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Abstract: In this paper, a Fractional-order weighted and Self-adaptive Max-Min Ant System (FS-MMAS) is proposed to make 

full use of spatial information of the traveling salesman problem. Furthermore, it is realized so that ants can select next city 

according to the complex topography. Most advanced algorithms based on Ant Colony Optimization can't take advantage of 

spatial information during the traverse tour, which easily leads to local minimums. Through the multi-scale and self-adaptive 

search, ants can take advantage of information which contributes to finding the global optimization. Finally, the 3-Opt algorithm 

is used to improve local solutions. The performance of proposed method was investigated on eight different benchmark problems 

taken from a literature and proved to be better than other well-known methods in terms of solution quality and robustness. 
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1. Introduction 

The Traveling Salesman Problem (TSP) is a well-known 

binatorial optimization Problem, which has been widely used 

in many engineering applications such as the design of 

hardware devices and radio electronic systems, and 

computer networks etc [1, 2]. However TSP is regarded as a 

classical NP-hard problem, whose solution will rapidly 

expand with the increasing scale of issues. Many algorithms 

have been proposed in order to solve TSP effectively, such as 

Simulated Annealing (SA) [3], Genetic Algorithms (GA) [4], 

Ant Colony Optimization (ACO) [5], Particle Swarm 

Optimization algorithm (PSO) [6] etc. ACO is an 

optimization algorithm of swarm intelligence which is 

inspired by the behavior of ants in the real wild, and was first 

proposed by Dorigo. M and Gambardella. L. M in 1996 [5]. 

ACO has rapid convergence, strong robustness and 

distributed parallel computing architecture. It can also be 

easily combined with other algorithms. Therefore, ACO 

spreads rapidly and is widely applied. But the performance 

of ACO is poor when it comes to solving large scale 

optimization issues. ACO will have low solution quality, 

slow convergence and easily fall into local minimums with 

the increasing scale of issues. 

In order to solve those issues, many algorithms based on 

ACO were proposed. The Ant Colony System (ACS) [7] 

differs mainly in its pheromone update function. ACS 

employs a local pheromone update at the end of every 

iteration. And only the best ant can update its pheromone 

trials. ACS has better performance than ACO for TSP. The 

rank-based Ant System (AS rank) [8] incorporates the 

concept of ranking into the pheromone update procedure. 

Those M ants are ranked according to their tour length 

(L1≤L2 ≤……≤LM). The pheromone trials are updated 

among several better ants. And they are weighted so that an 

increment of the pheromone trials is in direct proportion to 

their ranking. In addition, the paths traversed by the 

global-best solution receive an additional amount of 

pheromone. The Max-Min Ant System (MMAS) algorithm 

[9] differs from the ACO in two ways: only the best ant can 

update the pheromone trials in the MMAS, but all ants can do 

in the ACO; the pheromone trials are limited between the 

upper and the lower pheromone bounds in the MMAS, but 

there is no limit in the ACO. MMAS makes full use of 
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historical information and avoids premature convergence to 

local minimums. Although these methods improve some 

aspects, they can't make full use of information during the 

traverse tour and have poor performance in finding the 

global optimization. As we know, fractional calculus has 

nonlinear, non-causal and non-stationary characteristics, 

which help search multi-scalely and contribute to obtaining 

the global optimization. 

In this paper, a Fractional-order weighted and 

Self-adaptive method based on the Max-Min Ant System is 

proposed. Not just the best ant can update its pheromone 

trials, but also those better ants can do. Furthermore, the 

search processing is self-adaptive such that ants may select 

other closer cities in addition to the closest city. Hence, 

FS-MMAS is more likely to find the global optimization. 

Finally, the 3-Opt algorithm is used to reduce the probability 

of falling into local minimums. Better results are achieved 

with the suggested method compared to other studies in the 

literature. 

The rest of the paper is organized as follows: In Section 2, 

the background knowledge, including ACO, fractional 

differential approach and 3-Opt algorithms, is given. The 

proposed method is presented in Section 3. The results 

obtained in the application are given in Section 4. Finally, in 

Section 5, we conclude the paper with a summarization of 

results and emphasize the significance of this study. 

2. Materials and Methods 

In this section, information about MMAS, fractional 

differential approach and 3-Opt algorithm is provided. 

2.1. Max–Min Ant System 

The Max–Min Ant System (MMAS) algorithm was 

developed by Stutzle, T etc [9]. The algorithm that suggests a 

solution to the TSP, which is a discrete test issue, by utilizing 

this attribute of ants, was proposed by Dorigo. M etc [10]. For 

a set of N towns, the goal of TSP is to find the best route which 

is shortest and covers each town once. So, it is a closed curve 

and the starting town is also the ending town. The distance of 

two towns in TSP is calculated by Euclidean distance, as 

follows: 

��,� = ���� − ��
� + �
� − 
�
���/�
      (1) 

In Eq. (1), i and j represents the last town and the next town, 

respectively. ���  represents the distance from i to j. During 

one iteration, ants choose the route from town i to town j 

according to the probability formula as follows: 

���� = � ���������������
∑��������������� ,  ! #  $ %&&'()� * +
 

0, '+ℎ).( $)    (2) 

In Eq. (2), ����  represents the probability of the next town j 

chosen. /���+� indicates the amount of pheromones between 

town i and j. 0��   indicates information pertaining to distance 

between town i and j whose value is defined as the quantity 1 ���2 . Parameters α and β  are used to determine the 

significance between the amount of pheromones and the 

inter-city distance. Each ant complete a tour until reaching the 

end town. Each iteration is defined as the interval in (t, t + 1) 

where each of the M ants moves once. After one iteration, 

each of the M ants has left the pheromone trial on a tour where 

they have gone. So the pheromone trial /�� will be updated 

according to the following formula: 

/���+ + 1� = [�1 − 9�/���+� + ∑ ∇/��;<=�>� ]�@�A�@BC    (3) 

In Eq. (3), ρ is the coefficient of evaporation and receives a 

value at the interval of [0-1], ∇/��;<=� indicates the variation of 

the pheromone trial /��   and only the shortest tour of the M 

ants can update its pheromone trial. /EFG  %H� /E�I represent 

the upper and lower pheromone bounds respectively. The 

pheromone trial /��  is limit between /EFG  %H� /E�I  as 

follows: 

/�� = � /E�I , /�� < /E�I/EFG , /�� > /EFG/�� , '+ℎ).( $)              (4) 

2.2. The Basic Definition of Fractional Calculus 

There are different definitions for fractional calculus in 

terms of different angles to analyze the application issues. So 

far, there isn't a uniform expression of fractional calculus. 

Among those expressions, there are three classic fractional 

calculus definitions, which are the definitions from 

Grümwald-Letnikov, Riemann-Liouville and Caputo. The 

Grümwald-Letnikov definition of fractional calculus is as 

follows: 

$L+ = & MN→P ℎQ ∑ R�QS���!R�Q�
UVBW�XPFY $�+ − #ℎ� LZ[\,   (5) 

where ∀L ∈ R , suppose the integral part is [v]. when $�+� ∈ [%, +] �% < +, % ∈ R, + ∈ R� , it has n+1 order 

continuous derivative, and the fractional order 

Grümwald-Letnikov definition can be express as follows [11]: 

`L+FY $�+� = & MN→P $N�Q��+� = & M N→PINX�\F ℎ\Q ∑ a−L. b $�+ − .ℎ�,IcXP  (6) 

where 

a−L. b = �\Q��\QS��⋯�\QSc\��c!           (7) 

2.3. 3-Opt Algorithm 

In optimization, 3-Opt is a simple local search algorithm for 

solving the travelling salesman problem and related network 

optimization problems [12]. And 3-Opt algorithm is the best 

one among k-opt algorithms. For a tour route, 3-Opt algorithm 

selects three different sides from it, and divides the route into 

three sections. If the original one isn't the shortest route, it will 

be replaced by the shortest one. Repeat until all possible 

combinations are traversed. 
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Fig. 1. 3-Opt algorithm representation. 

1. Initialize a tour route as �%�, %�, d , %e�. 

2. Then select three random cities as +�, +f, +g in fig. 1; +� ^ �%�, %�, d , %e\�� , +f ^ �%�, %f, d , %e\�� , +g ^�%�, %�, d , %e� , and  +� � +� � 1 , +h � +f � 1 , +i �+g � 1, Break edges j�+�, +��, �+f, +h�, �+g, +i� k then use 

3-Opt algorithm to improve the tour �%�, %�, d , %e�. 

3. If ��+�, +f� � ��+�, +g� � ��+h, +i� J ��+�, +�� � ��+f, +h� ���+g, +i� , a new tour route �+�, +f, d , +�, +g, d , +h, +i� 

replaces the original tour route as �%�, %�, d , %e�. 

4. Repeat 2 and 3 until all possible combinations are 

traversed. 

3. Proposed Method and Analysis 

(FS-MMAS) 

In general, ants can select the next city by the probability 

formula. If ants select a wrong city, the pheromone trials of the 

wrong route will be updated and increased. As a result, the 

algorithm falls into local minimums which is not what we 

expect. In this paper, a self-adaptive method is proposed. Ants 

select not only the best city but also other probable cities. The 

probability formula is changed as follows: 

���� � � ���������������
∑��������������� ,  ! #  $ %&&'()� * +
 

l,  ! l  $ %&&'()� * +
     (8) 

In Eq. (8), the probability formula is improved based on the 

MMAS algorithm. Firstly, each ant of M ants select the next 

town j which has the highest radio of ���� . Then it will choose 

other towns S which is defined as follows: 

l ^ m�|��G o p q ��� ,  ! � ^ %&&'()�r     (9) 

In Eq. (9), p is the coefficient and receives a value at the 

interval of [1-2]. As a result, a few of tours may appear with 

the varied topography. In this way, the new method can be 

self-adaptive. Ants may select other closer cities, which 

contributes to the probability of finding the global 

optimization. In the MMAS algorithm, only the best ant can 

update its pheromone trials of the traverse route which it goes 

through. But MMAS can't take advantage of spatial 

information after one iteration. In this paper, a fractional-order 

weighted method is proposed. All the traverse routes of the 

ants are sorted according to their length, such as �L� o L� od o Lt�. And a few of them which have shorter tour length 

update their pheromone trials as follows: 

/���+ � 1� � 8�1 	 9�/���+� � ∑ (�u�v/��� �+, + � 1�?c�X� �@�A
�@BC ,  (10) 

Where 

(�u� �  aLwu b � Qx�QxS�
d�QxS�\�
�!       (11) 

v/��� �+, + � 1� � y z{| ,  ! � , #� ^ .'}+) ~).!'.M)� �
 +-) u+- %H+0, '+-).( $)  (12) 

In Eq. (10), the difference coefficient of the fractional order w �k� is imported as a weight of ants which is determined by 

the tour length of the ant. So, MMAS is improved to be a 

multi-scale method through the nonlinear weighting. r 

represents the number of ants which are selected to update 

their pheromone trials. k is a coefficient and varies from 1 to r. :/���  is the quantity of pheromone laid on path (i, j) by the kth 

ant between time t and t + 1. In Eq. (11), Lw  is a 

fractional-order degree and is set to a positive number. Besides, :/��� �t, t � 1� can be calculate as Eq. (12), Q is a constant and 

is the tour length of the ant and ��indicates the length of the 

tour of the kth ant. Referring to Eq. (10), suppose that 

FS-MMAS could converge to the global optimization after t 

iterations and Q is set to 1. Hence, Eq. (10) can be expressed 

as follows: 

/���+ � 1� � �1 	 9�/���+� � �{���U � ∑ (�u�c�X�    (13) 

In Eq. (13), �;<=�   represents the value of the global 

optimization. So, the maximum of the pheromone trial /EFG  

can be express as follows: 

/EFG � �� � ∑ �����|��{���U             (14) 

Suppose that the number of cities is set to N. Referring to 

Eq. (14), the minimum of the pheromone trial /E�I  can be 

express as follows: 

/E�I � �@BCI � �I� � ∑ �����|��{���U          (15) 

Algorithm: FS-MMAS 

1. In the initialization processing, /� , #� � /P. 
2. for 1 o u o  +).%+'.EFG  do 

3. for 1 o $ o � do 

4. M ants are randomly placed in N cities. 

5. The tabu of route visited is set null. 

6. while (the root of s ant has next town) do 

7. The s ant select next town according to ���� . 

8. Then select other probable towns x which satisfy ��G o p q ���. 
9. Add the j and x to the tabu. 

10. end while 

11. end for 

12. Update the pheromone trials 

13. end for 

4. Experimental Results 

The accuracy and performance of the proposed method is 
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measured by standard deviation and average tour length on 

eight test problems taken from TSPLIB [13]. During the 

experiment, the number of ants is the same as the number of 

cities. In Eq. (8), many extra routes may be obtained but less 

than the number of ants. ρ is set to 0.3 and the value of 8α, β? 
is set as 81,5? in all experiments. Q is a constant that is set to 1. 

FS-MMAS is operated throughout 1500 iterations and each 

TSP problem is repeated 50 times. 

Fig. 2 shows that how the 3-Opt algorithm works. Lengths 

of the route are improved by the 3-Opt algorithm. 3-Opt 

algorithm is a local optimization algorithm, which can remove 

local cross-paths. 

 

(a) St 70 

 

(b) KroA 100 

 
(c) Ch 150 

Fig. 2. Before and After the execution of 3-Opt algorithm. 
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In Table 1, Opt represents the global optimization. Best and Worst represent the shortest and longest route obtained after 

iteration. Average represent the average route of 50 runs. Prob. indicates the probability of the global optimization obtained by 

FS-MMAS. SD is the standard deviation and Error (%) represents the percentage relative error of results obtained by 50 runs. 

Table 1. The results obtained by FS-MMAS for TSP. 

Problem Opt Best Prob. Worst Average SD Error (%) 

Eil51 426 426 0.24 427 426.76 0.43 0.18 

Berlin52 7,542 7,542 1.00 7,542 7,542.00 0.00 0.00 

Eil76 538 538 0.74 545 538.74 1.65 0.14 

St70 675 675 0.20 685 676.98 1.88 0.29 

Kroa100 21,282 21,282 0.25 21,387 21,336.05 43.40 0.25 

Eil101 629 629 0.40 644 633.20 5.07 0.67 

Lin105 14,379 14,379 0.94 14,479 14,385.00 23.75 0.04 

Ch150 6,528 6,533 0.02 6,590 6,555.97 7.94 0.43 

Table 2. The comparison of FS-MMAS and other algorithms in the literature. OPT is the global optimization; Avg. is the average tour length; SD is the standard 

deviation and Error (%) is the percentage relative error. 

Method Problem OPT Eil51 426 
Berlin52 

7542 
Eil76 538 St70 675 

Kroa100 

21,282 
Eil101 629 

Lin105 

14,379 

Ch150 

6,528 

ACOMAC (2004) 

[14] 

Avg. 430.68  555.70  21,457.00    

SD         

Error (%) 1.10  3.29  0.82    

ACOMAC+NN 

(2004) [14] 

Avg. 430.68  555.90  21,433.30    

SD         

Error (%) 1.10  3.33  0.71    

RABNETTSP 

(2006) [15] 

Avg. 438.70 8,073.97 556.10  21,868.47 654.83 14,702.17 6753.20 

SD 3.52 270.14 8.03  245.76 6.57 328.37 83.01 

Error (%) 2.98 7.05 3.36  2.76 4.11 2.25 3.45 

Modified 

RABNETTSP 

(2009) [16] 

Avg. 437.47 7932.50 556.33  21,522.73 648.63 14,400.7 6738.37 

SD 4.20 277.25 5.30  93.34 3.85 44.03 76.14 

Error (%) 2.69 5.18 3.41  1.13 3.12 0.15 3.22 

SA ACO PSO 

(2011) [17] 

Avg. 427.27 7542.00 540.20  21,370.30 635.23 14,406.37 6563.70 

SD 0.45 0.00 2.94  123.36 3.59 37.28 22.45 

Error (%) 0.30 0.00 0.41  0.41 0.99 0.19 0.55 

ACO+2 opt 

(2012) [18] 

Avg. 439.25 7556.58   23,441.80 672.37   

SD         

Error (%) 3.11 0.19   10.15 6.90   

WFA with 3 opt 

(2013) [19] 

Avg. 426.60 7542.00 539.44  21,282.80 633.50 14,459.40 6700.10 

SD 0.52 0.00 1.51  0.00 3.47 1.38 60.82 

Error (%) 0.14 0.00 0.27  0.00 0.72 0.56 2.64 

ACO with Taguchi 

Method (2013) 

[20] 

Avg. 435.40 7635.40 565.50  21,567.10 655.00 14,475.20  

SD         

Error (%) 2.21 1.24 5.11  1.34 4.13 0.67  

ACO with ABC 

(2014) [21] 

Avg. 433.39 7544.37 557.98 700.58 22,435.31 683.39  6677.12 

SD 5.25 0.00 4.10 7.51 231.34 6.56  19.30 

Error (%) 4.08 0.03 3.71 3.79 5.42 8.65  2.28 

Propose Method 

FSMMAS 

Avg. 426.76 7542.00 538.74 676.98 21,336.05 633.20 14,385.00 6555.97 

SD 0.43 0.00 1.65 1.88 5.07 5.07 23.75 7.94 

Error (%) 0.18 0.00 0.14 0.29 0.67 0.67 0.04 0.43 

Table 3. The comparison between FS-MMAS and MMAS. 

Method Problem OPT Eil51 426 Berlin527 542 Eil76 538 St70 675 
Kroa100 

21,282 
Eil101 629 

Lin105 

14,379 

Ch150 

6528 

MMAS 

Avg. 427.23 7542.17 539.03 677.34 21,303.90 634.90 14382.10 6554.29 

SD 0.87 5.47 1.40 3.04 39.82 2.13 15.75 4.03 

Error (%) 0.29 0.002 0.19 0.35 0.10 0.94 0.02 0.40 

FS-MMAS 

Avg. 426.76 7542.00 538.74 676.98 21,336.05 633.20 14,385.00 6555.97 

SD 0.43 0.00 1.65 1.88 43.40 5.07 23.75 7.94 

Error (%) 0.18 0.00 0.14 0.29 0.25 0.67 0.04 0.43 
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Fig. 3. Comparison of Error (%) between the FS-MMAS and MMAS. 

In Table 2, eight experimental results of FS-MMAS are 

compared with the results of studies in the literature. It can be 

seen that FS-MMAS has better performance in terms of Berlin 

52, Eil 76, St 70, Eil 101, Lin 105 and Ch 150. More precisely, 

the results obtained by FS-MMAS for Eil 51, Berlin 52, Eil 76, 

St 70, KroA 100 and Lin 105 are close to the global 

optimization whose percentage relative errors are less than 

0.3%. As we see from Table 3 and Fig. 3, the results of 

FS-MMAS for Eil 51, Berlin 52, Eil 76, St 70 and Eil 101 are 

better than those by MMAS. However, the results obtained by 

FS-MMAS for KroA 100, Lin 105 and Ch 150 are similar to 

those by MMAS. 

5. Conclusion 

In this paper, a fractional-order weighted and self-adaptive 

method based on the Max-Min Ant System with 3-Opt 

algorithms is proposed in order to make full use of spatial 

information and find the global optimization. In this method, 

ants could select the next city multi-scalely and self-adaptively, 

which contributes to improving the probability of finding the 

global optimization. And 3-Opt algorithm is used to avoid 

falling into local minimums. Eight different benchmark 

problems were tested with FS-MMAS, whose performance is 

determined by standard deviation and average tour length. In 

most cases, FS-MMAS has better performance than other 

methods. It can be concluded that FS-MMAS is effective and 

efficient to solve the optimization problems. There is no doubt 

to see further developments in application based on 

FS-MMAS in the future. So the next research will focus on the 

application of the FS-MMAS algorithm, and we expect that it 

has better performance at the design of Large Scale Integrated 

circuit, Vehicle Scheduling Problem, Routing Problem etc. 

 

References 

[1] G. Laporte, The Traveling Salesman Problem – an overview of 
exact and approximate algorithms, Eur. J. Oper. Res. 59, 1992, 
pp. 231–247. 

[2] Wikipedia, Traveling Salesman Problem. Available: 
http://en.wikipedia.org/wiki/Travelling_salesman_problem 

[3] X. T. Geng, Z. H. Chen, W. Yang, D. Q. Shi, K. Zhao, "Solving 
the traveling salesman problem based on an adaptive simulated 
annealing algorithm with greedy search", Appl. Soft Comput. 
11, 2011, pp. 3680–3689. 

[4] J. Grefenstette, R. Gopal, B. Rosmaita, D. Van Gucht, "Genetic 
algorithms for the traveling salesman problem", in Proceedings 
of the First International Conference on Genetic Algorithms 
and their Applications, Lawrence Erlbaum, NJ, 1985, pp. 160–
168. 

[5] Dorigo. M, Maniezzo. V, Colorni. A, "Ant system: 
optimization by a colony of cooperating agents", IEEE Trans. 
Syst. Man Cybern. B 26, 1996, pp. 29–41. 

[6] X. H. Shi, Y. C. Liang, H. P. Lee, C. Lu, Q. X. Wang, "Particle 
swarm optimization based algorithms for TSP and generalized 
TSP", Inf. Process. Lett. 103, 2007, pp. 169–176. 

[7] Dorigo, M., & Gambardella, L. M, "Ant Colony System: A 
cooperating learning approach to the traveling salesman 
problem", IEEE Transactions on Evolutionary Computation, 1 
January 1997, pp. 53–66. 

[8] Bullnheimer, B., Hartl, R. F., & Strauss, C., "A new rank-based 
version of the Ant System: A computational study", Central 
European Journal for Operations Research and Economics, 7 
January 1996, pp. 25–38. 

[9] Stutzle, T., & Hoos, H. H., "Max–min ant system", Future 
Generation Computer Systems, 16 August 2000, pp. 889–
914. 

[10] M. Dorigo, V. Maniezzo, A. Colorni, V. Maniezzo, Positive 
Feedback as a Search Strategy, 1991. 

[11] Oldham K B, Spanier J., The Fractional Calculus, New York 
and London: Academic Press, 1974. 

[12] Wikipedia, 3-Opt Algorithm. Available: 
http://en.wikipedia.org/wiki/3-Opt 

[13] G. Reinelt, "TSPLIB—a traveling salesman problem library", 
ORSA J. Comput. 3, 1991, pp. 376–384. 

[14] C. F. Tsai, C. W. Tsai, C. C. Tseng, "A new hybrid heuristic 
approach for solving large traveling salesman problem", Inf. 
Sci. 166, 2004, pp. 67–81. 

[15] R. Pasti, L. N. De Castro, "A neuro-immune network for 
solving the traveling sales-man problem", in International Joint 
Conference on Neural Networks, 2006. IJCNN’06, IEEE, 2006, 
pp. 3760–3766. 

[16] T. A. S. Masutti, L. N. de Castro, "A self-organizing neural 
network using ideas from the immune system to solve the 
traveling salesman problem", Inf. Sci. 179, 2009, pp. 1454–
1468. 

[17] S. M. Chen, C. Y. Chien, "Solving the traveling salesman 
problem based on the genetic simulated annealing ant colony 
system with particle swarm optimization techniques", Expert 
Syst. Appl. 38, 2011, pp. 14439–14450. 

[18] K. Jun-man, Z. Yi, "Application of an improved Ant Colony 
Optimization on generalized Traveling Salesman Problem", 
Energy Proc. 17, 2012, pp. 319–325. 



 International Journal of Intelligent Information Systems 2016; 5(4): 48-54 54 

 

[19] Z. A. Othman, A. I. Srour, A. R. Hamdan, P. Y. Ling, 
"Performance water flow-like algorithm for TSP by improving 
its local search", Int. J. Adv. Comput. Technol. 5, 2013. 

[20] M. Peker, B. Sen, P. Y. Kumru, "An efficient solving of the 
traveling salesman problem: the ant colony system having 

parameters optimized by the Taguchi method", Turk. J. Electr. 
Eng. Comput. 21, 2013, pp. 2015–2036. 

[21] M. Gunduz, M. S. Kiran, E. Ozceylan, "A hierarchic approach 
based on swarm intelligence to solve traveling salesman 
problem", Turk. J. Electr. Eng. Comput. Sci., 2014. 

 


