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Abstract: Generalized synchronization of time-delayed fractional order chaotic systems is investigated. According to the 

stability theorem of linear fractional differential systems with multiple time-delays, a nonlinear fractional order controller is 

designed for the synchronization of systems with identical and non-identical derivative orders. Both complete synchronization 

and projective synchronization also can be realized based on the proposed controller. The effectiveness and robustness of the 

controller are verified in the numerical simulations. 
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1. Introduction 

Chaos synchronization has been a hot subject in the field 

of nonlinear science due to its wide-scope potential 

applications in physical systems, biological science, chemical 

reactor, etc [1]. In 1990, Pecora and Carroll [2, 3] presented 

complete synchronization of two identical chaotic systems 

with different initial conditions. The drive and response 

systems have the same trajectory via a suitable controller. 

Then, complete synchronization attracts considerable 

attention of the scientists [4, 5]. However, it is difficult to 

make the drive and response systems achieve complete 

synchronization in the real applications. To solve this 

problem, Mainieri and Rehacek proposed projective 

synchronization in Ref. [6], where the drive and response 

systems synchronized up to a scaling factor. Its proportional 

feature extends binary digital to M-nary digital 

communication for achieving fast communication [7]. In 

1995, Rulkov et al. considered generalized synchronization, 

where the states of the response system synchronized with 

the map of the ones in the drive system [8]. The scaling map 

can be arbitrary designed to the state variables. And the 

unpredictability of the scaling map in generalized 

synchronization can additionally enhance the security of 

communication. Both complete synchronization and 

projective synchronization belong to generalized 

synchronization. Now, many researchers studied generalized 

synchronization of the integer order chaotic systems in Refs. 

[9-12]. 

Fractional calculus is supposed to be a generalization of 

integration and differentiation of arbitrary orders [13]. Over 

the last decades, the applications of fractional calculus to 

physics, engineering and control processing have been 

widely studied [14, 15]. Lots of systems in interdisciplinary 

field can be described by the fractional differential equations, 

such as viscoelastic system, dielectric polarization, electrode-

electrolyte polarization and financial system. With the 

introduction of fractional derivative, chaotic synchronization 

of fractional order dynamical systems becomes an active 

research field due to its great potential applications especially 

in secure communication and control processing [16-18]. For 

example, Si et al. discussed the projective synchronization of 

fractional order chaotic systems with non-identical orders 

[19]. Suwat provided a feedback controller for the robust 

synchronization of fractional order unified chaotic systems 

based on the developed LMI stabilization condition [20]. 

Wang et al. deliberated on the synchronization of uncertain 

fractional order chaotic systems with external disturbance by 
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a fractional terminal sliding mode control [21]. And 

Aghababa considered the finite-time chaos synchronization 

of fractional order systems based on the fractional Lyapunov 

stability theorem [22]. All of these examples clarify the 

importance of consideration and analysis of the fractional 

order chaotic systems and their synchronization. 

A time-delay always exists in the engineering application 

due to the transportation lag or the feedback delay. And the 

time-delayed differential models frequently apply in the 

physics, economics an biology [23-25]. In 1977, Macky and 

Glass first found chaos in the time-delayed systems [26]. 

Introduction of delay in the system enriches its dynamics and 

allows a precise description of the real life phenomena. Then 

the time-delayed chaotic systems and its synchronization 

become a hot topic in nonlinear science [27-29]. For 

instance, Botmart et al. considered the synchronization of 

non-autonomous integer order chaotic systems with time-

varying delay based on the delayed feedback control [30]. Li 

et al. deliberated the lag synchronization of coupled time-

delayed integer-order chaotic systems and its applications to 

secure communication [31]. To the best of our knowledge, 

most of the existing results focused on the chaotic 

synchronization of time-delayed integer-order chaotic 

systems. There are only a few conclusions on the 

synchronization of time-delayed fractional order chaotic 

systems. In 2007, Deng et al. discussed the stability of linear 

fractional differential systems with multiple time-delays [32]. 

In 2011, Zhou et al. advised a washout filter control for the 

complete synchronization of a class of fractional order neural 

network model with varying time-delay based on the Laplace 

transformation theory [33]. In 2015, Behinfaraz et al. studied 

the modified projective synchronization of different 

fractional order chaotic systems with time-varying delays 

[34]. However, some other types of synchronization for non-

identical structural time-delayed fractional order chaotic 

systems are still open problems. 

Motivated by the above discussion, the generalized 

synchronization of time-delayed fractional order chaotic 

systems is investigated in this work. Complete 

synchronization, anti-phase synchronization and projective 

synchronization are the special cases of the generalized 

synchronization. Both identical and different structural 

systems can be applied to realize the synchronization. The 

fractional order chaotic systems with or without time-delay 

also can be used for achieving the generalized 

synchronization. Moreover, the effect of bounded noise in the 

generalized synchronization is discussed in the numerical 

analysis. 

The remainder of this letter is organized as follows. In 

Section II, a nonlinear controller is designed for the 

generalized synchronization based on the stability theorem of 

linear time-delayed fractional order system. The numerical 

simulations in Section III are applied to manifest the 

effectiveness and robustness of the proposed controller. 

Finally, conclusions are drawn in Section IV. 

2. A General Methodfor Generalized 

Synchronization 

There are many definitions of fractional derivatives. The best-

known Caputo fractional derivative operator is described by 

( ) ( ) ( ) , 0,
mq m qD t J t qφ φ−= >  

where q is the order of fractional derivative, m q=    , i.e., m 

is the first integer which is not less than q, 
pJ is the p-order 

Riemann-Liouville fractional integral operator which is 

defined as 

( ) ( ) ( ) ( )
1
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1
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pt
pJ t t d p

p
ψ τ ψ τ τ

−

= − >
Γ ∫  

where Γ(·) is the gamma function. In this work, the Caputo 

fractional derivative is employed. For the function h(t) 

having m-order continuous derivatives with t≥0, the Laplace 

transform of h(t) with the Caputo fractional derivative is 
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where m q=    , q > 0, H(s) is the Laplace transform of the 

function h(t), and h
(k)

(0), k=0, 1, 2, …, m-1 are the initial 

conditions. 

Consider a time-delayed fractional order drive system as 

                 (1) 

where x(t) = (x1(t), x2(t), …, xn(t))
T ∈R

n
 is the state vector, 

α∈(0, 1) is the order of the fractional differential equation, 
2: n nF R R→  is acontinuous function vector and τ>0 

denotes the time-delay. Choose a time-delayed fractional 

order response system as 

              (2) 

where y(t) = (y1(t), y2(t), …, yn(t))
T ∈R

n
 is the state vector, 

β∈(0, 1) is the order of the fractional differential equation,
2: n nG R R→  is a continuous function vector, and U = (u1, 

u2, …, un)
T
 is a controller to be determined later. Without loss 

of  generality, decompose the response system (2) as 

      (3) 

where B=diag{b1, b2,…, bn}, bi∈R
+
, i=1, 2,…, n is a given 

matrix, 2: n nG R R→ɶ  is the corresponding remainder 

nonlinear  function vector. 

Define the error state vector between systems (1) and (2) 

as 

                         (4) 
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where e(t)=(e1(t), e2(t), …, en(t))
T∈R

n
, K(x(t))=(k1(x(t)), 

k2(x(t)),…, kn(x(t)))
T
 is a continuous function vector. Then, 

e(t-τ)=y(t-τ)-K(x(t-τ)). 

Definition 1 For the time-delayed fractional order drive 

system (1) and response system (2), it is said to be 

generalized synchronization if there exists a controller U 

such that 

           (5) 

Remark 1 If K(x(t))=(x1(t), x2(t), …, xn(t))
T
 or K(x(t))=(-

x1(t), -x2(t), …, -xn(t))
T
, the generalized synchronization is 

respectively simplified to the complete synchronization and 

the anti-phase synchronization. If K(x(t))=(k1x1(t), k2x2(t), …, 

knxn(t))
T
, ki∈R, i=1, 2, …, n, the generalized synchronization 

is reduced to the generalized projective synchronization. And 

if the function vector K(x(t))=(k1(x(t))x1(t), k2(x(t))x2(t), …, 

kn(x(t))xn(t))
T
, the generalized synchronization is considered 

as the function projective synchronization [35]. 

Remark 2 Both of systems with identical and different 

fractional orders can be applied to the generalized 

synchronization because the orders of the fractional 

derivative α and β may be different. 

Remark 3 If the function vectors F(x(t), x(t-τ)) =G(y(t), 

y(t-τ)), the generalized synchronization between systems (1) 

and (2) is regarded as the synchronization of two identical 

time-delayed fractional order chaotic system with different 

initial conditions. 

Remark 4 According to the idea of tracking control, K(x(t)) 

in the error state vector is a reference signal in order to 

achieve the goal ( )lim 0.
t

e t
→+∞

=  Then, the generalized 

synchronization between systems (1) and (2) belongs to the 

problem of tracking control, i.e. the output signal y(t) follows 

the reference signal K(x(t)) ultimately. 

Remark 5 If the time-delay τ=0, the generalized 

synchronization of time-delayed fractional order chaotic 

systems is changed into the synchronization of systems 

without time-delay. Compared with the synchronization of 

fractional order chaotic systems without time-delay, the 

generalized synchronization of time-delayed fractional order 

chaotic systems could get more secure communication in its 

applications to secure communication because of the 

unpredictability of the function vector K(x(t)), the time-delay 

τ and the fractional orders α, β. 

With the parameters given above, a nonlinear controller is 

chosen as 

               (6) 

where A = diag{a1, a2, …, an}, A∈R
n×n

 is a feedback gain 

matrix to be designed later. Substituting the controller (6) 

into system (3), the error system is written as 

                    (7) 

Then, the generalized synchronization between systems (1) 

and (2) is transformed into the discussion of the asymptotical 

stability of the zero solution of system (7). 

In Ref. [32], Deng et al. discussed the stability of an n-

dimensional linear fractional differential system with 

multiple time-delays: 

  (8) 

where z(t) = (z1(t), z2(t), …, zn(t))
T
 is the state vector, qi ∈ (0, 

1) is the order of the fractional derivative, 0
ij

τ > is the time-

delay, the initial values zi(t) = φi(t) are given for

max
max = 0

ij
tτ τ− − ≤ ≤ , i, j=1, 2,…, n, and ij n n

A a
×

 =    is 

the coefficient matrix. Applying the Laplace transform to 

system (8), we obtain 

 

where Z(s) = (Z1(s), Z2(s), …, Zn(s))
T
is the Laplace transform 

of state vector z(t) = (z1(t), z2(t), …, zn(t))
T
, M(s) = (m1(s), 

m2(s), …, mn(s))
T 

is the nonlinear part, and the characteristic 

matrixof system (8) is
 

 

Theorem 1 [32] If all the roots of the characteristic 

equation ( )( )det 0s∆ =  have negative real parts, then the 

zero solution of system (8) is Lyapunov globally 

asymptotically stable. 

Corollary 1 [32] If q1=q2 = … = qn = ρ ∈ (0, 1), all the 

eigenvalues
i

λ , i = 1, 2, …, n of the coefficient matrixA 

satisfy ( )arg 2iλ ρπ> , and the characteristic equation 

( )( )det 0s∆ =  has no purely imaginary roots for any 0
ij

τ > , 

i, j=1, 2,…, n, then the zero solution of system (8) is 

Lyapunov globally asymptotically stable. 

Then, a sufficient condition for the generalized 

synchronization between systems (1) and (2) can be obtained 

based on Corollary 1. 

Theorem 2 For the time-delayed fractional order drive 

system (1) and response system (2), the generalized 

synchronization can be achieved if there exists a matrix A = 

diag{a1, a2, …, an}∈R
n×n

 in controller (6) such that ai<-

bi/sin(βπ/2), i=1, 2, …, n. 

Proof. For the time-delayed fractional order error system 

(7), C = A+B is the coefficient matrix. The eigenvalues of the 

matrix C are λi=ai+bi< 0, i=1, 2, …, n due to the given 

conditions ai<-bi/sin(βπ/2), bi> 0, β∈(0, 1). Therefore, all the 

eigenvalues λi of the coefficient matrix C satisfy 

( ) ( ) ( )( )lim lim 0.
t t

e t y t K x t
→+∞ →+∞

= − =
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|arg(λi)| >π/2> βπ/2. 

Taking Laplace transform on both sides of system (7) 

gives 

 

where ( ) ss s I A e Bβ τ−∆ = − −  is the characteristic matrix of 

system (7), E(s) is the Laplace transform of the error state 

vector e(t). The characteristic equation of system (7) is 

  (9) 

Suppose that is the 

root of the following equation 

              (10) 

Then, we have 

 

Separating the real and imaginary parts, one can get 

 

Hence, 

          (11) 

For the given conditions ai<-bi/sin(βπ/2), bi> 0, β∈(0, 1), 

we can derive that the discriminant of the roots satisfies 

( )( ) ( )
( )

2 2 2

2 2 2

= 2 cos 2 4

=4 4 sin 2 <0,

i i i

i i

a a b
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βπ

βπ

∆ − − −

−
 

which means that Eq.(11) has no real solutions. Thus, Eq. (9) 

has nopurely imaginary roots. 

According to Corollary 1, the zero solution of the time-

delayed fractional order error system (7) is globally 

asymptotically stable. And the generalized synchronization of 

time-delayed fractional order chaotic systems (1) and (2) is 

realized. 

Remark 6 For the time-delayed systems, the current state 

vector of systems depends on the previous state vector. 

Introduction of delay in system enriches its dynamics and 

allows a precise description of the real life phenomena. Then, 

the discussion of synchronization for time-delayed systems is 

important and useful. 

3. Numerical Simulations 

Both identical and different structural time-delayed 

fractional order chaotic systems are applied for the generalized 

synchronization. And the approximate numerical solutions of 

the time-delayed fractional order differential equations are 

obtained based on the predictor-corrector scheme [36] 

3.1. Synchronization of Time-Delayed Fractional Order 

Financial Systems 

The generalized synchronization of two identical time-

delayed fractional order chaotic financial systems [37] with 

different initial conditions is considered. The drive system is 

described by 

     (12) 

where x(t)=(x1(t), x2(t), x3(t))
T
 is the statevector, α∈(0, 1) is 

the fractional order of system (12), a, b,c are the real positive 

parameters, τ>0 denotes the time-delay. When α=0.94, 

τ=0.05, (a, b, c)=(3, 0.1,1) and x(0)=(0.1, 4,0.5)
T
, the chaotic 

attractor of the time-delayed fractional order financial system 

(12) is shown in figure 1. 

 

Figure 1. The chaotic attractor of time-delayed fractional order financial 

system (12) with α=0.94, τ=0.05, (a, b, c)=(3, 0.1,1) and x(0)=(0.1, 4, 0.5)T. 

 

Figure 2. The chaotic attractor of time-delayed fractional order financial 

system (13) with β=0.95, τ=0.05, (a, b,c)=(3, 0.1, 1) and y(0)=(0.5,2,1.5)T. 
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The response system is written as 

    (13) 

where y(t)=(y1(t), y2(t), y3(t))
T
 is the statevector, β∈(0, 1) is 

the fractional order of system (13),U=(u1,u2,u3)
T
 is the 

controller to be designed later. For β=0.95, τ=0.05, (a, 

b,c)=(3, 0.1, 1) and y(0)=(0.5,2,1.5)
T
, the chaotic attractor of 

the time-delayed fractional order financial system (13) is 

shown in figure 2. Based on the proposed method, the 

response system (13) can be rewritten as 

  (14) 

where yiτ=yi(t-τ), i =1, 2, 3 are the simple notations, and 

B=diag{b1, b2,b3} is a given matrix which satisfies bi∈R
+
, 

i=1, 2, 3. 

The error state vector between systems (12) and (13) is 

defined as e(t)=y(t)-K(x(t)), where e(t)=(e1(t),e2(t),e3(t))
T
, 

K(x(t))=(k1(x(t)), k2(x(t)), k3(x(t)))
T 

is a continuous function 

vector. Then, e(t-τ)=y(t-τ)-K(x(t-τ)). 

Combining the proposed controller (6) and system (14), 

the error system is shown as 

( ) ( ) ( ) ,D e t Ae t Be tβ τ= + −  

where A=diag{a1, a2, a3} is a matrix to be determined later. 

Selecting ai<-bi/sin(βπ/2), i=1, 2, 3, the generalized 

synchronization of the time-delayed fractional order chaotic 

financial systems (12)-(13) is achieved based on Theorem 2. 

For example, when α=0.94, β=0.95,τ=0.05, (a, b, c)=(3, 

0.1,1), x(0)=(0.1, 4, 0.5)
T
 and y(0)=(0.5, 2, 1.5)

T
, the drive 

and response systems (12)-(13) are chaotic. Setting 

K(x(t))=(15x1+sin(x2), -2x1x3, -0.5x2-x3)
T
 and B=diag{1, 2, 3}, 

the generalized synchronization between systems (12) and 

(13) can be realized with A=diag{-2, -3, -5}. The phase 

diagrams of systems (12) and (13) are plotted together in 

figure 3(a). For displaying clearly, the phase diagram of 

system (13) is moved along the positive direction of the 

coordinate. The corresponding error state curves are shown in 

figure 3(b), which indicate the generalized synchronization 

between systems (12) and (13) is successfully achieved. 

 

Figure 3. The generalized synchronization between systems (12) and (13) with K(x(t))=(15x1+sin(x2), -2x1x3, -0.5x2-x3)
T, A=diag{-2, -3, -5}, B=diag{1, 2, 3}: 

(a) the system attractors, (b) the error state curves. 
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Figure 4. The error state curves of the generalized synchronization between systems (12) and (13) with K(x(t))=(15x1+sin(x2), -2x1x3, -0.5x2-x3)
T, B=diag{2, 2, 

2} and(a) A =diag{-2.5, -2.5, -2.5}, (b) A =diag{-3, -3, -3}, (c) A =diag{-4, -4, -4}, (d) A =diag{-5, -5, -5}. 

Due to Theorem 2, the generalized synchronization 

between systems (12) and (13) can be achieved if the matrix 

A = diag{a1, a2, a3} is subject to ai<-bi/sin(βπ/2), i = 1, 2, 3. 

Setting the matrix B = diag{2, 2, 2}, the error state curves are 

respectively shown in figures 4(a)-(d) with ai = -2.5, ai = -3, 

ai = -4 and ai = -5, i = 1, 2, 3, which indicate that the speed of 

the generalized synchronization can be increased via 

choosing the smaller values of ai, i = 1, 2, 3. 

3.2. Synchronization Between Time-Delayed Fractional 

Order Liu System and Financial System 

It is assumed that the time-delayed fractional order 

financial system drives the time-delayed fractional order Liu 

system [38]. The drive system is written as (12). When 

α=0.94, τ=0.01, (a, b, c)=(3, 0.1, 1) and x(0)=(0.1, 4, 0.5)
T
, 

the chaotic attractor of system (12) is shown in figure 5. The 

response system is described by 
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( )
( )

( ) ( )( )
( ) ( ) ( )
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( ) ( ) [ ]
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2 1 1 3 2
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3 3 1 3
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η τ

γ τ
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 −   
    − − +    
      − − +     

= ∈ −

      (15) 

where y(t)=(y1(t), y2(t), y3(t))
T
is the state vector, β∈(0, 1) is 

the fractional order of system (15), θ, η, γ are the real 

positive parameters, U=(u1, u2, u3)
T
 is the controller to be 

designed later. For β=0.92, τ=0.01, (θ,η,γ)=(10, 40, 2.5) and 

y(0)=(2.2, 2.4, 38)
T
, thechaotic attractor of the time-delayed 

fractional order Liu system (15) is displayed in figure 6. 

According to the scheme mentioned above, the response 

system (15) can be rewritten as 
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( )
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 − −   
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  (16) 

where yiτ=yi(t-τ), i =1, 2, 3 are the simple notations, and the 

given matrix B=diag{b1, b2,b3} satisfies bi∈R
+
, i=1, 2, 3. 

 

Figure 5. The chaotic attractor of time-delayed fractional order financial 

system (12) with α=0.94, τ=0.01, (a, b, c)=(3, 0.1, 1) and x(0)=(0.1, 4, 0.5)T. 

 

Figure 6. The chaotic attractor of time-delayed fractional order Liu system 

(15) with β=0.92,τ=0.01, (θ, η,γ)= (10, 40, 2.5) and y(0)=(2.2,2.4, 38)T. 

The error state vector between systems (12) and (15) is 

considered as e(t)=y(t)- K(x(t)), where e(t)=(e1(t),e2(t),e3(t))
T
, 

K(x(t))=(k1(x(t)), k2(x(t)), k3(x(t)))
T
 is a continuous function 

vector. Then, e(t-τ)=y(t-τ)-K(x(t-τ)). 

Substituting the controller (6) into system (16), the error 

system is obtained as 
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( ) ( ) ( ) ,D e t Ae t Be tβ τ= + −  

where A =diag{a1, a2, a3} is a matrix to be determined later. 

Choosing ai<-bi/sin(βπ/2), i=1, 2, 3, the generalized 

synchronization between the time-delayed fractional order 

chaotic financial system (12) and Liu system (15) is realized 

based on Theorem 2. 

For example, when α=0.94, β=0.92,τ=0.01,(a, b, c)=(3, 

0.1, 1), (θ,η,γ)=(10, 40, 2.5), x(0)=(0.1, 4, 0.5)
T
 and 

y(0)=(2.2, 2.4, 38)
T
, the drive and response systems (12) and 

(15) are chaotic. Setting K(x(t))=(-15x1-x2, 3x2+x3,10x2x3)
T
 

and B=diag{2, 3, 4}, the generalized synchronization 

between systems (12) and (15) can be achieved with 

A=diag{-3, -4.5, -5}. The phase diagrams of systems (12) and 

(15) are plotted together in figure 7(a). For displaying 

clearly, the phase diagram of system (15) is moved along the 

positive direction of the coordinate. The corresponding error 

state curves are displayed in figure 7(b), which indicate the 

generalized synchronization between systems (12) and (15) is 

successfully realized. 

 

Figure 7. The generalized synchronization between systems (12) and (15) with K(x(t))=(15x1-x2, 3x2+x3, 10x2x3)
T, A=diag{-3, -4.5, -5}, B=diag{2, 3, 4}: (a) 

the system attractors, (b) the error state curves. 

It is well-known that the system dynamics are always exposed to the external noise in practice. Then, the generalized 

synchronization between the time-delayed fractional order financial and Liu systems with bounded noise is considered. The 

time-delayed chaotic systems (12) and (15) affected by bounded noise can be rewritten as 

                                              (17) 

and 

                                               (18) 

where 
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are bounded noises of systems (12) and (15), respectively. 
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Figure 8. The generalized synchronization between systems (17) and (18), and (a) the system attractors, (b)-(d) the error state curves. 

Choose the system parameters and the initial conditions as 

before. The chaotic systems (17) and (18) realize the 

generalized synchronization based on the proposed 

synchronization scheme. figure 8(a) displays the phase 

diagrams of systems (17) and (18). And figure 8(b)-(d) show 

that the error states ei(t), i=1, 2, 3 converge to the relatively 

small intervals around zero. The time-delayed fractional 

order chaotic systems with bounded noise achieve the 

generalized synchronization in some sense. The proposed 

synchronization strategy has robustness against the effect of 

external noise. 

4. Conclusions 

A definition of generalized synchronization for fractional 

order chaotic systems with time-delays is given in this paper. 

Both complete synchronization and projective 

synchronization are the special cases of the generalized 

synchronization. On the basis of the stability theorem of 

linear time-delayed fractional order chaotic systems, a 

nonlinear fractional order controller is proposed for the 

synchronization of systems with identical and different 

structures. Finally, the time-delayed fractional order financial 

system and Liu system are applied to realize the 

synchronization. The synchronization speed can be improved 

via selecting an appropriate matrix A. And the controller is 

robust to the external bounded noise disturbances. 

In the real applications, chaos synchronization is usually 

destroyed by external noise and system uncertainties. Then, 

the robust synchronization and the quasi-synchronization of 

time-delayed fractional order chaotic systems with unknown 

parameters are the interesting and significant problems for 

future study. 
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