yan [14] uncertain mean-
variance model. In our model, the mean, variance and
proportion entropy were chosen as the objective function,
risk measure and diversity measure, respectively. Next, a
variation model was considered on the purpose of minimizing
investment risk. Moreover, we used entropy as the objective
function and discussed an uncertain diversification model
via mean and variance constraints. With the help of the
variance formula, the corresponding analytical mathematical
models were deduced, which can be solved by the standard
optimization problems. On the assumption that the security
returns are all normal uncertain variables, some numerical
examples were given. The results showed that the
diversification models had higher diversification than the
uncertain mean-variance model.
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