
 

International Journal of Mechanical Engineering and Applications 
2014; 2(6): 78-86 

Published online November 25, 2014 (http://www.sciencepublishinggroup.com/j/ijmea) 

doi: 10.11648/j.ijmea.20140206.11 

ISSN: 2330-023X (Print); ISSN: 2330-0248 (Online)  

 

Analysis and prediction of crack propagation in plates by 
the enriched free Galerkin method 

Bui Manh Tuan
1, 2,*

, Chen Yun Fei
1 

1School of Mechanical Engineering, Southeast University, Nanjing city, Jiangsu  Province, China 
2Faculty of Mechanical Engineering, Tuy Hoa Industrial College, Tuy Hoa City, Phu Yen Province, Vietnam 

Email address: 
buimanhtuan.tic@gmail.com (B. M. Tuan), yunfeichen@seu.edu.cn (Chen Yunfei) 

To cite this article: 
Bui Manh Tuan, Chen Yun Fei. Analysis and Prediction of Crack Propagation in Plates by the Enriched Free Galerkin Method. International 

Journal of Mechanical Engineering and Applications. Vol. 2, No. 6, 2014, pp. 78-86. doi: 10.11648/j.ijmea.20140206.11 

 

Abstract: This paper presents a centre and edge crack analysis using meshless methods which is based on moving least 

squares (MLS) approximation. The unknown displacement function u(x) is approximated by moving least square 

approximation u
h
(x). These approximation are constructed by using a weight function which is based a monomial basis 

function and a set of non-constant coefficients. A subdivision that is similar to finite element method is used to provide a 

background mesh for numerical integration. An enriched EFG formulation with fracture problems is proposed to improve the 

solution accuracy for linear elastic fracture problem. The essential boundary conditions are enforced by Lagrange multipliers 

method. A code has been written in Matlab for the analysis of a crack tip. The obtained results of the developed EFG-code 

were compared to available experimental data and other numerical (exact methods and finite element method) methods. 
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1. Introduction 

There are many numerical methods applied for modeling 

cracks in mechanical problems such as the Boundary 

Element Method (BEM) [1], the Finite Element Method 

(FEM) [2], the extended Finite Element Method (XFEM) [3] 

and Meshless Methods (MMs). Among these methods, the 

element free Galerkin method and enriched element free 

Galerkin method has developed by Belytschko et al. [4,5] 

and it has been widely applied in fracture mechanics [6–8]. 

The meshless method works better than the traditional finite 

element method (FEM) in treatment of arbitrary evolving 

discontinuity. Due to the elements are independent of each 

other so the problems of crack analysis is simplified 

considerably which can be analyzed on a fixed mesh and 

unnecessary remeshing for crack development issues.  

In this paper, we use a meshless method to analyze two-

dimensional elastic problem by using Element-Free Galerkin 

(EFG) method that is based on moving least squares 

approximation (MLS) to construct the function 

approximation for the Galerkin weak form. These 

approximations are constructed by using a weight function 

that base on a monomial basis function and a set of non-

constant coefficients. A subdivision similar to finite element 

method is used to provide a background mesh for numerical 

integration. The necessary boundary conditions are 

implemented by means of Lagrange multipliers. The method 

of enriched EFG that is enriched basis and nodal refinement 

is utilized to calculate and simulate crack growth. Therefore, 

the precision calculation is improved. The continuous crack 

propagation is modeled as a linear series of crack growth. In 

there, plate for cracks in the center and edge cracks is 

presented in this paper. The results obtained for two-

dimensional problem with different of the number of nodes, 

crack length, load and dimensionless size of the support 

domain in the region of the crack tip compare to element 

finite method and exact method. In addition, Matlab code of 

EFG method also is offered in this paper. This Matlab code 

can be developed for meshfree application software or other 

meshfree method in the further. 

2. MLS Approximations Functions  

MLS functions were developed by Lancaster and 

Salkauskas in the literature [9] to approximate curves and 

surfaces, and then was used in EFGM method to generate 

shape functions [1,9]. In EFGM, a field variable u(x) is 

approximated by MLS approximation, u
h
(x) [22] which is 

given as 
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The a(x) parameters are obtained by minimizing a 

weighted least square sum. The weighted least square sum 

denoted by L(x) can be written as follows: 
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Where  ω(x - xI) is a weighting function which is nonzero 

on the influence domain of the node xI; n is the number of 

points in the neighbourhood of x , and uI is the nodal value of 

u at x=xI. The dimension of the influence domain of each 

node and the choice of the weighting function are decisive 

parameters for the approximation by MLS [4]. 

Minimizing L(x) in order to the unknown parameters a(x) 

results in 
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Substituting the result (5) in the initial approximation (1), 

the MLS approximation is obtained as: 
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Where the shape function is defined by 
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Where m is the order of the polynomial p(x). To determine 

the derivatives from the displacement (8), it is necessary to 

obtain the shape function derivatives. The spatial derivatives 

of the shape functions are obtained by:  
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It should be noted that EFG shape functions do not satisfy 

the Kronecker delta criterion: ΦI(x)
1 

≠ δij, so u
h
(xI) ≠ uI, the 

nodal parameters uI are not the nodal values of u
h
(xI). 

Therefore, we use Lagrange multiplier method to enforce the 

essential boundary conditions. 

3. Choice of Support Domain and Weight 

Function 

The support domain usually used circular or rectangular. 

There is no difference if a circular or rectangular support 

domain is used in the EFG method [4,5]. A weight function 

needs properties as following:
 

� Compact support, i.e. zero outside the support domain.  

� The values of all points in the support domain is 

positive. 

� The value of its is maximum at the current point and 

decrease when moving outwards.  

There are many kinds of function satisfying for these 

properties. In this paper, we used the quadratic spline 

function as follow 

2 3 2

1 6 8 3
( ) ,

0

I I I
I mI

I mI mI mI

I mI

d d d d d

w d d d d

d d

≤− + −
=

>

      
      
      



      (12) 

With:  dI = ǁx - xIǁ   

dmI is the radius of influence domain xI 

dmI = dmax.cI 

Where the scaling parameter dmax usually is chosen 1.5 ÷ 4 

for static analysis. The characteristic dimension parameter cI 

represents the nodal spacing. If the nodes are uniformly 

distributed then cI is the distance between two adjacent nodes. 

4. Discrete Equations and Integration 

In EFGM, the shape functions dissatisfied the Kronecker 

delta property. Therefore, we have to use Lagrange multiplier 

to invoke essential boundary. The Lagrange multiplier in [4] 

as follow as: 
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The Lagrange multiplier ( λ  ) can be interpreted as the 

reaction forces needed to fulfill the displacement conditions 

at the boundary. The approximation given by:  
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By enforcing essential boundary conditions using 

Lagrange multiplier approach. Discretization of (14) results 

in [7]. 
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With K is stiffness matrix.
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BI is the partial derivatives of the shape function. 
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5. The Stress and Displacement near 

Crack Tip 

The analytical solution for the stresses of an infinite plate 

[10,11] 
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6. Enrichment Functions 

In the EFG method, by adding extensions in Meshless 

methods to reflect the discontinuous displacement field 

generated by the crack. For the case of linear elastic fracture 

mechanics, two sets of functions are used: a Heaviside jump 

functions to capture the jump across the crack faces and 

asymptotic Branch functions that span the 2D asymptotic 

crack tip fields. The enriched approximation for fracture 

mechanics problems take the form [12-15] 
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In the equation (26), the first term is the standard 

approximations functions of EFG methods, the second term 

reflects discontinuous along the two sides of crack surface, 

and the third term reflects the crack tip singularity. 

Where N is the entire set of particles in the domain, N
b
 is 
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the set of particles whose domain of influence is completely 

bisected by the crack, N
s
 is the set of particles whose domain 

of influence is bisected by the crack tip as shown in Fig.1. 

H(x) is Heaviside jump enriched function, and given by 

[16]: 
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B(x) is Branch enriched function, the crack tip extension 

function, and given by [17]: 
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The Branch enrichment is crucial to accurately locate the 

crack tip in enriched meshfree methods. The crack tip 

enrichment ensures that the crack is properly closed at the 

crack tip. 

 

Figure 1. Selection of the support domain near a crack face 

Where f(x) is the signed distance function from the crack 

line; x is the sample points, xI is the distance from the surface 

cracks to the point x nearest; r and θ are polar coordinates 

with respect to the crack tip as shown in Fig. 1.  

7. Crack Growth Direction 

The propagation of crack requires a suitable criterion for a 

crack growth. The commonly used criteria are: the maximum 

principal stress criterion [18], the maximum energy release 

rate criterion [19], and the minimum strain energy density 

criterion [20]. 

In this study, we use maximum hoop stress theory, which 

assumes that the crack may grow in a direction perpendicular 

to the maximum principal stress [21]. 
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Where KI and KII are the stress intensity factor of modes 1 

and 2, respectively. The variables r and θ are as shown in Fig. 

2. Therefore, the crack growth direction 0θ  for each crack 

increment is obtained by following 

condition [22]. 
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After solving the above equation, we obtain  
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According to this criterion, the equivalent mode I SIF is 

3 2
cos ( / 2) 3 cos ( / 2)sin( / 2)

e I c II c c
K K Kθ θ θ= −    (32) 

When equivalent stress intensity factor Ke is greater than 

fracture toughness of the material Kc, cracks began to expand.  

Kc is fracture toughness of the material. 

The steps of calculations in Matlab code: 

Step 1: Set up the nodal coordinates for a problem domain. 

Step 2: Set up a background mesh for numerical 

integration. 

Step 3: Determine the Gauss point, weight function and 

Jacôbi. 

Step 4: Determine the domain of influence of each node in 

the model. 

Step 5: Determine shape functions MLS and shape 

function derivatives. 

Step 6: Enriched. 

Step 7: Determine stiffness matrix K. 

Step 8: Enforce essential boundary conditions using 

Lagrange multipliers. 

Step 9: Assembled to form the master stiffness matrix and 

solve for equations. 

Step 10: Solve for nodal parameters, solve for stresses. 

Step 11: Solve for stress intensity factors and direction of 

crack propagation. 

 

Figure 2. Distance r and angle θ of a point x the crack tip 

8. Numerical Simulation 

8.1. Rectangular Plate with a Center Crack under Tension 

Shown in Fig. 3.  

The plate has an initial crack length of 2a=40cm, a plate 

length of H=350cm, a plate width of b=175cm; Elastic 

modulus E = 2x10
7
N/cm

2
; Poisson’s ratio υ=0.3. Fracture 
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toughness Kc=140N/cm
3/2

; The dimensionless size of support 

domain dmax=1.75; a 4x4 Gauss quadrature is used and 6x6 

nodes around the crack tip are selected for enrichment. 

2a

2b=350

Y

a

H
=
3
5
0

P=30N/cm

 

Figure 3. Mode I crack subjected to tensile load  

Thanks to the symmetry, only half of the model 

calculations.  

The reference mode I SIF is given by [11] 

1
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Where a is the crack length, b is the plate width and FI(a/b) 

is an empirical function given as 
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Figure 4. Nodal discretization and around the crack tips was refined with 

6x6 nodes 

 

Figure 5. Normal and enriched nodes 

 

Figure 6. Enriched nodes and Gauss point distribution 4x4 

8.1.1. Analysis of the Number of Nodes in the SIF 

Calculation 

Table 1. Shows the mode I SIFs obtained using different of the number of 

nodes 

Nodes KEFG KTheory KFEM[23] 

10x20 247,2613 239,6579 255,9088 

15x30 242,3825 239,6579 252,3577 

20x40 241,0894 239,6579 245,3904 

25x50 241,116 239,6579 243,7217 

30x60 241,2555 239,6579 243,5303 

35x70 241,1846 239,6579 243,511 

40x80 241,0183 239,6579 243,6795 

45x90 241,2739 239,6579 243,9402 

10x20 15x30 20x40 25x50 30x60 35x70 40x80 45x90
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Figure 7. SIF % error of different nodes density 

The results obtained in Table 1 show that the accuracy of 

the EFG method depend on the smoothing node density. If 
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the node density is as smoothing as a high precision and vice 

versa. This article demonstrates that the problem of 

distributed nodes in EFG method great influence to the 

accuracy of calculations. To increase the accuracy level, we 

just simply add the button to the crack tip. Because no grid 

structure, hence the problem of adding nodes can be 

implemented and reduce computation time.  

Using the results of EFG method compared to the results 

of element finite method and exact method, the values of 

error are mostly less than 1% is shown in Fig.7. 

8.1.2. Analysis of the Crack Length in the SIF Calculation. 

With a=i*5(cm) (i=1:10) 

Table 2. shows the mode I SIFs obtained using different of the crack length  

a(cm)  Nel  K
EFG 

 K
theory

 
 K

FEM

 
[23] 

5 40x80 119.5638 118.9573 118,09 

10 40x80 169.3015 168.4756 167.1297 
15 40x80 207.8535 206.8415 203.7212 

20 40x80 241.0183 239.6579 237.8907 

25 40x80 270.8392 269.1344 267.5569 
30 40x80 298.436 296.4354 295.4391 

35 40x80 324.9144 322.2807 322.2666 

40 40x80 350.4446 347.1662 348.433 
45 40x80 375.588 371.463 374.166 

50 40x80 399.6855 395.4695 399.5562 

From table 2, we can show that the different of the crack 

length under three different approaches. In Fig. 8 we also see 

that error of EFG method is small. When the crack length a = 

45cm, the maximum error is about 1.0982%, the crack length 

a = 15cm, the minimum error of approximately 0.4868%. 
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Figure 8. SIF% error of different crack length 

8.1.3. Analysis Dimensionless Size of the Support Domain 

(dmax) in the SIF Calculation 

Table 3. shows the mode I SIFs obtained using different of dmax  

dmax Nel  K
EFG

 KTheory Error (%) 

1.6 20x40 297,1386 306,9168 -3,2907  
1.7 20x40 300,1515 306,9168 -2,2539  

1.8 20x40 298,9854 306,9168 -2,6527  

1.9 20x40 297,4066 306,9168 -3,1977  
2.0  20x40 299,0257 306,9168 -2,6389  

2.1 20x40 301,3948 306,9168 -1,8321  

2.2 20x40 306,14 306,9168 -0,2537  
2.3 20x40 317,113 306,9168 3,2153  

1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3
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5
STRESS INTENSITY FACTOR

d
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S
IF

 E
rr
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Figure 9. SIF% error of different dmax 

Table 3 shows that the size of nodes in the influence 

regions have an important role in Meshless methods because 

the results obtained of Meshless method based on influence 

domain by using moving least squares to solve point within 

the variable. If the domain of influence parameters are 

chosen as dmax = 1.7 ÷ 2.2 then computational precision is 

high. Conversely, dmax is chosen outside this region then the 

effectiveness of approximation is not good.  

8.1.4. Analysis of the Tension in the SIF Calculation: q=5*i 

(N/cm) (i=1:10) 

From Fig. 10, we find that the calculation error is 

independent of the distribution of the load q. All 

computational errors always equal 0.8280%. 

Table 4. shows the mode I SIFs obtained using different of load  

q(N/cm)  Nel  KEFG
  KTheory

  KFEM
 [23] 

5  20x40 40,2263 39,9429  39,3728 

10  20x40 80,4525 79,8859  78,745792 

15  20x40 120,6788 119,8289  118,1186 

20  20x40 160,9051 159,7719  157,4915 

25  20x40 201,1314 199,7149  196,86448 

30  20x40 241,3576 239,6579  236,2373 

35  20x40 281,5839 279,6009  275,61027 

40  20x40 321,8102 319,5438  314,9831 

45 20x40 362,0365 359,4868  354,3561 

50 20x40 402,2627 399,4298  393,7289 
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Figure 10. SIF % error of different load 
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8.2. Rectangular Plate with a Single Edge Crack under 

Tension Shown in Fig. 5. 

a=32

  b=175

Q=30N/cm

H
=
3
5
0

  

Figure 11. Single Edge Crack Computational model (mode2) 

The plate has an initial crack length of a=32cm, a plate 

length of H=350cm, a plate width of b=175cm; Elastic 

modulus E = 2x10
7
N/cm

2
; Poisson’s ratio υ=0.3. Fracture 

toughness: Kc=140N/cm
3/2

; The dimensionless size of support 

domain dmax=1.75; 

A Gauss integration of 4x4 orders is used, without local 

refinement at the crack tip. 

The reference mode II SIF is given by [11] 
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K a F

b
σ π=  

Where a is the crack length, b is the plate width and FII(a/b) 

is an empirical function given as 

2

3 4

1.122 0.231 10.55

                 21.718 30.382

II

a a a
F

b b b

a a

b b

= − +

− +

     
     
     

   
   
   

 

8.2.1. Analysis of the Number of Nodes in the SIF KII 

Calculation 

Table 5. Analysis different of the number of nodes in the SIF calculation 

Nel  KII
EFG 

 KII
Theory

  KII
FEM

 [23] 

30x60 395,5081 401,1702 404,2531 
35x70 396,2977 401,1702 403,3656 

40x80 397,0112 401,1702 400,2353 
45x90 397,8484 401,1702 399,7724 

50x100 397,879 401,1702 399,4941 

55x110 397,8911 401,1702 399,3723 
60x120 397,9574 401,1702 399,3572 

65x130 398,0053 401,1702 399,3854 
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Figure 12. SIF KII % error of different nodes density 

In this section, computational analysis without smoothing 

at the crack tip.  

The results obtained of Table 5 illustrates that the 

maximum error of EFG method and element finite method 

with the same number of nodes is 1.40% and 0.76%, 

respectively. When the mesh density is smoothing then 

computational precision is high. Thus, we can find that the 

computational precision depends greatly on the distribution 

of nodes. 

8.2.2. Analysis of the Crack Length in the SIF KII 

Calculation 

Table 6. Analysis of the crack length in the SIF calculation. With a=i*10(cm) 

(i=1:8)  

a(cm) Nel  KII
EFG 

 KII
Theory

  KII
FEM

 [23] 

10 65x130 190,7816 191,6101 194,8391 

20 65x130 285,7325 286,8245 290,5711 

30 65x130 378,9788 381,316 384,4031 

40 65x130 482,2136 485,6039 487,7887 

50 65x130 602,4452 606,5331 609,3197 

60 65x130 750,6046 752,7061 757,2961 

70 65x130 933,2459 936,6675 942,2688 

80 65x130 1172,198 1176,25 1179,348 

From Table 6 and Fig. 3 show that the error of EFG 

method are small. When the crack length a = 40 cm, the 

maximum error calculation is 0.7030%. When the crack 

length a = 60 cm, the minimum error calculation is 0.2799%.  
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Figure 13. SIF KII % error of different crack length 
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8.3. Simulation Results of Displacement Fields and Stress 

Field  

Displacement Fields

 

Displacement Fields

 

Figure 14. The node displacement fields after 2 steps 

Fig. 14 presents the displacement field of edge crack finite 

plates. Where we can see that the node displacement fields 

after 2 steps is reflected under the effect of loads. 

 

Figure 15. x, y direction stress field of center crack under tension 

Fig. 15 and Fig. 16 present the stress contour plot of xxσ  

and yyσ  direction of center and edge crack under tension. It 

also shows that the stress concentration at the crack, the 

singularity of the crack tip stress and and the stress field at 

the crack location outside is smooth.  

All the problems have been simulated by EFG codes 

(algorithms) writting in MATLAB (R2010b). 
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Figure 16. x, y direction stress field of single edge crack under tension 

8.4. Simulation of Crack Propagation 

Simulate the growth of crack in quasi-static is evaluated by 

equivalent stress intensity factor, and if its exceeds the 

fracture toughness of the material then the crack will be 

extended for some finite length (da) in a particular direction 

that is found by a suitable crack growth criterion. The step 

size (da) is a used to determine parameters, and da should be 

chosen enough minor to get an accurate crack growth path. 

The stress intensity factors are recalculated for the new crack 

geometry, and the next crack is extended according to a new 

direction. 

In this paper, the following equation is calculated for each 

step of the cracking step [24]: 

( )

0(0)
.

n

e

n

e

K
da da

K
=  

Where da0 is initial cracking step, 
(0)

eK is initial equivalent 

stress intensity factor, dan is step n for cracking step, 
(n)

eK is 

step n the equivalent stress intensity factor. 

 

After 10 step 

Figure 17. Crack growth path of centre crack 

The obtained results of model crack propagation analysis 

by using a relatively coarse discretization of 40 × 40 nodes 

for centre crack and 20x40 nodes for edge crack. The crack 

growth increment is selected 0.1a (a=40) for this study, and 

the crack growth are simulated for 10 steps and 15 step. The 

result of crack path is shown as Fig. 17 and Fig. 18. 

   

After 10step          After 15step 

Figure 18. Crack growth path of single edge crack 
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9. Conclusions and Discussion 

The Meshless computation has some outstanding 

advantages compare to the traditional finite element method 

(FEM) in treatment of arbitrary evolving discontinuity. 

Because of the independence of elements, the adaptive 

refinement can be easily achieved. Therefore, the crack-

propagation analysis can be done easily and dramatically 

simplified. By introducing enriched functions, the extensions 

are added in the approximation of traditional Meshless 

method, the computation accuracy was improved. Through 

the computational results of stress intensity factors for edge 

and centre crack are compared to the results of element finite 

method and exact method, proving the Meshless method is 

very convenient for crack problem. In both cases the crack 

growth that is edge and centre crack are simulated for 

predicting fatigue crack propagation path. This method is 

used to allow crack growth without remeshing.  

Through the analyses of numerical examples demonstrate, 

we can see that enriched EFG method which can solve the 

fracture problems is effective, and has practical merits for 

modeling crack growth problem. It is very promising in 

engineering application. 
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