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Abstract: New self-oscillatory compressible flows are found and investigated. Self-oscillations are supposed to be 

produced as a result of resonance interactions of flow “active” elements, namely, elements, amplifying disturbances. 

Hypothesis is used that contact discontinuities and intersection points of shocks with shocks or shocks with contact 

discontinuities compose the flow set of “active” elements. Two-dimensional Reynolds-averaged Navier-Stocks equations 

added by an algebraic turbulence model are solved by an implicit third order Runge-Kutta scheme. Well studied open cavity 

flow and jet impinging on a plane are calculated to verify the numerical method and the turbulence model. Compressible 

flows near blunted bodies, giving off supersonic opposite jets from forehead surfaces, are discovered to have self-oscillatory 

regimes. 

Keywords: Self-Oscillatory Flows, Reynolds-Averaged Navier-Stocks Equations, High Resolution Methods, 

Runge-Kutta Schemes 

  

1. Introduction

A jet cavity interactions (see, for example, [1-5]) are 

known to have self-oscillatory regimes. Papers [1-4] are 

devoted to investigations of various aspects of main 

frequencies dependences on geometrical parameters of jets 

and environments. Kastner and Samimy [5] studied a 

Hartmann cavity in which the region between the jet and the 

cavity is shielded partly. 

A jet impinging on a plane [6-14] is another type of 

compressible jet unsteady flows. Self-oscillations main 

frequencies are studied in [6-7]. Numerical flow field 

simulations are carried out in [8-14]. The   numerical 

approach LES is used in [10-12]. RANS, added by an 
algebraic turbulence model, are used in [13-14]. An 

impinging of a supersonic underexpanded jet, surrounded by 

a subsonic stream, on a blunted cone, was found also to have 

self-oscillatory regimes [15]. 

Main purpose of the recent paper is to extend this list of jet 

unsteady flows by means of a numerical search. We construct 

and investigate flows, containing “active” elements. 

Particularly, flows near blunted bodies (cylinders or cones), 

giving off opposite jets, were discovered to have unsteady 

regimes [14,16]. Here these investigations are continued. 

The mentioned above mechanism of self-oscillations is 

based on resonance interactions of flow “active” elements, 

namely, elements, which amplify disturbances. We suppose 

that contact discontinuities and intersection points of shocks 

with shocks or shocks with contact discontinuities compose 

the flow set of “active” elements. Possibility of the 

disturbances amplification by contact discontinuities is a 

result of the Kelvin-Helmholtz instability and is accepted. 

Inclusion of intersection points to a list of amplifiers [13-14] 

is initiated by the known possibility to operate types of the 

shock reflection from a plane (Mach or regular type) by 

small influences. If small influences yield significant change 

of the flow in the reflection zone, then this flow structure is 

an amplifier of disturbances. Possibility of any intersection 

points of discontinuities (intersection lines in 3d case) to 

amplify disturbances is used here as a hypothesis, which is 

checked by results of a search for new unsteady flows. 

Since active flow elements, mentioned above, amplify 

disturbances, that yields possibility of interactions between 

any these elements. Namely, disturbances from one element 

affect at the flow near some another. Change of the flow near 

the last element affect at the flow near initial one. If reflected 
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disturbances come back to the initial element with nearly the 

same phase, as this element emits at that moment, then 

conditions are formed for the positive feedback effect. As a 

result, a resonance may take place, which induces flow 

self-oscillations. 

The body surface reflects disturbances and, consequently, 

also plays a rule in producing of self-oscillations. Naturally, 

this effect depends on the surface form. For example, 

numerical investigations [15] of interactions blunted cones 

with jets, surrounded by subsonic streams, show significant 

decreasing of the self-oscillations amplitude when the plain 

cone blunt is replaced by the spherical blunt, which 

disperses reflected disturbances. Unlike “active” elements, 

body surfaces do not increase disturbances energy and plays 

a secondary rule in self-oscillations producing. Availability 

of “active” elements does not guarantee producing of 

self-oscillations and may provide also an existence of steady 

regimes. 

There is possibility of three types of interaction: 

1 – a contact discontinuity with a contact discontinuity; 

2 – an intersection point with a contact discontinuity; 

3 – an intersection point with an intersection point. 

2. Physical and Computational Models 

Reynolds-averaged Navier-Stocks equations added by an 

algebraic turbulence model are used here and in previous 

author’s investigations [13-16]. A search for new 

self-oscillatory flows deals with trial calculations of 

numerous different flows. So, we need in a simple and 

universal turbulence model. Here the model is used, based 

on the Prandtl formulae  

µ=ρ|w|k²z²                       (1) 

where w is a vorticity, ρ  is density, z is the length scale, 

k=0.4 is the von-Karman constant. This formulae is dealt in 

classical Cebeci-Smith and Baldween-Lomax models, 

where the length scale is defined as the recent point distance 

to the solid wall. This formulae is used also in the 

Smagorinsky model of LES (Large Eddy Simulation), where 

the length scale is the grid cell size. Another definition is 

used here. We divide flows on vortex zones and ideal zones. 

The length scale is equal to zero in ideal zones and is equal 

to the recent point distance to the zone boundary in vortex 

zones, with next usage of the limitation written below.  

The viscosity calculation starts with the determination of 

vortex zones by the velocity circulation calculation. The 

current mesh cell belongs to any vortex zone if the inequality 

is true: 

|w 2/1,2/1 ++ ki |S 2/1,2/1 ++ ki =| (u ki ,2/1+ ∆ r ki ,2/1+ ) –  

- (u 1,2/1 ++ ki ∆ r 1,2/1 ++ ki )+(u 2/1,1 ++ ki ∆ r 2/1,1 ++ ki )- 

-(u 2/1, +ki ∆ r 2/1, +ki ) |> е {|u ki ,2/1+ ||∆ r ki ,2/1+ |+  

+|u 1,2/1 ++ ki ||∆ r 1,2/1 ++ ki |+|u 2/1,1 ++ ki || ∆ r 2/1,1 ++ ki |+ 

+|u 2/1, +ki ||∆ r 2/1, +ki |}, 

where S is the mesh cell area, u are velocity vectors at mesh 

nodes, ∆r are vectors connecting neighbouring nodes, е is a 

small constant (for which the value 3/N is chosen in trial 

calculations, N - the most number of mesh points in space 

variables), (u∆r) are scalar multiplications of vectors, |u||∆ r| 

are multiplications of vector lengths. The middle part of this 

relation represents approximately the velocity circulation 

along mesh cell boundaries. The length scale z is calculated 

by formulas: 

z=d[x-(x/1.5) 3 /2], if x=L/d < 1.5, z=d, if x>1.5.    (2) 

where L – the recent point distance to the vortex zone 

boundary, d – a delimiting parameter. These formulas define 

a delimiter with continuous first derivative. Calculations, 

presented here, are carried out for d=r/60, r – the radius of 

spherical blunt of considered bodies or the jet radius in 

investigations of a supersonic jet impinging on a plane. Trial 

calculations with usage the constant length scale z=d show 

worse resolution of small flow details compared with the 

written above approach (numerical illustrations are 

presented in fourth chapter). 

The used here approach deals with the fixed aggregate of 

scales of disturbances represented in the turbulent viscosity. 

As a result, the turbulent viscosity is steady while the mesh 

number is varying and, consequently, the contact 

discontinuities thickness (more precisely, shift layers in our 

case) is steady while the mesh number is varying. It allows 

simple checking of the solutions convergence in the mesh 

nodes number and, consequently, allows to get additional 

verification of the unsteady regimes existence. Since we 

search for new self-oscillatory flows, which are not studied 

experimentally, this verification is a particularly important 

component of our investigations. 

An implicit conservative Runge-Kutta scheme [15,17] is 

employed here, which is third order in time and fourth order 

in space (viscous terms are approximated with second order). 

This scheme version, which has the same space stencil but 

which is first order in time is used for additional verification 

of the self-oscillatory regimes existence. 

Naturally, numerical calculations deal with dimensionless 

variables. These variables are defined as relations of initial 

variables and next parameters of the undisturbed flow or the 

body size: p ∞ - for pressure, ρ ∞ - for density, ∞∞ ρp  - 

for velocity, r (blunt radiuses of cones or cylinders) – for 

space variables, r/ ∞∞ ρp  - for time. 

3. Test Problems 

An open cavity flow [18-19] and an underexpanded 

supersonic jet impinging on a plane [20-21] are chosen for 

comparison to verify the numerical method and the 

turbulence model. 

The cavity depth (see figure 1) is 5.2mm, the cavity length 

is 10.4mm, the numerical region above cavity has the height 

of 10.4mm and the length of 20.8mm. This cavity flow is 
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tested numerically with flow field conditions M ∞ =2, 

θ =0.979mm (momentum thickness of the boundary layer 

on the inflow plane). Boundary conditions for computations 

are no-slip adiabatic wall on solid surfaces, extrapolations 

on the outflow boundaries, prescribed variables on the 

inflow plane. Namely, dimensionless pressure and density 

are 1, the vertical velocity component v is 0, the horizontal 

velocity component is u= M ∞ γ (2 s -s) if s=y/θ ≤10, 

u= M ∞ γ
 
 if  s=y/θ  >10, γ =1.4 – the specific heat 

ratio. 

 

Figure 1a. Cavity flow streamlines  

The time history of the surface pressure at the x=2L/3 

point on the cavity floor is used to form the time averaged 

sound pressure level SPL , which is computed by the 

equation  

SPL =10 Log10  (
2'p /p

2

ref ), 

where 

2'p = Σ
n

 ( p n - p ) 2 /N, p ref =20mkPa/ p ∞ , 

p ∞ =98066Pa (air pressure under normal conditions) is used 

since dimensionless variables are dealt here. The resulting 

time averaged SPL  of 174.8Db may be compared with the 

numerical SPL  of 167.54Db and the experimental SPL  

of 164.41Db presented in [18]. The weighted SPL  for data 

from various sources [19] is approximately 171Db.  

An underexpanded supersonic jet impinging on a plane 

[20-21] may illustrate the proposed self-oscillations 

mechanism. Figure 2 shows the density distribution between 

two infinite planes. The jet outflows from the axisymmetric 

nozzle on the left plane in figure 2. The supposition is used 

that the temperature at a centre of the nozzle exit cross 

section is equal to the surrounding air temperature. Jet 

parameters are computed by the system of algebraic 

equations, which describes the one-dimensional flow from a 

point source. The horizontal velocity component is equal to 

zero on solid surfaces (vertical boundaries in figure 2), the 

radial velocity component, pressure and density are 

extrapolated. The radial velocity component is equal to zero 

on the symmetry axis, other variables are extrapolated. 

Extrapolation conditions are used on the upper boundary 

(figure 2).  

The density distribution, shown in figure 2, allows to 

determine “active” elements of this flow. It contains the 

contact discontinuity – the jet boundary, and three 

intersection points. These points are situated on the shock, 

which brakes the jet. Two of them correspond to arrows in 

figure 2, and third corresponds to the shock break, which is 

closer to the symmetry axis (this point disappears and 

appears again from time to time).  

 

Figure 2. A supersonic jet impinging on a plane, the density distribution 

It may be shown [15] that effect of the perturbations 

reflection from the plane doubles the number of these 

elements. Thus, there is an ensemble of “active” elements 

and large number of possible interactions between these 

elements. It explains existence of unsteady regimes of this 

flow, according to the proposed mechanism of 

self-oscillations.  

The flow shown in figure 2 is computed with flow 

conditions M jet =2.098 (Mach number at the exit cross 

section of the nozzle), p jet /p ∞ =4.785, γ=1.4 (the specific 

heat ratio), h=6.95r jet  (h – the nozzle exit distance to the 

right surface, r jet  - the nozzle radius), б jet =4° (the nozzle 

half-angle). The 696 × 463 mesh is used. The resulting 

frequency of 8206Hz may be compared with the 

experimental frequency of 9033Hz [21].  

According to the discussed self-oscillations mechanism, 

the self-oscillations frequency is defined by the distance 

between interacting “active” elements and the disturbances 

propagation speed.  If to suppose that the dimensionless 

temperature besides the shock is approximately equal to the 

jet brake temperature t=1+M
2

jet (γ-1)/2=1+2.098І × 0.2, 

consequently, the sound speed is equal to с= t×γ =1.62. 

The dimensionless self-oscillations period T=2.24 

corresponds to the frequency of 8206Hz. So, the distance 

between “active” elements is equal approximately to 
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L=c × T/2=1.82. This value corresponds to the distance 

from the brake shock to the right plane (it should be noted 

that the jet exit radius is taken as a unit, see figure 2). 

Consequently, an interaction of some intersection point with 

the plane is responsible for most intensive self- oscillations. 

To determine which intersection point provides these 

self-oscillations, time averaged SPL s for different places 

on the plane are computed. Time averaged SPL  of 

203.5Db is resulted for the y=0 point on the right plane, 

SPL  of 197.8Db for the y=1.3 point (arrow 1), and  SPL  

of 208.6Db for the y=2.2 point (arrow2). Since the 

oscillations amplitude for the y=2.2 point is about 3 times 

the amplitude for the y=1.3 point, it seems that the 

interaction of the intersection point, corresponding to arrow 

2, with the right plane is most intensive in producing of 

self-oscillations.  

4. Self-Oscillatory Flows near Blunted 

Bodies, Giving Off Opposite Jets 

Investigations of unsteady interactions of uniform 

supersonic streams with blunted cones, giving of opposite 

supersonic jets, were began in [14,16] and are continued 

here. Calculated flow fields allow to see shocks, contact 

discontinuities and intersection points. So, these flows may 

be waited to produce self-oscillations, according to the 

proposed mechanism of the flow unsteadiness. 

Figure 3 shows density levels for the flow with Mach 

number M ∞ =1.3 near the spherically blunted cylinder. The 

conical supersonic jet is running out from a point source 

located at the sphere centre. The jet half-angle is 

б jet =arcsin(2/3), jet Mach number on the surface x²+y²=r² is 

M jet =4.5, jet pressure is p jet =0.23254p ∞ , jet density is 

ρ jet =0.46455ρ ∞ . The tangential velocity component is 

equal to zero on solid surface, other variables are 

extrapolated. Radial velocity component is equal to zero on 

the symmetry axis, other variables are extrapolated. 

Extrapolation conditions are used on the outflow plane, all 

variables are prescribed on the inflow boundary (figure 3).  

There are two shocks, namely, the shock on the left side of 

figure 3, which brakes an outer stream, and the second shock 

closer to the spherical blunt, which brakes a jet, the extended 

contact discontinuity between them (denoted by the arrow 1), 

and the second contact discontinuity, corresponding to the 

jet boundary. The intersection point (denoted by the arrow 2) 

of this discontinuity with the shock acts as an amplifier of 

perturbations. It is important to note that the new contact 

discontinuity starts from this point and propagates to the 

region at right side of figure 3. The contact discontinuity, 

signed by the arrow 1, also propagates to this region. 

 

Figure 3. Density levels near the blunted cylinder. 

So, if some closed flow contains the tail shock, this shock 

crosses both contact discontinuities, consequently, two new 

intersection points appear. This new intersection points may 

interact one with another or with the body surface and, 

consequently, may generate self-oscillations. For example, 

figure 4a shows the density distribution for the flow, defined 

by presented above parameters, except of the jet angle, 

which becomes б jet =arcsin(1/3). This flow contains the tail 

shock, which starts approximately from the interface point 

of spherical and cylindrical parts of the body. So, appearing 

of two additional intersection points on the tail shock is 

continued by a generation of intensive self-oscillations, 

producing shocks, moving from the blunt region to the outer 

shock, where all these shocks become one. 

 

Figure 4a. The density distribution near the blunted cylinder 

Figure 4b shows the density history at the interface point 

of spherical and cylindrical parts of the body. Calculations 

are carried out by third and first order schemes with the 

identical space stencil. We see that self-oscillations are 

intensive and do not disappear when implicit highly stable 

first order scheme is used. Since these intensive 

self-oscillations appear in the flow, containing the tail shock, 

the opinion was formulated in [16] about decisive role of this 

shock in generation of global self-oscillations. 
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Figure 4b. Density histories at the interface point. 

But next investigations shows that situation is more 

complicated. Now we think, that when the jet angle is 

diminished from б jet =arcsin(2/3) to б jet =arcsin(1/3), the 

distance from the contact discontinuity, signed by the arrow 

1 (see figure 3), to the intersection point, signed by the arrow 

2, becomes less, these “active” elements begin to interact 

more intensively and generation of self-oscillations 

increases. 

To prove this opinion we found a flow which contains the 

tail shock, but self-oscillations are located near the 

cylindrical part of the body surface. The flow is calculated 

with conditions M ∞ =1.3, M jet =2, p jet =0.94231p ∞ , 

ρ jet =0.23771ρ ∞ , 
б jet =arcsin(1/3). The density 

distribution (see Figure 5a) shows chaotic waves on the 

contact discontinuity below the tail shock, but the shocks 

generation in the region near the body bold is absent. 

Amplitudes of pressure and density self-oscillations at the 

interface point of spherical and cylindrical parts of the body 

are about 15% of time averaged pressure and density. 

 

Figure 5a. The density distribution, usage of the approach written in 

chapter 2. 

This flow is calculated from the same initial flow fields 

with usage of three approaches. Apart of the written in the 

chapter 2 approach (these results are shown in figure 5a), the 

zero turbulent viscosity (figure 5b) and the turbulent 

viscosity calculated by formulas (1) and the constant length 

scale formulae z=d (figure 5c) are used. Case b corresponds 

to the Euler equations, case c is similar to the Smagorinsky 

approach. It can be seen that the used here approach allows 

to get the resolution, comparable with the resolution of the 

Euler equations. It should be noted that a contact 

discontinuity is very sensitive to a viscosity as a result from 

the Kelvin-Helmholtz instability. Recent approach deals 

with the turbulent viscosity, which is independent of the 

mesh nodes number and allows to check the solutions 

convergence in this number.  

 

Figure 5b. The density distribution, usage of the.Euler solver 

 

Figure 5c. The density distribution, usage of the constant turbulence length 

scale.  

For example, two meshes (870x970 and 653x725) are 

used for computations of the next flow near the blunted cone. 

Undisturbed stream Mach number is M ∞ =1.3, the jet 

half-angle is б jet =arcsin(1/3), the cone half-angle is 

б con =22.5°, jet Mach number is M jet =4.5, jet pressure is 

p jet =0.23254p ∞ , jet density is ρ jet =0.46455ρ ∞ . Figure 6a 

shows the density distribution for the 870 × 970 mesh. 

Intensive self-oscillations are generated in the body bold 

region. This oscillations produce shocks, propagating to the 

outer shock. 

Figure 6b shows pressure histories at the interface point of 

spherical and conical parts of the body for both meshes. 

Satisfactory agreement of solutions may be seen. 

 

Figure 6a. The density distribution near the blunted cone 
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Figure 6b. Pressure histories for two meshes 

5. Conclusions 

Published in previous articles of the author and discussed 

here the self-oscillations mechanism is based on the main 

new supposition that intersection points of shocks with 

shocks or shocks with contact discontinuities may amplify 

disturbances. These intersection points together with contact 

discontinuities are “active” elements of any flow, and 

interactions between these elements provide existence of 

unsteady regimes. According to this mechanism we tried to 

determine the main interaction by approximate calculation 

of the distance between corresponding “active” elements, if 

the main frequency of oscillations is known (chapter 3, a jet 

impinging on a plane). Some new unsteady flows are 

described here, namely, flows near blunted bodies, giving 

off supersonic opposite jets. These flows contain two zones, 

where closed “active” elements are placed. There are 

different self-oscillatory regimes, due to resonance 

interactions in the body bold zone or in the tail shock zone or 

in both zones.  
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