

International Journal of Media and Communication
2017; 1(1): 11-15

http://www.sciencepublishinggroup.com/j/ijmc

doi: 10.11648/j.ijmc.20170101.13

Virtual Process: Inside Approach to Understanding

Iuri Vitalijovych Koval

Department of Theoretical Cybernetics, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

Email address:

smith@uis.kiev.ua

To cite this article:
Iuri Vitalijovych Koval. Virtual Process: Inside Approach to Understanding. International Journal of Media and Communication.

Vol. 1, No. 1, 2017, pp. 11-15. doi: 10.11648/j.ijmc.20170101.13

Received: February 28, 2017; Accepted: April 6, 2017; Published: June 13, 2017

Abstract: This paper is devoted to virtual process notion investigation. Brief history of process notion present. Virtual

process, multi-language program, process equivalence, code generalization, and code simplification notion are discussed.

Simple example of behavior-equivalence and conditional behavior-equivalence proposed. Virtual process termination problem

is discussed also.

Keywords: Virtual Process, Multi-Language Program, Process Equivalence, Code Generalization, Code Simplification

1. Introduction

Term ‘virtual process’ consist of two words. The main part

essentially is ‘process’. The part ‘virtual’ is commonly used

to extend the existing notion. The understanding of internal

structure of virtual process is a task for this research. Usual

processes may be named as atomic in further text of paper.

For beginning, let understand what the atomic process

from internal point of view is. A good description in

appropriate manner is in [1]. There one can see that the

atomic process associated with some amount of memory,

each atomic part of which is accessible and, in the same time,

identifiable by the unique number. Usually, this number is

named ‘address’. For abstracting from real memory, this can

be named as ‘address space’. In such address space four main

parts can be pointed: code, global/static data, heap and stack.

This presentation shows an internal structure of atomic

process. Some information about the atomic process is stored

in the kernel memory and can be associated with record in

the kernels’ process table. For determining if this information

is crucial for the process notion, let look in the history of the

process notion.

2. The History of the Process Notion

At the pre_operating_system times there are the job and

the task notions. Both notions correspond to the program and

the program execution at the same time. The nascence of

operating systems demands and determines the separation of

two phases of program existence. So, the term ‘process’

comes in. But, from the operating system point of view, the

process is the record, mentioned above. Exactly – the number

of this record, which is known now as a pid – process

identifier. So, from this point of view, it is impossible to

determine the internal structure of the process.

Authors of UNIX operating system provided two base

primitives to operate with process. The first one is a fork and

the second one is an exec. There is a part of the exec

description form [2]:

‘exec overlays the calling process with the

named file, then transfers to the beginning of the

core image of the file. … There can be no return

from the file; the calling core image is lost.’

It must be stressed, that the pid of process didn’t changed.

In the other hand, the description of fork in [2] saes the

next:

‘fork -- spawn new process

fork is the only way new processes are created.

The new process’s core image is a copy of that of

the caller of fork the only distinction is the return

location and the fact that r0 in the old process

contains the process ID of the new process. This

process ID is used by wait.’

The new pid appearance means the new process nascence.

So, in the first case (exec), the code for the process changed.

Without recognising by the operating system that the process

is changed. In the second case (fork), the same code attached

to the new process, as the new data also. So, the next

12 Iuri Vitalijovych Koval: Virtual Process: Inside Approach to Understanding

conclusion reached: the data is the crucial part of the process.

To give the additional arguments for this conclusion, let

consider the description of the Emil Leon Posts’ machine [3]

and the Alan Mathison Turings’ machine [4]. Both authors

stated that the solution for a problem is the finite state of data

(in the now_a_day terminology). Also, one of the main

principles of current computer architecture states the same:

the solving of the problem corresponds to obtaining the final

data set from the beginning data set. The process of solving

of the problem is a sequence of machine state changing.

In his paper [3] Emil Post uses the term ‘process’ in the

sense that correlates with the current notion of process for the

operating systems. So, with grate pleaser, the term process

will be used to note the process of program execution.

3. The Process Equivalence

The next question to clarify is about process equivalence.

The strictest equivalence of processes is code-equivalence.

This one exists for two processes with the same code. This is

almost useless equivalence, except the case of copyright. For

problem solving this equivalence is unusable as fork

primitive demonstrates. All other equivalences are considers

on the memory states, or data sets in words of this paper. Two

process are supposed to be behaviour-equivalent if they

produce the same sequence D0, D1, … Dn for any D0, where

D0 is beginning memory state and Dn – is the final memory

state. This equivalence is so strict, that rare to exist in wild.

The code refactoring is one possible and, I dare to say, very

useful case for such equivalence. The behaviour term

correlates with the Turings’ machine moves and behaviour

[4].

The less strict equivalence is conditional behaviour-

equivalence which defined as the previous one, except the

condition, that only for D0 from some set DS the sequences

are the same. This equivalence is useful to produce the

generalization or simplification of some code. Next example

demonstrates such a case.

Table 1. Simple function for factorial.

Code States Action

int f (int a) { f() a f(2)

 int r = 1; 2 r int r;

 while (a) 1 r=1;

 r*=a--; 2 r*=a;

 return r; 1 a--;

} 2 r*=a;

 0 a--;

 2 return r;

Function f() calculates factorial for its argument. During

this calculations several memory states complete a sequence:

{(a,2)}, {(a,2),(r,1)}, {(a,2),(r,2)}, {(a,1),(r,2)}, {(a,1),(r,2)},

{(a,0),(r,2)}. The result value is 2 and named by ‘r’. In the

table 1 only changing of values are shown. Identical states

changing present in sequence. It seems clear, that for all non

negative numbers f() provides correct answer. To protect f()

from incorrect answer for the negative number the protective

if statement must be added:

Table 2. Protected function for factorial.

Code States Action

int f (int a) { f() a f(0)

 if(a <= 0) 0

 return 1; 1 return 1;

 int r = 1;

 while (a)

 r*=a--;

 return r;

}

Protective if statement has such side effect, that the

calculations for zero provides different states sequences for

functions from tables 1 and 2. Nevertheless, both functions

are behaviour-equivalent for the positive integer numbers.

The function from table 2 is a protected variant from

incorrect incoming data of one from the table 1. Such case

will be named as a code generalisation or a generalisation of

code. So, the code generalisation is such a code

transformation, which provides extending of DS set so, that

the new code can be used without problem on it, and is

behaviour-equivalent to the old code on DS. On the contrast,

the code simplification is such code transformation that is

behaviour-equivalent to the old code on DS but demand

protection in calling code for data that extends DS.

The equivalence-by-result is such one, when only D0 and

Dn must be the same for both processes. In such case the Dn

note lost sense as n neither shows the number of data sets

(memory states) in the sequence nor the number of step to

perform the problem solution. This equivalence is the

weakest among all mentioned before. But it is exactly one

that is very useful for reengineering of programs. This

equivalence is de-facto the tests set for the problem solution.

And, as a result, tests set for the program. The more tests

exist, the more complete problem specification is formed.

Conditional equivalence-by-result unites the notions of

equivalence-by-result and conditional equivalence in obvious

way.

At this point the notion of program must be clarified.

4. The Notion of the Program

According to the documentation for different programming

languages it can be concluded that no common definition of

program exist. The FORTRAN program [5] is a sequence of

formulas, or instructions in modern terminology. The C

program [6] is a set of files that each is a sequence of

variable, function, and type declaration mixed with function

prototypes. The Java program [7] is a set of classes. And so

on. The common feature of all programs is that they are a

text written according to some rules. The next question can

be asked: is it possible to write a multi-language program?

The first answer is no. But the multi-praradigmic

programming languages exist [8]. But the library for one

language can be used from another one. More over, syntax

elements migrate from one programming language to other.

 International Journal of Media and Communication 2017; 1(1): 11-15 13

The main difficulty in combining different programming

languages in one program is interpreting for one of them and

compiling for other as a method of program execution. The

other difficulty is dynamic memory using approach.

The answer for stated question now must be yes. Our time

programming systems and platforms moves into direction of

multi-language programs. This move is very slow and hardly

visible, but it exists. It is understandable, that the best

programming language impossible to develop. But every

existing programming language is the best in particular case.

Let us use the best choice for every problem and the

summary result will be better.

Other question to be asked: is it possible to write a

program that do program? The first answer is yes. But what

is “to do program”: write or execute? The difference between

program and process become obvious. The program is

written. The process is created. Prohibiting of writing process

code makes impossible to write process code. So, a program

must be written and then executed, namely the process

created. The interpreted languages mostly ignored

prohibiting to change the code. But mainly this means a

possibility to write new parts of code and not erase of old

code.

The answer for other stated question must be more than

yes. It means that it’s not only possible to modify code, but it

must be used. It is clear, that this approach carry heavy

difficulties, but there are no other way, then to solve them.

Here duality among the code and the data need to be

clarified.

5. The Code and Data Duality

The another of the main principles of current computer

architecture states that the code and the data can be placed in

the common memory. The only part of computer that can

distinct what is code and what is data is processor. But the

same processor can write data and treat them as code (if this

isn’t forbidden just in case). So, it happened that data may be

code and code may be data. Let look at simple arithmetic

expression 1+2. Mostly everyone says, that 1 and 2 are data,

and + is command. Lets write this in polish notation: +,1,2.

In this case one can say that command 1 and then command 2

applied to data +. Of course, this is a trick. Bat take a look at

HTML [9]. This is objects description. Does object

description is a program? Many programmers say no for

HTML. But why C++, or Java, object is a program? Because

method or function main are present? And if they hidden the

object becomes clear data? The main aim to disable code

changing is to simplifying the process of the program

correctness proving. This was helpful at the beginning of the

compute age. But like AC is become more suitable then DC,

like dynamic systems overtakes static system, like a virtual

memory system displace physical RAM, code changing will

take advantage over solid code. This is the main law of

nature.

Other example of the code/data duality is data streams in

channel. For TTY channel commonly used ESC symbol to

transfer command. Why ESC symbol is present in data

transfer mode and is not used in command mode? Why

command may be mixed with data without requiring ESC or

similar symbol? The answer is simple: command code is

such symbol. In programming languages numerical data

commonly not separated form operations (commands). But

character or textual data are separated by any kinds of quotes.

The only reason for that is impossibility to recognize what is

data text and what is program text (command). So for code

and data we use special marks to distinguish that such bit-

sequence is data or code.

6. The Virtual Process

I can find for now only one publication with the term

‘virtual process’ in close sense [10]. But the authors limits

the virtual process only for one (personal:) computer. In the

[11] extending of virtual process notion proposed. That

extension made with approach close to the Antony Hoares’

approach [12] of the communicating sequential processes and

other similar approaches. This approach concentrated on

communication between processes or in other words

interaction without the paying attention to the internal

structure of such a process. Now such structure is the aim of

this research.

As stated, the data is the main part of the virtual process.

The process created when initial set of data created. At any

step of data modification code attached to this data. This

code perform next step modification. At any step code may

be changed for other code or modified.

Where this data can be stored? This data stored at any

memory system. The simplest way is to store them in files.

Other possibility for today is data bases. In both cases code,

that give possibility to store data is not part of virtual process.

To explain this let look at the usual operating system process.

The part of code, that implements input/output or other

system operation is not a part of process code. Processor,

which is now mix of code and hardware, also is not part of

any process on computer.

In the present time cloude services also can be used to

store data. Also any future data storage can be used.

As mentioned above the atomic process data stored in

address space. Virtual process uses amount of different

address spaces, but still need to have unified method for data

identifying. As every address space usually uses the same set

of addresses other method must be used. Naming is such an

other method. Naming provide name space. The difference

between address space and name space is like difference

between natural and rational numbers. For address space

neighbor relation exist as equivalence of next (previous)

relation for natural numbers. There is no such relation for the

rational numbers, because the rational number exist between

any pair of them. The similar situation is for names. The

word a less then the word b by lexicographical order. The

word ab grater then the word a and less then the word b. Let

suppose that character set limited to small Latin characters.

The is a problem for a and aa. The is no any word between

14 Iuri Vitalijovych Koval: Virtual Process: Inside Approach to Understanding

them. Let use the extension of alphabet to solve this problem.

All known to me alphabet at present time have fixed number

of symbol. May be logographic script can produce infinite

character set, but if we suppose usual coding for such system

this can’t help solve the problem. To solve the problem both

end infinite character set must be used. One possible solution

is to extend code set for symbols with codes like integer

numbers. Other solution is to extend code set by 1 divided by

symbol code. The second approach is good because all codes

are positive. But it is impossible to generate the other reverse

code for zero and one coded symbols. This can be solving by

changing formula to 1/(2+code). It’s work, but not very nice.

The first approach is correlates with complement code.

This means that the extending of computer architecture size

makes possible to extend the character code space in both

direction. In fact it doesn’t matter what approach is used

because standard HTML notation for symbols can be

extended and used [13]. It can be ## to determine that other

code used. What that symbol looks like? Is it necessary? Are

you know what looks symbol €? Can you work

with this symbol without knowing what it looks like? It is not

important what symbol looks like if we can use it in another

way.

Let return to a and aa. Now new symbol can be added to

alphabet that less then a, and so a&##(a-1); is less then aa

and grater then a. Strange symbol &##(a-1); used? Can you

understand what I mean? If yes, there is no problem. If no,

this is one more extension to symbol writing. Arithmetic

expression used to generate new symbol code. This is one

more demonstration of code/data duality.

Now it can be stated that we have name space. Each

constant of such name space must have a part that determine

way in which data stored (like URL[14]) and a part with

name for data. Current URL specification provide this

possibility. This is the way to name data. When access to the

uninitialized data happened zero value returned.

The code for virtual process is the usual data for all system

that support virtual process. As a result, it can be written,

modified and executed. Transmition of code among different

executing system is usual data transferring in the network. So

the network is become the native environment for the virtual

process.

7. Finishing and Pausing of the Virtual

Process

If the virtual process is created, it is very hard to destroy it.

Moreover, it is possible to multiply any existing virtual

process to any number of it. Virus-like technologies very

clearly demonstrate this. To comparison let look at usual

process. To stop it, it is enough to turn computer off (since no

magnetic ram used). This is the last, but very effective

possibility. Programmers for many decades try to find way to

prevent this. The first step was to swap inactive process. The

next one is to sleep processor and, as a result, all processes.

The last achieved step is hibernating. But hibernating does

not provide the same environment for process. For example,

all network connections losts. Not only for drivers problem,

but also for timeout problem.

Operating system can be cloned by copying its data.

Viruses can mutate – modifying their code. The only way to

destroy virtual process is to destroy all copies of all its data.

Pausing or hibernating is not a problem for virtual process.

8. Result

To solve the research task internal structure of virtual

process investigated. It is determined that the main part of the

virtual process is data sets for it. The name space is proposed

as a mechanism to store such data. Concrete data structure is

a material for the father investigation.

9. Conclusion

In this paper brief history of process notion present. Virtual

process, name space, both end infinite character set, multi-

language program, process code-equivalence, behavior-

equivalence, conditional behavior-equivalence, equivalence-by-

result, conditional equivalence-by-result, code generalization,

and code simplification notion are discussed. Simple example of

behavior-equivalence and conditional behavior-equivalence

proposed. Virtual process termination problem is also discussed.

Acknowledgements

I want to say my gratitude to all my teachers, even those

who never now that they teach me. I want to say my gratitude

to all my students, even those who never ask my permission

to read my paper. The first gives me knowledge and the

second gives me inspiration. In common we produce the

virtual process of science.

References

[1] A. Silberschatz, P. B. Galvin, and G. Gagne, OPERATING
SYSTEM CONCEPTS with JAVA, 6th ed., JOHN WILEY &
SONS, INC., USA, p. 1251, 2004.

[2] K. Thompson, D. M. Ritchie, UNIX PROGRAMMER’S
MANUAL, Bell Labs, USA, p. 194, November 1971,
https://www.bell-labs.com/usr/dmr/www/1stEdman.html.

[3] E. L. Post, Finite Combinatory Processes - Formulation 1, The
Journal of Symbolic Logic, Vol. 1, No. 3. (Sep., 1936), pp.
103-105, http://www.jstor.org/stable/2269031.

[4] A. M. Turing, On computable numbers, with an application to
the entscheidungsproblem, Proceedings of the London
Mathematical Society, 2nd series, vol. 42, pt. 3 (November 30,
1936): pp. 230-240; 2nd series, vol. 42, pt. 4 (December 23,
1936): pp. 241-265; 2nd series, vol. 43, pt. 7 (December 30,
1937): pp. 544-546.

[5] Programming Research Group, The IBM Mathematical
FORmula TRANslating System, FORTRAN, Preliminary
Report, IBM, New York, USA, p. 29, November 10, 1954.

 International Journal of Media and Communication 2017; 1(1): 11-15 15

[6] D. M. Ritchie, C Reference Manual, Bell Telephone
Laboratories, Murray Hill, New Jersey, USA, p. 31, 1974,
https://www.bell-labs.com/usr/dmr/www/cman.pdf.

[7] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley, The
Java® Language Specification Java SE 7 Edition, Oracle
America, Inc., USA, p. 670, 2013-02-28,
http://docs.oracle.com/javase/specs/jls/se7/jls7.pdf.

[8] A. A. Letichevsky, J. V. Kapitonova, V. A. Volkov, A.
Chugajenko, V. Chomenko, and V. Peschanenko, Algebraic
programming system APS (user manual), Glushkov Institute
of Cybernetics, National Acad. of Sciences of Ukraine, Kyiv,
Ukraine, p. 43, May 22, 2008.

[9] HTML5 Tutorial, https://www.w3schools.com/html/.

[10] D. Brugali, M. Torchiano, Software development: case studies
in Java, Addisson-Wesley, p. 653, 2005.

[11] Iu. V. Krak, Iu. V. Koval, and A. B. Stavrovskyi, Virtual
process: definition and application for gestures interface
system creation, Bulletin of Taras Shevchenko National
University of Kyiv, Series Physics & Mathematics, vol. 1, pp.
141-144, 2015.

[12] C. A. R. Hoare, Communicating Sequential Processes, p. 260,
May 18, 2015, http://www.usingcsp.com/cspbook.pdf.

[13] HTML Symbols,
https://www.w3schools.com/html/html_symbols.asp.

[14] HTML Links,
https://www.w3schools.com/html/html_links.asp.

