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Abstract: In this paper, we further investigate the constructions of fuzzy connectives on a complete lattice. We firstly illustrate 

the concepts of strict left (right)-conjunctive left (right) semi-uninorms by means of some examples. Then we give out the 

formulas for calculating the upper and lower approximation strict left (right)-conjunctive left (right) semi-uninorms of a binary 

operation. 

Keywords: Fuzzy Logic, Fuzzy Connective, Left (Right) Semi-Uninorm, Strict Left (Right)-Conjunctive 

 

1. Introduction 

Uninorms, introduced by Yager and Rybalov [1], and 

studied by Fodor et al. [2], are special aggregation operators 

that have proven useful in many fields like fuzzy logic, expert 

systems, neural networks, aggregation, and fuzzy system 

modeling (see [3-6]). 

This kind of operation is an important generalization of 

both t-norms and t-conorms and a special combination of 

t-norms and t-conorms (see [2]). But, there are real-life 

situations when truth functions cannot be associative or 

commutative. By throwing away the commutativity from the 

axioms of uninorms, Mas et al. introduced the concepts of left 

and right uninorms on in [7] and later in a finite chain 

in [8], and Wang and Fang [9-10] studied the left and right 

uninorms on a complete lattice. By removing the associativity 

and commutativity from the axioms of uninorms, Liu [11] 

introduced the concept of semi-uninorms, and Su et al. [12] 

discussed the notions of left and right semi-uninorms, on a 

complete lattice. On the other hand, it is well known that a 

uninorm (semi-uninorm)  can be conjunctive or disjunctive 

whenever  or 1, respectively. This fact allows 

us to use uninorms in defining fuzzy implications (see [9, 11, 

13-14]). 

Constructing fuzzy connectives is an interesting topic. 

Recently, Jenei and Montagna [15] introduced several new 

types of constructions of left-continuous t-norms, Wang [16] 

laid bare the formulas for calculating the smallest 

pseudo-t-norm that is stronger than a binary operation and the 

largest implication that is weaker than a binary operation, Su 

et al. [12] studied the constructions of left and right 

semi-uninorms on a complete lattice, Su and Wang [17] 

investigated the constructions of implications and 

coimplications on a complete lattice. and Wang et al. [18-20] 

studied the relations among implications, coimplications and 

left (right) semi-uninorms, on a complete lattice. Moreover, 

Wang et al. [21-22] investigated the constructions of 

conjunctive left (right) semi-uninorms, disjunctive left (right) 

semi-uninorms, strict left (right)-disjunctive left (right) 

semi-uninorm, implications satisfying the neutrality principle, 

coimplications satisfying the neutrality principle, and 

coimplications satisfying the order property. 

This paper is a continuation of [12, 21-22]. Motivated by 

these works in [12, 21-22], we will further focus on this issue 

and investigate constructions of the upper and lower 

approximation strict left (right)-conjunctive left (right) 

semi-uninorms on a complete lattice. 

This paper is organized as follows. In Section 2, we recall 

some necessary concepts about the left (right) semi-uninorms 

on a complete lattice and illustrate these notions by means of 

some examples. In Section 3, we give out the formulas for 

calculating the upper and lower approximation strict left 

(right)-conjunctive left (right) semi-uninorms of a binary 
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operation. 

The knowledge about lattices required in this paper can be 

found in [23]. 

Throughout this paper, unless otherwise stated,  always 

represents any given complete lattice with maximal element 1 

and minimal element 0; stands for any index set.  

2. Strict Conjunctive Left and Right 

Semi-Uninorms 

Noting that the commutativity and associativity are not 

desired for aggregation operators in a number of cases, Liu [11] 

introduced the concept of semi-uninorms and Su et al. [12] 

studied the notions of left and right semi-uninorms. Here, we 

recall some necessary definitions and give some examples of 

the left and right semi-uninorms on a complete lattice. 

Definition 2.1 (Su et al. [12]). A binary operation U on L  

is called a left (right) semi-uninorm if it satisfies the following 

two conditions: 

(U1) there exists a left (right) neutral element, i.e., an 

element Le L∈  ( Re L∈ ) satisfying ( , )LU e x x=  

( ( , )RU x e x=  for all x L∈ , 

(U2) U is non-decreasing in each variable. 

Clearly, (0, 0) 0U =  and (1, 1) 1U =  hold for any left 

(right) semi-uninorm U  on L . 

If a left (right) semi-uninorm U  is associative, then U is 

the left (right) uninorm [9-10] on L . 

If a left (right) semi-uninorm U with the left (right) neutral 

element Le L∈  ( Re L∈ ) has a right (left) neutral element 

Re L∈  ( Le L∈ ), then ( , )UL L R Re e e e= = . Let L Re e e== . 

Here,U is the semi-uninorm [11]. 

For any left (right) semi-uninorm U on L , U  is said to 

be left-conjunctive and right-conjunctive if (0,1) 0U =  and 

(1, 0) 0U = , respectively. U  is said to be conjunctive if both 

(1, 0) 0U =  and (1, 0) 0U =  since it satisfies the classical 

boundary conditions of AND.  

U  is said to be strict left-conjunctive and strict right- 

conjunctive if U  is conjunctive and for any 

, ( , 1) 0 0x L U x x∈ = ⇔ = and (1, ) 0 0U x x= ⇔ = , 

respectively. 

Definition 2.2 (Wang and Fang [9]). A binary operation U  

on L  is called left (right) arbitrary ∨ -distributive if 

( , ) ( , ) ,j j jj J j JU x y U x y x y L∈ ∈∨ = ∨ ∀ ∈  

( )( , ) ( , ) , ;j j jj J j JU x y U x y x y L∈ ∈∨ = ∨ ∀ ∈        (1) 

left (right) arbitrary ∧ -distributive if 

( , ) ( , ) ,j j jj J j JU x y U x y x y L∈ ∈∧ = ∧ ∀ ∈
 

( )( , ) ( , ) , .j j jj J j JU x y U x y x y L∈ ∈∧ = ∧ ∀ ∈      (2) 

If a binary operation U is left arbitrary ∨ -distributive ( ∧ - 

distributive) and also right arbitrary ∨ -distributive ( ∧
-distributive), then U is said to be arbitrary ∨ -distributive 

( ∧ -distributive). 

Noting that the least upper bound of the empty set is 0 and 

the greatest lower bound of the empty set is 1, we have 

(0, ) ( , ) ( , ) 0j jj jU y U x y U x y∈Φ ∈Φ= ∨ = ∨ =
 

( )( , 0) ( , ) ( , ) 0
j j j j

U x U x y U x y∈Φ ∈Φ= ∨ = ∨ =       (3) 

for any ,x y L∈  when U  is left (right) arbitrary ∨
-distributive,  

(1, ) ( , ) ( , ) 1j jj jU y U x y U x y∈Φ ∈Φ= ∧ = ∧ =
 

( )( , 1) ( , ) ( , ) 1 .jj jU x U x y U x yj∈Φ ∈Φ= ∧ = ∧ =      (4) 

for any ,x y L∈  when U  is left (right) arbitrary ∧
-distributive. 

For the sake of convenience, we introduce the following 

symbols: 

( )Le

sU L : the set of all left semi-uninorms with the left 

neutral element Le  on L ; 

( )Re

sU L : the set of all right semi-uninorms with the right 

neutral element Re  on L ; 

( )Lse

csU L : the set of all strict left-conjunctive left 

semi-uninorms with the left neutral element Le  on L ; 

( )Re s

csU L : the set of all strict right-conjunctive right 

semi-uninorms with the right neutral element Re  on L ; 

( )Lse

csU L∨ : the set of all strict left-conjunctive left arbitrary 

∨ -distributive left semi-uninorms with the left neutral 

element Le on L ; 

( )Re s

csU L∨ : the set of all strict right-conjunctive right arbitrary 

∨ -distributive right semi-uninorms with the right neutral 

element Re on L . 

Below, we illustrate these notions by means of several 

examples. 

Example 2.1 (Su et al. [12]). Let Le L∈ , 

if ,
( , )

0 otherwise,
Le

sW
Ly x e

U x y
≥

= 


if ,
( , )

1 otherwise,
L Le

sM

y x e
U x y

≥
= 
  

0 if 0 or 0,

( , ) if 0 , 0,

1 otherwise,

Le

csM L

x y

U x y y x e y

= =
= < ≤ ≠



 

where x  and y  are elements of L . Then Le

sWU  and Le

sMU  

are, respectively, the smallest and greatest elements of 

( )Le

sU L . By Example 2 and Theorem 8 in [18], we see that 

L

J



 International Journal of Intelligent Information Systems 2017; 6(1): 1-6  3 

 

( )Lse

csU L  and ( )Lse

csU L∨  are two join-semilattices with the 

greatest element Le

csMU . 

Example 2.2. Let Le L∈ , 

if ,

( , ) { | 0} if 0 not , 1,

0 otherwise.

L

L

se

csW L

y x e

U x y a L a x e y

≥
= ∧ ∈ ≠ < ≥ =



 

When 0Le ≠  and { | 0} 0a L a∧ ∈ ≠ ≠ , it is straightforward 

to verify that Lse

csWU  is a strict left-conjunctive left 

semi-uninorm with the left neutral element Le . If 

( )Lse

csU U L∈ , then 

,( ) when ,

( , ) { | 0} when 0 not , 1,

0 otherwise,

L L

L

U e y y x e

U x y a L a x e y

= ≥
≥ ∧ ∈ ≠ < ≥ =



 

i.e., Lse

csWU U≥ . Thus, Lse

csWU  is the smallest element of 

( )Lse

csU L . 

Moreover, assume that { | not } notL La L a e e∨ ∈ ≥ ≥ . For 

any ( )jx L j J∈ ∈ , if j J j Lx e≥∈∨ , then there exists 

0j J∈  such that 
0j Lx e≥ , 

0
( , ) ( , )

( , ) ;

L L

L

se se

csW j J j csW j

se

j J csW j

U x y y U x y

U x y y L

∈

∈

∨ = =

= ∨ ∀ ∈
           (5) 

if 0 not
j J j L

x e∈< ∨ ≥ , then not
j L

x e≥  for any j J∈  and 

there exists 0j J∈  such that 
0

0 notj Lx e< ≥ , 

0
( , 1) { | 0} ( , 1)

( , 1);

L L

L

se se

csW j J j csW j

se

j J csW j

U x a a U x

U x

∈

∈

∨ = ∧ ≠ =

= ∨
       (6) 

0
( , ) 0 ( , )

( , ) 1;

L L

L

se se

csW j J j csW j

se

j J csW j

U x y U x y

U x y y

∈

∈

∨ = =

= ∨ ≠
         (7) 

if 0
j J j

x∈∨ = , then 0
j

x =  for any j J∈ , 

( , ) 0 ( , ) .L Lse se

csW j J j j J csW j
U x y U x y y L∈ ∈∨ = = ∨ ∀ ∈     (8) 

Therefore, Lse

csW
U  is left arbitrary ∨ -distributive and the 

smallest element of ( )Lse

cs
U L∨ . 

Example 2.3. Let Re L∈ , 

if ,
( , )

0 otherwise,
Re

sW
Rx y e

U x y
≥

= 
  

if ,
( , )

1 otherwise,
Re

sM
Rx y e

U x y
≥

= 
  

0 if 0 or 0,

( , ) if 0 , 0,

1 otherwise,

Re

csM R

x y

U x y x y e x

= =
= < ≤ ≠



 

if ,

( , ) { | 0} if 0 not , 1,

0 otherwise.

R

R

e s

csW R

x y e

U x y a L a y e x

≥

∧ ∈ ≠ < ≥ =


= 



 

where x  and y  are elements of L . By Example 2.6 in [20], 

we know that Re

sWU  and Re

sMU  are, respectively, the smallest 

and greatest elements of ( )Re

sU L . By Example 3 and Theorem 

8 in [18], we see that ( )Re s

csU L  and ( )Re s

csU L∨  are two 

join-semilattices with the greatest element Re

csMU . 

Similarly, When 0Le ≠  and { | 0} 0a L a∧ ∈ ≠ ≠ , Re s

csWU  

is the smallest element of ( )Re s

csU L . Moreover, if

{ | not } notR Ra L a e e∨ ∈ ≥ ≥ , then Re s

csWU  is the smallest 

element of ( )Re s

csU L∨ . 

3. Constructing Strict Conjunctive Left 

and Right Semi-Uninorms 

Constructing aggregation operators is an interesting work. 

Recently, Jenei and Montagna [15] introduced several new 

types of constructions of left-continuous t-norms, Su et al. [12] 

studied the constructions of left and right semi-uninorms on a 

complete lattice, and Wang et al. [21-22] investigated the 

constructions of conjunctive left (right) semi-uninorms and 

disjunctive left (right) semi-uninorms on a complete lattice. 

Now, we continue this work and give out the formulas for 

calculating the upper and lower approximation strict left 

(right)-conjunctive left (right) semi-uninorms of a binary 

operation. 

It is easy to verify that ( )Lse

j J j cs
U U L∈ ∈∨  for any 

nonempty subset |{ }jU j J∈  of ( )Lse

csU L . If 0Le ≠  and 

{ | 0} 0a L a∧ ∈ ≠ ≠ , then ( )Lse

csU L  is a complete lattice with 

the smallest element Lse

csWU  and greatest element Le

csMU  by 

Example 2.2. Thus, for a binary operation A  on L , if there 

exists ( )Lse

csU U L∈  such that A U≤ , then 

{ | , ( )}Lse

csU A U U U L∧ ≤ ∈               (9) 

is the smallest strict left-conjunctive left semi-uninorm that is 

stronger than A  on L , we call it the upper approximation 

strict left-conjunctive left semi-uninorm of A  and write as 

[ ) Lse

csA ; if there exists ( )Lse

csU U L∈  such that U A≤ , then 

{ | , ( )}Lse

csU U A U U L∨ ≤ ∈             (10) 

is the largest strict left-conjunctive left semi-uninorm that is 

weaker than A  on L , we call it the lower approximation 

strict left-conjunctive left semi-uninorm of A  and write as 

( ] Lse

csA . 
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Similarly, we introduce the following symbols: 

[ ) :Re s

csA  the upper approximation strict right-conjunctive 

right semi-uninorm of A ; 

( ] Re s

csA : the lower approximation strict right-conjunctive 

right semi-uninorm of A ; 

[ ) Lse

csA ∨ : the upper approximation strict left-conjunctive left 

arbitrary ∨ -distributive left semi-uninorm of A ; 

( ] Lse

csA ∨ : the lower approximation strict left-conjunctive left 

arbitrary ∨ -distributive left semi-uninorm of A ; 

[ ) Re s

csA ∨ : the upper approximation strict right-conjunctive 

right arbitrary ∨ -distributive right semi-uninorm of A ; 

( ] Re s

csA ∨ : the lower approximation strict right-conjunctive 

right arbitrary ∨ -distributive right semi-uninorm of A . 

Definition 3.1 (Su et al. [12]). Let A  be a binary operation 

on L . Define the upper approximation aggregator uaA  and 

the lower approximation aggregator laA  of A  as follows: 

( , ) { ( , ) | , } , ,uaA x y A u v u x v y x y L= ∨ ≤ ≤ ∀ ∈      (11) 

( , ) { ( , ) | , } , .laA x y A u v u x v y x y L= ∧ ≥ ≥ ∀ ∈      (12) 

Theorem 3.1 (Su et al. [12]). Let ,
L L

A B L
×∈ . Then the 

following statements hold: 

la uaA A A≤ ≤ .              (13) 

( )ua ua uaA BA B = ∨∨
 and  

( )la la laA BA B = ∧∧ .           (14) 

uaA  and laA  are non-decreasing in its each variable. 

If A  is non-decreasing in its each variable, then 

ua laA A A= = .              (15) 

Theorem 3.2. Let 
L L

A L
×∈ .  

(1) If A  is left (right) arbitrary ∨ -distributive, then 

uaA  is left (right) arbitrary ∨ -distributive. 

(2) If A  is left (right) arbitrary ∧ -distributive, then   

laA  is left (right) arbitrary ∧ -distributive. 

Proof. We only prove that statement (1) holds. 

If A  is left arbitrary ∨ -distributive, then A  is 

non-decreasing in its first variable, 

( , ) { ( , ) | , }

{ ( , ) | } , ,

uaA x y A u v u x v y

A x v v y x y L

= ∨ ≤ ≤
= ∨ ≤ ∀ ∈

        (16) 

( , ) { ( , ) | }

{ ( , ) | } { ( , ) | }

( , ) , ( ),

ua j J j j J j

j J j j J j

j J ua j j

A x y A x v v y

A x v v y A x v v y

A x y x y L j J

∈ ∈

∈ ∈

∈

∨ = ∨ ∨ ≤

= ∨ ∨ ≤ = ∨ ∨ ≤

= ∨ ∀ ∈ ∈
   (17) 

i.e., 
ua

A  is left arbitrary ∨ -distributive. 

Similarly, we can show that 
ua

A  is right arbitrary ∨
-distributive when A  is right arbitrary ∨ -distributive. 

The theorem is proved. 

Below, we give out the formulas for calculating the upper 

and lower approximation strict left (right)-conjunctive left 

(right) semi-uninorms of a binary operation. 

Theorem 3.3. Suppose that 
L L

A L
×∈ , 0

L
e ≠  and 

{ | 0} 0a L a∧ ∈ ≠ ≠ . 

(1) If Le

csMA U≤ , then [ ) L Lse se

cs csW ua
A U A= ∨ ; 

 if 
se

L
csWU A≤ , then ( ] L Lse e

cs csM laUA A= ∧ . 

(2) If { | }
L L

a L a not e not e∨ ∈ ≥ ≥ , Le

csMA U≤  and  A  

is left arbitrary ∨ -distributive, then 

[ ) L Lse se

cs csW ua
A U A∨ = ∨ . Moreover, if A  is 

non-decreasing in its second variable, then 

[ ) L Lse se

cs csW
A U A∨ = ∨ . 

Proof. Assume that 0
L

e ≠  and { | 0} 0a L a∧ ∈ ≠ ≠ . Then 

Lse

csW
U  and Le

csM
U  are, respectively, the smallest and greatest 

elements of ( )Lse

cs
U L by Examples 2.1 and 2.2. 

(1) Let 1
Lse

csW ua
U U A= ∨ . If Le

csM
A U≤ , then 1A U≤ , 

( )L Le e

ua csM ua csM
A U U≤ = . Thus,  

1
L Le e

csW csM
U U U≤ ≤ .                (18) 

It implies that 1 1(1, 0) (0, 1) 0U U= =  and 1( , )
L

U e y y=  

for any y L∈ . If 1( , 1) 0U x = , then ( , 1) 0
se

L
csWU x =  and so 

0x = , i.e., 1U  is strict left-conjunctive. By Theorem 3.1(3) 

and the monotonicity of 
se

L
csWU , we can see that 1U  is 

non-decreasing in its each variable. So, 1 ( )Lse

cs
U U L∈ . If 

A U≤  and ( )L
se

csU U L∈ , then ua uaA U U≤ =  and 

1
Lse

csW uaU U A U= ∨ ≤ . Therefore, 

[ ) L Lse se

cs csW uaA U A= ∨ .               (19) 

Let 2
Le

csM laU U A= ∧ . If Lse

csWU A≤ , then, 

( )L Lse se

csW csW la laU U A= ≤  and 2
L Lse e

csW csMU U U≤ ≤ . Thus,  

2 2(1, 0) (0,1) 0U U= =  and 2 ( , )LU e y y=  for any y L∈  

and 2U  is strict left-conjunctive. By Theorem 3.1(3) and the 

monotonicity of 
e
L

csMU , we know that 2U  is non-decreasing 

in its each variable. So, 2 ( )Lse

csU U L∈ . If U A≤  and 

( )L
se

csU U L∈ , then la laU U A= ≤  and 2
Le

csM laU U A U≤ ∧ = . 

Therefore,  

( ] L
e
L

csM la

se
U

cs
A A= ∧ .              (20) 

(2) When { | not }notL La L a e e∨ ∈ ≥ ≥ , Lse

csWU  and Le

csMU  

are, respectively, the smallest and greatest elements of 
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( )Lse

csU L∨  by Examples 2.1 and 2.2. Let 3
Lse

csW uaU U A= ∨ . If 

Le

csMA U≤ , then 3 ( )Lse

csU U L∈  by statement (1). Noting that 

A  is left arbitrary ∨ -distributive, we can see that uaA  is 

also left arbitrary ∨ -distributive by Theorem 3.2(1). Thus, 

3U  is left arbitrary ∨ -distributive and 3 ( )Lse

csU U L∨∈ . By the 

proof of statement (1), we have that [ ) L Lse se

cs csW uaA U A∨ = ∨ . 

Moreover, if A  is non-decreasing in its second variable, 

then uaA A=  by Theorem 3.1(4) and so 

[ ) L Lse se

cs csWA U A∨ = ∨ .              (21) 

The theorem is proved. 

Similarly, for calculating the upper and lower 

approximation strict right-conjunctive right semi-uninorms of 

a binary operation, we have the following theorem. 

Theorem 3.4. Suppose that L LA L ×∈ , 0Re ≠  and 

{ | 0} 0a L a∧ ∈ ≠ ≠ . 

(1) If Re

csMA U≤ , then [ ) R Re s e s

cs csW uaA U A= ∨ ; if 
e s
R

csWU A≤ , 

then ( ] R
e
R

csM la

e s
U

cs
A A= ∧ . 

(2) If { | }R Ra L a not e not e∨ ∈ ≥ ≥ , Re

csMA U≤  and  A  

is right arbitrary ∨ -distributive, then 

[ ) R Re s e s

cs csW uaA U A∨ = ∨ . Moreover, if A  is 

non-decreasing in its first variable, then 

[ ) R Re s e s

cs csWA U A∨ = ∨ . 

4. Conclusions and Future Works 

Constructing fuzzy connectives is an interesting topic. 

Recently, Su et al. [12] studied the constructions of left and 

right semi-uninorms, and Wang et al. [17-18, 20, 22] 

investigated the constructions of implications and 

coimplications on a complete lattice. In this paper, motivated 

by these works, we give out the formulas for calculating the 

upper and lower approximation strict left (right)-conjunctive 

left (right) semi-uninorms of a binary operation.  

In a forthcoming paper, we will further investigate the 

constructions of left (right) semi-uninorms and coimplications 

on a complete lattice. 
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