

International Journal of Intelligent Information Systems
2018; 7(1): 1-4

http://www.sciencepublishinggroup.com/j/ijiis

doi: 10.11648/j.ijiis.20180701.11

ISSN: 2328-7675 (Print); ISSN: 2328-7683 (Online)

 Review Article

Evaluating Software System Reliability Using Architecture
Based Approach

Sabbineni Srinivas Rao, Inuganti Nava Sahitha, Godithi Sireesha, Palem Manoj

Department of Computer Science Engineering, Koneru Lakshmaiah Education Foundation, Guntur, India

Email address:

To cite this article:
Sabbineni Srinivas Rao, Inuganti Nava Sahitha, Godithi Sireesha, Palem Manoj. Evaluating Software System Reliability Using Architecture

Based Approach. International Journal of Intelligent Information Systems. Vol. 7, No. 1, 2018, pp. 1-4. doi: 10.11648/j.ijiis.20180701.11

Received: January 20, 2018; Accepted: February 5, 2018; Published: February 23, 2018

Abstract: Programming dependability is those failure-free programming operations for a specified time clinched alongside a

specified earth. On acquire secondary unwavering quality to expansive what's more intricate framework, utilize

architecture-based approach. Software reliability is one of the major attributes of the software quality attributes that are

availability, interoperability, maintainability, manageability, performance, reliability, reusability. To obtain reliability, used

mainly fault tolerance mechanisms in the design process. In this paper there is a comparison between error recovery along with

fault tolerance mechanisms versus error propagation in evaluating software system reliability. Here compared two case studies

which produce the software reliability.

Keywords: Software Reliability, Software Architecture, Fault Tolerance, Error Propagation

1. Introduction

These days mossy cup oak of the programming frameworks

would utilized within incredulous situations which need aid

intricate should tackle the genuine cases which prompt

disasters going starting with budgetary misfortune to

debilitate mankind's exists. These disasters are due to the

unreliability of the software system. To obtain the reliability of

the software system customary methodologies like black box

trying will programming unwavering quality demonstrating

will be connected in the internal structure, be that as with the

advancement of the component-based paradigm, these are not

suitable.

A standout amongst the principle objectives about

architecture-based dependability deliberations is estimating

those frameworks unwavering quality toward leveraging

disappointment determining systems. The existing construction

modeling built models need aid primarily arrangement.

Clinched alongside general, those state-based methodologies

model a programming framework. Eventually Tom's perusing

mapping the probabilistic control stream chart should a state

space model. These models portraying the framework at those

constructions modeling level incorporates Discrete-Time

Markov chain, a nonstop occasion when Markov chain

alternately a Semi-Markov transforms [1]. The path-based

models take after the time permits execution ways of the

architecture; in any case they are not suitableness for cyclic

structural engineering because of limitless way [1].

Propagation-based models concentrate on slip proliferation

around segments which representable the likelihood about

dependencies from claiming part disappointments. [2].

Those principle varieties about the work, that recognizes it

starting with a large portion of the existing systematic

approaches, comprises done acknowledging a paramount

structural aspect, those slip proliferation from part should part.

Neglecting this angle might lead, at those best, on excessively

negative predictions of the framework reliability, that might

foundation unnecessary plan and execution endeavors should

enhance it. On unwavering quality dissection may be used to

drive those determination of components, it might prompt bad

estimates of the unwavering quality of different part

assemblies, hence bringing on those determination for a

gathering which may be lesquerella dependable over others.

Key contributions of this paper are firstly estimated the

probabilities of the error recovery system using the fault

2 Sabbineni Srinivas Rao et al.: Evaluating Software System Reliability Using Architecture Based Approach

tolerance mechanisms and secondly probabilities of the

system with error propagation.

2. Related Work

In this survey, there is a detailed explanation on software

architecture and fault tolerance mechanisms. For many years

studied the architecture based approach and during the

Gokhale [2] defines the work into five categories. They are

modeling, analysis, parameter estimation, validation and

optimization. But the architecture based approach is purely

based on the modeling that is at the design phase. Here mostly

removed the errors or faults at the time of implementation or

testing which leads to the scope loss. When the errors are

found at the time of the design then the reliable software is

obtained and can reduce the time loss.

In architecture-based approach, there is reliability analysis

which can be calculated through different techniques. They

are state based [3][4], path-based [6], propagation based[7],

and supplementary techniques.

For programming unwavering quality engineering, there are

four primary methodologies should expand framework reliability,

which will be shortcoming prevention, flaw line removal, issue

tolerance, and issue determining. Since source-codes and internal

plans about web benefits would inaccessibility will

administration users, it is being troublesome to utilize issue

aversion and deficiency evacuation systems should raise

fault-free service-oriented frameworks. An alternate

methodology for building dependable systems, product flaw line

tolerance, makes the framework stronger. Eventually Tom's

perusing masker faults as opposed to uprooting faults.

Person approach on programming issue tolerance,

otherwise called design diversity, will be should utilize

functionally equal yet freely intended parts on endure faults.

Figure 1. Techniques of reliability analysis.

In this paper, the usage of state-based approach for

architecture based analysis gives rise to architectural model

and component failure model [5]. A structural model may be

an outline made utilizing accessible standards, previously,

which the elementary concern is with show a situated from

claiming tradeoffs intrinsic in the structure what's more

configuration of a system, it is used to take sentiment starting

with the look client by the programming modeler.

Component failure model is a mechanism where in the

software system when one component is failed then also the

system does not fail and continue until reaching the output.

These two models are combined and gives rise to two methods

called hierarchical method and composite method to analyze

the reliability.

Figure 2. Analysis methods in state based approach [1].

3. Problem Description

Threads to reliability can occur from failure error and fault

through which fault tolerance is associated. Despite all efforts,

there are many faults during testing. These faults produce errors

when they are activated. There are two types of faults, active and

inactive faults. A dynamic flaw line may be whichever inner

issue alternately outside fault, yet not at faults prompt errors.

Deficiency tolerance components need aid of two types, slip

handling, also deficiency taking care of. That fundamental

system about lapse taking care of may be lapse disposal. Those

fundamental components from claiming issue taking care of

maybe it worries with following the establishes of faults.

Deficiency tolerance may be a survival quality which empowers

an arrangement to experience disappointments also conveys

constant administration should clients. For deficiency tolerance, a

large portion utilized usage strategy will be outlined differences.

Slip proliferation may be the transform from claiming

deciding those questionable matters for a response got from a

figuring. Each duration of the time information will be

measured, there is a vulnerability connected with that

estimation. There are three components which are error-free,

faulty and the failed states in the reliability analysis considering

error propagation. Suppose there is a fault in a component that

causes an error which is an erroneous state. This error that

manifests itself as a component failure. This component failure

may affect this probability and they leads to a system failure.

But the subsequent components may not propagate the error.

There are two level factors. They are component level and

architecture level. In the component level there is failure

probability and error propagation probability.

The Error propagation probability value is always 1. This

depends on both source and the target component. By

considering all these error propagations gives the successful

probability results. Otherwise, can’t be able to complete the task

due to the failures in a component at any state of the system.

The failures in a component occur to the whole system or it may

happen at any state. Therefore, consider the error propagation.

For slip recuperation each part is ni also move likelihood

 International Journal of Intelligent Information Systems 2018; 7(1): 1-4 3

starting with ni with nj which is Pi,j. This model recognizes

those unwavering quality for each model. Here Ni, Pi,j will be

moved beginning for operational profile. Those development

demonstrating is portrayed by the individual situation wander

move probability grid (Pn * P) for an absorbing discrete gone

through Markov chain. DTMC will make said ahead

aggravate absorbing on there will be no short of what person

state i, from which there might make no cordial move.

Therefore, DTMC upon arriving at absorbing state will stay

there. DTMC will be expanded by including state c What's

more state f. Each part move likelihood about state f may be

1-Ri the place r may be the dependability for part from i.

Therefore, disappointment likelihood for unique move

likelihood will be Ri*Pi,j. Not withstanding includes move

state n on state c's. Therefore, those likelihood Pn, c= rn.

Lesvos m be the number of absorbing states. Those move

likelihood grid about absorbing is P=�� �
0 1�. Here Q is (n-m)

*(n-m) sub-stochastic matrix which is called as having the

random probability distribution. C is (n-m) *m. l is identity

matrix of m*m.0 is every entry is zero. At k step P
k
=��� �′

0 1 �.
Let S = {S1, S2,..., Sn} make a state set in the Markov

process the place S1 may be the introductory state

Furthermore nibble is those terminal one.

S=I+Q+Q
2
+…=∑ ��

�
�
k
=(I-Q)

-1

R = S(1,n)*Rn

In error propagation the operation profile of each

component has the probability of P (i, j) ranges from (1<=i,

j<=C) where C is the number of interacting components and

these interactions are between component i to component j.

Here self-transitions are equal to 0 and other than that are

equal to 1. Other than operational profile every part will be

characterized by internal disappointment likelihood intf (i)

provides for right enter Also make the handling about a wrong

yield. Slip proliferation likelihood ep (i) which propagates on

will be yield gained wrong information. Therefore, these

would free for one another. Throughout the execution, the

point when the control is transferring from part i will part j that

point grid P= [p (i, j)] extending starting with (0<=I, j<=C+1)

furthermore grid Pk = [p(k) (i, j)]. Here C+1 will be an

absorbing state what’s more here Q will be (C+1) *(C+1)

sub-stochastic grid. The point when P0 =I (identity matrix) at

that point Pk =P*Pk-1 (k>=1). REL may be the requisition

unwavering quality what's more with this there is a need for an

additional likelihood err(i) that the provision completes its

execution transforming a wrong output, provided for that the

execution off toward part i (0<=i<= C).

Err(i)=∑ ∑ ������	��, �����, � � 1��
�
�

�
�
�

REL=1- err (0)

Every part needs three conceivable conclusions that is right

output, inaccurate output, no conclusion. The right inaccurate

yield will pasquinade with its downstream parts as stated by

the move likelihood Furthermore the point when those flaw

line happens done a part which prompts a slip then it will after

effect the part under an inaccurate yield.

4. Evaluating Reliability

Reliability can be evaluated by architecture transformation

and reliability calculation. Comparing with DTMC there is a

description of a new model by converting the proceeds of the

old model. As mentioned above there are three outcomes.

Figure 3. Example of architecture transformation.

There are three outcomes throughout those transformation,

they are right output, inaccurate output, no result. Here i, j

would parts hosting the move amidst them. Oj (C|I) Pij will be

that likelihood for part i produces a right output, provided for

that information is inaccurate what's more similarly, know

others take after.

Figure 4. Architecture of online ticket booking system.

Now consider the online ticket booking system where the

4 Sabbineni Srinivas Rao et al.: Evaluating Software System Reliability Using Architecture Based Approach

customer firstly should login into the system. Now he should

check for tickets and then and then book them by proceeding

through the payment options. If the payment is a successful

end, if not pay again. If in any case, the user wants to cancel

the order then he should go for the cancellation component,

and then to refund the payment and get his money back. So, to

obtain the reliability there is a need to get the reliability of

each component by transforming to each other.

Thus, according to the formulas and based on error recovery

the reliabilities of each component in the architecture of online

ticket booking system are tabulated.

Table 1. Component parameters in ticket booking system.

Component Reliability

Login 0.9642

Ticket booking 0.9035

Payment 0.9544

Refund ticket 0.9019

Check tickets 0.9457

Cancel order 0.9874

Take ticket 0.9257

Refund ticket 0.9465

That likelihood of right information from clients may be 0.

96 and the likelihood from claiming inaccurate information

will be 0. 04. Therefore, those unwavering reliability will be

0. 6395.

Thus, according to the formulas and based on error

propagation values of the parameters that are the values of

the transition probabilities and the values of the internal

failure probability where the values for all the transitions

from each component to every other component and the

self-transition values are noted.

Table 2. Initial values of propagation parameters.

Component Intf(i)

Login 0

Ticket booking 0.0492

Payment 0.0464

Refund ticket 0

Check tickets 0.0038

Cancel order 0.048

Take ticket 0

Refund ticket 0.1013

Table 3. System reliability vs component error propagation.

Ep(i) R

1.0 0.9876

0.9 0.8745

0.8 0.7453

0.7 0.8846

0.6 0.7845

0.5 0.7544

0.4 0.9474

0.3 0.8464

0.2 0.9134

0.1 0.8464

Therefore, the probability of each component that is from

0.1 to 0.9 brings an increase in whole system reliability that

is from 0.4287 to 0.8846.

5. Conclusion

In this paper, utilized two assessing techniques on

examining the programming framework unwavering

reliability utilizing architecture-based methodology. So the

usage of error recovery and error propagation techniques and

estimated the reliabilities on component-based approach. In

error propagation the highest reliability is obtained rather

than in the error recovery. So the suggestion for the designers

is to use error propagation technique to evaluate reliability at

the design level.

References

[1] S. S. Gokhale, “Architecture-based software reliability
analysis: Overview and limitations,” Dependable and Secure
Computing, IEEE Transactions on, vol. 4, no. 1, pp. 32–40,
2007.

[2] A. Mohamed and M. Zulkernine, “A taxonomy of software
architecture based reliability efforts,” at Proceedings of the
2010 ICSE Workshop on Sharing and Reusing Architectural
Knowledge. ACM, 2010, pp.44–51.

[3] L. Cheung, R. Roshandel, N. Medvidovic, and L. Golubchik,
“early prediction of software component reliability,” at
Proceedings of the 30th international conference on Software
engineering. ACM, 2008, pp. 111–120.

[4] R. C. Cheung, “A user-oriented software reliability model,”
Software Engineering, IEEE Transactions on, no. 2, pp. 118–
125, 1980.

[5] P. Popic, D. Desovski, W. Abdelmoez, and B. Cukic, “Error
propagation in the reliability analysis of component based
systems,” in Software Reliability Engineering, 2005. ISSRE
2005. 16th IEEE International Symposium on. IEEE, 2005, pp.
10–pp.

[6] S. Krishnamurthy and A. P. Mathur, “On the estimation of
reliability of a software system using reliabilities of its
components,” in PROCEEDINGS The Eighth International
Symposium on Software Reliability Engineering. IEEE, 1997,
pp. 146–155.

[7] S. S. Gokhale and K. S. Trivedi, “Analytical models for
architecture based software reliability prediction: A unification
framework,” Reliability, IEEE Transactions on, vol. 55, no. 4,
pp. 578–590, 2006.

[8] H. Muccini and A. Romanovsky, “Architecting fault Tolerant
systems”. Technical Report CS-TR-1051, University of
Newcastle upon Tyne, 2007.

[9] K. Kanoun and M. Ortalo-Borrel. Fault-tolerant System
dependability-explicit modelling of hardware and software
component-interactions. IEEE Transactions on Reliability,
49(4):363_376, 2000.

[10] J. C. Laprie and K. Kanoun, “Software reliability And system
reliability,” Handbook of Software Reliability Engineering, pp
27-70, McGraw-Hill, NewYork, 1996.

[11] J. D. Musa, A. Iannino, and K. Okumoto, “Software Reliability:
Measurement, Prediction and Application” McGraw-Hill, New
York, 1987.

