

International Journal of Intelligent Information Systems
2014; 3(5): 45-54

Published online November 20, 2014 (http://www.sciencepublishinggroup.com/j/ijiis)

doi: 10.11648/j.ijiis.20140305.11

ISSN: 2328-7675 (Print); ISSN: 2328-7683 (Online)

Performance evaluation and operation of enterprise
resource planning (ERP) software security system

Diponkar Paul
1
, Md. Rafel Mridha

2
, Md. Rashedul Hasan

2

1Department of EEE, Prime University, Mirput-1, Dhaka, Bangladesh
2World University of Bangladesh, Dhanmondi, Dhaka, Bangladesh

Email address:
dipo0001@ntu.edu.sg (D. Paul)

To cite this article:
Diponkar Paul, Md. Rafel Mridha, Md. Rashedul Hasan. Performance Evaluation and Operation of Enterprise Resource Planning (ERP)

Software Security System. International Journal of Intelligent Information Systems. Vol. 3, No. 5, 2014, pp. 45-54.

doi: 10.11648/j.ijiis.20140305.11

Abstract: The criteria for selecting the specific systems are - containment of most common sources for attacks, knowledge

of the exact location of each security hole, accessibility to the source code and selection of a typical web application such as a

human resource management. We followed the human resource (recruiting and working procedure) to integrate all the facilities

in a single programmable platform. The applied framework has been used to map a commercial security library to the target

mobile application SoC (System-of-Chip). The applicability of our framework to software architecture has been explored in

other multiprocessor scenarios. ERP software (or enterprise resource planning software) is an integrated system used by

businesses to combine, organize and maintain the data necessary for operations. The fundamental advantage of ERP is that

integrating the myriad processes by which businesses operate saves time and expenses. The whole process has been automated

using a methodology that extracts the risk of ERP system by analyzing the class diagram of the system. ERP for the business to

develop innovative services for new and existing organizations, has achieved operational excellence with streamlined logistics

and manufacturing improve financial performance with tighter internal controls and insights connect headquarters, subsidiaries

and partners in a single network. Any type of small and large organization who to maintain their work flow in an organized

way and having an intensity of clear book keeping like as business & educational institutions as well as social organizations.

Keywords: ERP, SecureCL, Trigger, Cursor etc

1. Introduction

Short for enterprise resource planning, ERP is an

organization’s management system which uses a software

application to incorporate all facets of the business, and

automate and facilitate the flow of data between critical

back-office functions, which may include financing,

distribution, accounting, inventory management, sales,

marketing, planning, human resources, manufacturing, and

other operating units. ERP software, in turn, is designed to

improve both external customer relationships and internal

collaborations by automating tasks and activities that

streamline work processes, shorten business process cycles,

and increase user productivity. A method for standardized

processing, an ERP software application can both store and

recall information when it is required in a real-time

environment. Companies often seek out ERP software

systems to pinpoint and mend inefficiencies in a business

process or when a number of complex issues exist in the

business environment. ERP software systems are also

implemented to enhance operational efficiencies, achieve

financial goals, manage and streamline the company’s

operational processes, replace an existing ERP software

system that is out of date or unable to handle a company’s

daily activities; or improve information management through

better data accessibility, decreased data reduplication and

optimal forecasting features [1]. Many business owners see

ERP software systems to be critical to their business

functions, as they allow companies to achieve absolute

business process automation. While most companies use

countless processes, activities and systems to run operations,

workflows and procedures can go awry when it comes to

today’s highly competitive marketplace, thus hindering

productivity, growth and profitability. As a result, the

implementation of an ERP software application can result in

increased productivity, reduced operating expenses,

46 Diponkar Paul et al.: Performance Evaluation and Operation of Enterprise Resource Planning (ERP) Software Security System

improved data flow, and optimal performance management.

ERP software comes in many forms, including supply chain

management, manufacturing, distribution, warehouse

management, retail management, and point-of-sale software.

ERP software (or enterprise resource planning software) is an

integrated system used by businesses to combine, organize

and maintain the data necessary for operations. ERP systems

merge each of the company’s key operations, including the

manufacturing, distribution, financial, human resources and

customer relations departments, into one software system.

For many companies, the ERP software is the heart of their

operations and the backbone of the organization. ERP

software consists of many enterprise software modules that

are individually purchased, based on what best meets the

specific needs and technical capabilities of the organization.

Each ERP module is focused on one area of business

processes, such as product development or marketing. Some

of the more common ERP modules include those for product

planning, material purchasing, inventory control, distribution,

accounting, marketing, finance and HR. As the ERP

methodology has become more popular, applications have

emerged to help business managers implement ERP in other

business activities and may also incorporate modules for

CRM and business intelligence and present them as a single

unified package [2]. Configuring an ERP system is largely a

matter of balancing the way the customer wants the system to

work with the way it was designed to work. ERP systems

typically build many changeable parameters that modify

system operation
.

Data migration is the process of

moving/copying and restructuring data from an existing

system to the ERP system [3]. Migration is critical to

implementation success and requires significant planning.

Unfortunately, since migration is one of the final activities

before the production phase, it often receives insufficient

attention. Advantages: The fundamental advantage of ERP is

that integrating the myriad processes by which businesses

operate saves time and expense. Revenue and salary tracking,

from invoice through cash receipt. They provide a

comprehensive enterprise view (no "islands of information").

They make real–time information available to management

anywhere, any time to make proper decisions. This article

addresses the latter; rather than propose any new security

architecture, we present a security characterization

framework [4]. Our approach concerns the security functions

of software components by exposing their required and

ensured security properties. Through a compositional

security contract between participating components, system

integrators can reason about the security effect of one

component on another. A CSC is based on the degree of

conformity between the required security properties of one

component and the ensured security properties of another. At

the application level, such consent based trust perhaps works

fine. But in a component-based development environment,

universally shallow commitment regarding component

security is dangerously illusive and can trigger costly

consequences. Trust requirements in a development

environment significantly differ from those of application

users. Component security— based on various

nondeterministic elements such as the use domain, magnitude

of the hostility in the use context, value of the data, and other

related factors—is relative, particularly in a component-

based development environment. Therefore, software

engineers must be assured with more than just a component

security or insecurity claim[10]. Whatever small role a

component plays, the software engineer cannot rule out its

possible security threats to the entire application. Component

developers might not be aware of the security requirements

of their products’ potential operational contexts. Software

engineers do not expect such knowledge from the component

developer, but they do expect a clear specification of the

component security requirements and assurances. 1 This

information should be made available if queried at runtime.

Developers must be able to do runtime tests with candidate

components to find possible security matches and

mismatches. The major concern—the disclosure of

components’ security properties and security mismatches of

those properties—has received little attention from the

security and software engineering research communities.

Current practices and research for security of component-

based software consists of several defensive lines such as

firewalls, trusted operating systems, security wrappers,

secure servers, and so on. Some significant work on

component testing, component assurances and security

certification has been done, particularly in the last two years.

These efforts basically concentrated on how to make a

component secure, how to assure security using digital

certification, and how to maximize testing efforts to increase

the quality of individual components. Undoubtedly, such

work is important to inspire trust, but we must explore other

possibilities that would let software engineers know and

evaluate the actual security properties of a component for

specific applications. If the developer doesn’t know these

attributes during system integration, the component might not

be trustworthy [11]. In current practice, the trust-related

attributes are often neither expressed nor communicated.

Software developers are reluctant to trust a third-party

software component that does not tell much about its security

profile. Despite these shortcomings, software engineers are

still inclined to use them to minimize development effort and

time. Today, trust in an application system is based on

consent—that is, the user is explicitly asked to consent or

decline to use a system. At the application level, such

consent-based trust perhaps works fine. But in a component-

based development environment, universally shallow

commitment regarding component security is dangerously

illusive and can trigger costly consequences. Trust

requirements in a development environment significantly

differ from those of application users. Component security—

based on various nondeterministic elements such as the use

domain, magnitude of the hostility in the use context, value

of the data, and other related factors—is relative, particularly

in a component-based development environment. Therefore,

software engineers must be assured with more than just a

component security or insecurity claim. Whatever small role

International Journal of Intelligent Information Systems 2014; 3(5): 45-54 47

a component plays, the software engineer cannot rule out its

possible security threats to the entire application. Component

developers might not be aware of the security requirements

of their products’ potential operational contexts. Software

engineers do not expect such knowledge from the component

developer, but they do expect a clear specification of the

component security requirements and assurances. These

efforts basically concentrated on how to make a component

secure, how to assure security using digital certification, and

how to maximize testing efforts to increase the quality of

individual components. Undoubtedly, such work is important

to inspire trust, but we must explore other possibilities that

would let software engineers know and evaluate the actual

security properties of a component for specific applications.

Since 1999, several seminal books have helped define the

software security field. These books introduced the approach

to building security in, which practitioners have since

enhanced, expanded, and published in various technical

articles; including the Building Security In series (see the

sidebar).The core philosophy underlying this approach is that

security, like dependability and reliability, can’t be added

onto a system after the fact through the addition of sets of

features, nor can it be tested into a sys- tem. Instead, security

must be designed and built into a system from the ground up.

More than 90 percent of reported security incidents are the

result of exploits against defects in the designer code of

software, according to the CERT Coordination Center

(CERT/CC) of the SEI. Although traditional security efforts

attempt to retroactively bolt on devices that make it more

difficult for those defects to be exploited, such devices

simply aren’t effective. Standard-issue software development

lifecycle models—ranging from the process-heavy

Capabilities Maturity Model (CMM) to the lightweight

Extreme Programming (XP) approach—are not focused on

creating secure systems. They all exhibit serious

shortcomings when the goal is to develop systems with a

high degree of The only way to develop systems with

required functionality and performance that can also

withstand malicious attacks is to design and implement them

to be secure. Soft- ware security is thus a full lifecycle

undertaking in which critical design decisions and trade-offs

must be clearly and thoroughly under- stood. In addition,

tools for supporting security engineering (for example,

source code analysis tools) must be integrated into the

software development environment. By treating software

security risk explicitly throughout the soft- ware life cycle,

we can properly identify and mitigate the consequences of

security failure and successful security attack. For each

lifecycle activity, a team made up of security analysts and

developers must address security goals and incorporate best

practices to assure security. In some situations, existing

development methods can be used to enhance security [5].

Current research is also creating new methods that

developers and analysts can apply as they build software;

however, more research and experimentation are required

before the goal of security can become a reality [6]. One way

of illustrating a lifecycle approach that incorporates security

into each basic phase of software development has been

intentionally created to be process agnostic. That is, the best

practices and methods de- scribed are applicable to any and

all development approaches as long as they result in the

creation of software artifacts. Given this approach, software

development processes as diverse as the waterfall model,

Rational Unified Process (RUP), XP, Agile, spiral

development, and CMM involve creating a common set of

software artifacts (the most common artifact being code). In

this way, we can apply software security best practices and

their associated knowledge catalogs regardless of exactly

which “base” software process is followed. Figure includes

best practices (as does Figure A in the sidebar), knowledge,

and tools, all organized ac- cording to software artifacts. The

Build Security In (BSI) Software Assurance Initiative seeks

to alter the way that software is developed so that it’s less

vulnerable to at- tack by building security in from the start.

BSI is a project of the Strategic Initiatives Branch of the

DHS’s NCSD, which has sponsored the development and

collection of software assurance and software security

information that will help software developers and architects

create secure systems. The effort is managed by Joe

Jarzombek, the DHS director for soft- ware assurance. As

part of the initiative, a BSI content catalog will be made

available as a Web portal in October. This portal is intended

for software developers and software development

organizations that want in- formation and practical guidance

on how to produce secure and reliable software. The catalog

is based on the principle that software security is

fundamentally a software engineering problem that we must

address systematically throughout the software development

life cycle. The catalog will contain links to a broad range of

information about best practices, tools, and knowledge.

Figure identifies aspects of software assurance covered in the

catalog[9]. The BSI portal includes information about which

tools developers and security analysts can use to detect

and/or remove common vulnerabilities. Of particular interest

are static analyses tools that help developers look for

common security- critical problems in source code. The best

current commercial tools support languages such as Java,

CLR, C++, C, and PHP (see key BSI5 in the sidebar).Even

with deep technical content, a business case is required to

convince industry to adopt secure software development best

practices and educate consumers about the need for software

assurance. Therefore, each documented best practice

addresses the business case for use of that practice. In

addition, the portal will include overall business case

framework dynamic navigation. The extent to which users

will find the content accessible as well as useful will

determine how this portal impacts real-world development

practices and, thus, overall systems security. The BSI team is

trying to make the content approachable in several different

ways. For example, a soft- ware engineer might use the

catalog to determine applicable security guidelines; an

architect might use security principles to determine how to

design an n-tier application in a secure fashion; and a

development team leader might use the information to justify

48 Diponkar Paul et al.: Performance Evaluation and Operation of Enterprise Resource Planning (ERP) Software Security System

software assurance techniques to management by building a

business case. Because the repository will be structured and

designed to evolve as well as support usage by a variety of

user types, it will include a dynamic navigation interface.

Once practical guidance and reference materials are available

forth day-to-day work most development organizations do,

the BSI team plans to identify and organize content for

practical guidance and reference materials for enterprise-

level security concerns. To help ensure that this software

assurance initiative is accepted and supported by the

community of soft- ware development organizations, the

team is seeking involvement from representatives from

industry, academia, and government. Toward this goal,

working groups to guide the creation of the BSI software

assurance portal have been formed. The Software Technical

Working Group (STWG) is composed of respected

individuals in the technical community whose primary

function is to re- view the portal content’s technical veracity

and identifies future content [7]. Although the portal is

currently in a nascent stage, the BSI team welcomes feedback;

prior to the site’s launch, you can send it to Jan Philpot at the

SEI (philpot@sei.cmu.edu). Community involvement and

use is crucial to the portal’s success, and we look forward to

help from the community in improving software security

worldwide. To the best of our knowledge, this paper is the

first to experimentally examine the resistance of several

security patterns to known categories of attacks. The main

contribution of this paper is to propose a complete

methodology for calculating the risk of STRIDE attacks on a

software system composed of security patterns already from

its design. Additionally, we make use of a fuzzy risk analysis

framework. Using fuzzy terms is more appropriate when

examining the design of a system for security. We cannot

apply exact numbers due to the lack of exact information

about the security of the system. We note here that we make

use of nine levels of risk, which leads to better granularity

compared to using fewer levels[8]. Additionally, our

approach is security pattern centric. All security estimates are

based on used and missing security patterns in places where

they are needed. Finally, in this paper, we propose a new

security pattern against an attack that we discovered during

our experiments and that existing security patterns do not

protect against. The rest of this paper is organized as follows:

Section 2 describes the systems that we used to

experimentally determine the resistance of several security

patterns to known categories of attacks. Section 3 contains

preliminaries on the fuzzy-set theory and calculations on

fuzzy fault trees. In Section 4, the methodology for

constructing fuzzy fault trees from UML-class diagrams is

described. In Section 5, experimental results are presented,

concerning the resistance of security patterns to known

attacks, risk evaluation of a no secure and a secure system,

and the risk evolution when patterns are introduced in

different orders. In the Section, we propose and evaluate a

new security pattern named “Secure GET Parameters.”

Finally, in the Section, we draw some final conclusions and

propose future work. In order to experimentally examine the

robustness of various security patterns to known attacks, we

have developed two systems. The first system, hereafter

denoted as no secure application, is a typical e-commerce

application with no usage of security patterns, except for

Protected System, where various sources for attacks were

deliberately included.. If no Secure Pipe pattern is present in

the system, a factor to the fault trees for Spoofing Identity,

Information Disclosure, and Elevation of Privilege is added,

since information could be eavesdropped. Resistance of the

Security Patterns Examined against STRIDE Attacks guard

to dictionary attacks [7]. The authentication mechanism of a

guard can still be marked as of high security. All

authentication patterns and, consequently, the Protected

System and the Secure Proxy pattern should be resistant to

eavesdropping attacks to serve their purpose. Thus, they

should always be used together with the Secure Pipe pattern

that enforces the use of the SSL protocol. The Secure Pipe

pattern offers protection from Information Disclosure attacks.

Finally, the Secure Logger pattern offers a strong protection

mechanism from reading/tampering the logs, preventing from

Tampering-with-Data, Repudiation, and Information

Disclosure attacks. Based on the above analysis, we can

make conclusions about the resistance of the security patterns

under consideration to known categories of attacks. The

results are summarized in Table 3. Irrelevant entries to the

specific security pattern are left blank. Since we have not

considered security patterns that can confront Denial-of-

Service attacks, the corresponding category has been

eliminated from our analysis. Next, we perform a likelihood-

exposure-consequences investigation for attacks that occur in

cases where specific security patterns are missing and cases

where the security patterns used do not offer total protection.

Our investigation is based on the previous analysis, together

with knowledge on possible attacks on Web Applications. We

note that the likelihood and the exposure (ease) of an attack

are the same, regardless of the application, whereas the

consequences depend on the data affected and, thus, on the

specific application. Although in our investigation,

consequences for the specific applications could be

considered, we examined the worst case scenario for the

consequences, considering that all system data is of crucial

importance. Regarding the authentication mechanism, the

categories of attacks affected when the authentication

mechanism is broken are Spoofing[7], Information

Disclosure, and Elevation of Privilege (if someone gets

administrator rights). The most trivial case is when no

authentication is used at an application entry point. In this

case, the likelihood of an attack is very high, the ease of

performing an attack is very high, and the consequences are

damaging (very high). When the Protected System pattern is

used, the likelihood of successfully attacking a guard of this

pattern is low, the ease (exposure) of a dictionary attack can

be regarded high, and the consequences are very high. When

the Secure Proxy pattern is used, two guards must be

compromised for an attack to succeed. The likelihood and

exposure of compromising the first guard are the same as in

the case of a guard of Protected System. The consequences of

International Journal of Intelligent Information Systems 2014; 3(5): 45-54 49

attacking the first guard are very low, since the first guard

only acts as a front end to the second guard, and no resources

are compromised yet when the first guard is compromised.

The likelihood, exposure, and consequences of attacking the

second guard are the same as in the case of a guard of

Protected System. The consequences of attacking the second

guard of Secure Proxy are very high, because if the second

guard is compromised, then all the protected resources are

compromised. In case the Secure Logger pattern is not used

in a place where logging is performed [6], the categories of

attacks affected are Tampering with Data, Repudiation, and

Information Disclosure [8]. If the server where the logs

reside is compromised, the log data can be read and changed,

letting a user deny having performed an action. The

likelihood of such an attack and the ease of such an attack are

low, since generally, it is not easy to compromise the server

where the logs reside. The consequences regarding

Tampering with Data and Information Disclosure are low,

since the data kept in the logs is not usually of high

importance [10]. The importance of the logs is, however,

very high when considering Repudiation (someone could

deny having performed an action that he/she performed, or

conversely, someone could accuse someone else of having

performed an action that he/she did not), and therefore, the

consequences are also very high. When the Secure Pipe

pattern is not used, the application may not be configured to

work with an SSL connection. In this case, important data

could be eavesdropped, leading to an Information Disclosure

attack, and additionally, if the credentials are eavesdropped,

this would lead to Spoofing and Elevation of Privilege[11].

The likelihood of an eavesdropping attack in this case can be

considered high, the ease of such an attack is high, and the

consequences for all categories affected are very high. When

no intercepting validator is used in a path from a class where

data is input to a class where this data is shown or a resource

(for example, a database) is accessed, having this data as a

parameter, then an SQL Injection and/or an XSS attack could

occur.

Fig. 1. The Sonar Quality Dashboard for SecureCI. It displays integrated software vulnerability information.

Automated CI is often performed during Code check-ins—

code checked into a source code control system can be

automatically integrated and unit tested to assure its quality.

CI done during code check-in typically doesn’t test the

application’s entire feature set but quickly confirms that code

enhancements compile and pass a set of unit tests [9].

Nightly builds—each night, software is automatically

compiled and a full battery of regression tests are run to

ensure the entire code base integrates and operates properly.

2. Methodology

Nightly builds also often automatically execute code

analysis to ensure quality and compliance. Weekly builds—

for tests that take too long to execute on a nightly basis,

weekly builds are often established to compile and test

software more fully to manage an automated CI process, CI

servers have emerged. Methodology: Driven by these ideas

and motivations, we propose a security characterization

framework in this article. The framework addresses how to

characterize the security properties of components, how to

analyze at runtime the internal security properties of a system

comprising several atomic components, how to characterize

the entire system’s security properties, and how to make

these characterized properties available at runtime. To inspire

trust in a particular composite system, a component’s security

contract with all the other components, the security

provisions that each component requires from ensures to the

50 Diponkar Paul et al.: Performance Evaluation and Operation of Enterprise Resource Planning (ERP) Software Security System

others, and the ultimate global security profile of the entire

federated system should be clear. Security properties and

behaviors of a software system are categorized into 11

classes in ISO/IEC-15408 Common Criteria. These classes

are made of members, called families, based on a set of

security requirements. We will only discuss a subset of one

such security class, user data protection, just to give a

snapshot of our characterization framework. The publishable

security properties related to user data protection of any

atomic component can be categorized as required—a

precondition that other interested parties must satisfy during

development to access the ensured security services—or

ensured—a post condition that guarantees the security

services once the precondition is met. Security properties are

typically derived from security functions—the

implementation of security policies. And the security policies

are defined to withstand security threats and risks. A simple

security function consists of one or more principals (a

principal can be a human, a component, or another

application system, whoever uses the component), a resource

such as data, security attributes such as keys or passwords,

and security operations such as encryption. Based on these,

three main elements characterize an ensured or required

security property: security operations executed by the

components to enforce security properties, security attributes

required to perform the operation, and application data

manipulated in a compositional contract. Using these

elements, we can formulate a simple structure to characterize

the security requirements and assurances of individual

components’(Oi, Kj, Dk)where ƒ represents a security

objective formed with three associated arguments; O is the

security-related operation performed by the principal i in a

compositional contract; K is a set of security attributes used

by the principal; subscript j contains additional information

about K such as key type, the key’s owner, and so on; D is an

arbitrary set of data or information that is affected by the

operation O; and the subscript k contains additional

information regarding D such as whether a digital signature

is used or not. The following examples represent a required

security property R (protect_in_data) and an ensured security

property E (protect_out_data) of a component P: In this

example, component P’s required property RP states that the

data is to be encrypted by any component Q with component

P’s public key. A plus sign (+) after P denotes public key. The

ensured property EP states that component P encrypts the

data file with the public key of any component Q. The data is

also digitally signed by P with its private key, denoted by the

minus sign (−) after P. This format is specific to a particular

type of security function related to user data protection. This

notation, or a similar one, can be standardized for all

components. However, alternative structure might need to be

formulated to represent other security classes such as

authentication, security audit, trusted path, privacy, and so

on.A component that broadcasts an event to receive a service

is called a focal component. Software components that

respond to the event are usually called candidate components,

and they might reside at different remote locations [9]. With

the security characterization structure of atomic components

previously explained, a CSC between two components such

as x and y can be modeled as existing CSC can be referred to

as Cx,y.Ry or Cx,y.Ex respectively. The degree of conformity

between the required security properties of one component

and the ensured security properties of another is the ultimate

CSC of the composite system. As is the case of atomic

components, we also need to establish a global security

characterization of a composite system, because it might be

used in further composition as a component. In fact,

developers often view this kind of system as a single entity or

an atomic component, not as a collection of components in

such further components. Current frameworks for software

component models such as EJB, Corba, COM, and .Net are

limited to the specification and matching of structural

interface definitions. Interface description languages (IDLs)

deal with the syntactic structure of the interface such as

attributes, operations, and events. In our approach, an active

interface not only contains the operations and attributes to

serve a function but also embodies the security properties

associated with a particular operation or functionality. An

active interface supports a three-phase automatic negotiation

model for component composition: A component publishes

its security properties attached with functionality to the

external world. The component negotiates for a possible CSC

at runtime with other interested candidate components. If it

succeeds, the negotiation results are used to configure and

reconfigure the composition dynamically. An active interface

consists of a component identity, a static interface signature,

a static (read-only) security knowledge base of the

component, and a (read–write) CSC base that is dynamic

based on the information available from the security

knowledge base. Before a component is available for use, a

certifying authority must certify it. A certificate ensures that

the implementation matches the published functionality and

the exposed security properties. It is argued that software

components can only be tested and certified individually—

not within the context of the complete composite system. The

certified assurances must be verifiable statically and

dynamically. Figure 1 illustrates a skeleton of an active

interface structure. The Component in the active interface

includes a unique identity (UID) provided by a certifying

authority, the component’s current residing address (URL),

details about the component developer, and the certification

authority that certified the component: Component ID (uid,

URL, developer_ID, certificate) A certifying authority will

verify, certify, and digitally stamp all of this data. It can

further reveal more identity information if queried about the

certificate, certification stamp, validity period, and so on. All

identity and certification information is read-only and

public—only the certifying authority can alter it. An interface

signature consists of operations and attributes for a particular

functionality. These operations and attributes are used for

structural plug-and-play matching. These properties are

static— read-only properties. Components cannot make any

modification to this. This interface is intended to make a

structural match before two components are composed. A

International Journal of Intelligent Information Systems 2014; 3(5): 45-54 51

security knowledge base stores and makes available the

security properties of a component in terms of ƒ(Oi, Kj, Dk).

The required and ensured properties stored in this KB are

specific to the functionality that the component offers. These

properties must be based on the actual security functions that

the component uses to accomplish a particular functionality.

A component might offer various functions, so the exposed

security properties can vary accordingly. Once the

information is stored in a KB and certified, no other entities

can alter its content. Any recompilation of the certified

component would automatically erase all certification and

identity information stored in Component [8]. If the

component needs to alter its security properties, it requires a

new certificate after the recompilation. A binary executable

piece of code residing in the active interface of the focal

component generates CSC conformity results between the

focal component and a candidate component. If the system

identifies nonconformance between the required and ensured

properties it concludes with a security mismatch. The

resulting CSC is automatically stored in the CSC base of the

focal component, and remains there as long as the

composition is valid. Also, a component can accept a

partially or completely mismatched CSC, although this might

have negative security effects on the global system. If a

component becomes obsolete or is no longer needed in a

dynamic composition, the associated obsolete CSC might be

stored in a log belonging to the focal component for future

audit purposes, but it would not be available to any of the

participating components. We use a fictitious distributed-

system topology as an example of how our proposed active

interface would work in a distributed environment. Consider

an e-health care system that regards all clinical information

passing among the stakeholders, such as the general

practitioners, specialists, patients, and pharmacists, as

confidential. Assume a focal component Y running on a

machine at a GP’s office connects with a trusted candidate

component S chosen from among many such systems

running at various specialists’ offices. Y provides a patient’s

diagnosis report to S to get a prescription. After receiving the

prescription from S, Y sends it electronically to a candidate

component P residing on a pharmacist’s system for a price

quotation. Developers would independently develop many

such Ps and Ss and make them available from their various

distributed sources, potentially able to deliver the

functionality that Y wants. However, component Y not only

is interested in specific functionality but also wants to know

upfront the security properties that those components provide.

Assume [3]. In return, Y requires that P digitally sign and

encrypt the price data. Note that these security properties of

Y are quite different from those for the specialist prescription.

Now assume that in response to Y’s broadcasting a request

for a price quotation, remote components P1 and P3 have

registered their interests in providing the functionality that

wants. P1 and P3 are developed and serviced by two different

development organizations and have their own security

requirements and assurances [10]. Y now runs a security test

with P1 to verify whether the component could deliver the

functionality as well as the security that Y requires. It also

verifies whether Y by itself could The entire system scenario

is shown in Figure. There are two CSCs in this system: one

between Y and S2 (shown by the red dotted line) and the

other between P3 and Y (shown by the larger blue dotted

line).In the latter composition, S2 is transitively composed

with P3 because P3’s security requirements partly depend on

S2’s security assurances, although P3 does not have any

direct composition with S2.With the previous examples, we

have demonstrated that software components can know and

reason about the actual security requirements and assurances

of others before an actual composition takes place. The

example also suggests that a security characterization is a

mechanism to provide “informed consent.”2 An informed

consent gives the participating entities explicit opportunity to

consent or decline to use components after assessing the

candidate components’ security properties.[A component can

accept a partially or completely mismatched CSC, although

this might have negative security effects on the global system.

Our framework’s main objective is to generate computational

reflection to let components and their developers identify and

capture the various security properties of the other

components with which they cooperate [4]. In such a setting,

components not only read the met description of others’

security properties but also identify security mismatches

between two components and evaluate compos ability

realistically. Security characterization and third-party

certification of components would mutually benefit each

other: first, a security characterization would contribute

significantly to the process of component security

certification; second, certification would make the exposed

security properties more creditable to software engineers.

When required and ensured security properties are spelled

out in simple, comprehensible terms, software engineers are

better positioned to evaluate the strength of the security a

component provides. They are also well informed about what

to expect from and provide to the component to establish a

viable composition. In a software engineering context, we

must balance security against the other design goals of the

entire component-based system. To achieve this, application

developers must know about components’ security properties.

A trusting profile could be gradually built and inspired on the

basis of the participating components’ self-disclosure of their

security properties. The security properties built into a

component represent the efforts already put into place to

withstand certain security threats. However, the real

protection with the committed effort of the component from

any security threat is beyond the control of the component.

Whether the available resources disclosed by the component

are sufficient to withstand a threat is outside the parameters

of our framework. A trust-generating effort could only be

viable by exposing actual certified security properties of

interested parties in a composition as opposed to “secure or

insecure” claims. We acknowledge that software engineers’

trust in unfamiliar components is understandably difficult to

cultivate and that complete trust is undoubtedly desirable, but

we believe that our approach would at least contribute to

52 Diponkar Paul et al.: Performance Evaluation and Operation of Enterprise Resource Planning (ERP) Software Security System

such trust. One of the real challenges facing the emerging

field of software security is the lack of an easily accessible

common body of knowledge. Simply put, most software

developers and architects—the very people who need to

understand and practice software security—remain blithely

unaware of their critical role. Without their direct

participation, software security will languish. In this

installment of Building Security In, we describe a software

security portal that the US Department of Homeland Security

(DHS) National Cyber Security Division (NCSD) is

developing (along with the Carnegie Mellon Software

Engineering Institute [SEI] and Digital). The launch of this

portal is scheduled for October 2005 as part of the US-CERT

Web site. The portal aims to provide a common, accessible,

well-organized set of information for practitioners wishing to

do software security. In this section, we summarize some of

the limitations of the proposed methodology and suggest

some extensions and improvements. Our methodology relies

on the accuracy of function cycle count measurements. This

is possible only if a sophisticated, cycle-accurate simulator is

available for the system under consideration, which reports

cycle counts for each function excluding the cycles spent by

the processor in its descendants. Point your web browser to

www.cucwings.com alternatively we can go to

www.cucwings.com and click HR in Top Menu Bar. Initially

basic data needs to be set up before getting benefitted and

utilizing all the options in HR module. To go to Employee

Basic Data Set-up page click on the HR Basic Data Set-up

link at the Left Side Menu Bar in HR page.

Fig. 2. Needs of basic data to be set up before getting benefitted and utilizing all the options in HR module

To add an employee you need to click on the Add

Employee button in the left side menu bar of Employee page

and you will land in Add Employee page as shown above.

3. Entering Information

There are different ways to enter information in the system

through different fields.

Fields Entering Information and Examples

Text Box Enter information directly into the field

Drop-Down List Click ▼ and then select the value from the list

Radio Button Select one of the values

Check Box Select to activate/deactivate the option

Fig. 3. Different ways to to enter information in the system through different fields.

International Journal of Intelligent Information Systems 2014; 3(5): 45-54 53

Fig. 4. Continuous Assessment of security hardening of the ERP software system.

The system also comes with a ‘what you see is what you

get editor’, which allows user to easily enter and preview

larger amount of information.Software-based protection

systems are coming into common use, driven by their

inherent advantages in both performance and portability.

Software fault isolation, proof-carrying code, or language-

based mechanisms can be used to guarantee memory-safety.

Secure system services cannot be built without these

mechanisms, but may require additional system support to

work properly. We have described three designs which

support interposition of security checks between entrusted

code and important system resources. Each design has been

implemented in Java and both extended stack introspection

and name space management have been integrated in

commercial Web browsers. All three designs have their

strengths and weaknesses. For example, capability systems

are implemented very naturally in Java. However, they are

only suitable for applications where programs are not

expecting to use the standard Java APIs, because capabilities

require a stylistic departure in API design. Name space

management offers good compatibility with existing Java

applets but Java's libraries and newer Java mechanisms such

as the reflection API may limit its use. Extended stack

introspection also offers good compatibility with existing

Java applets and has reasonable security properties, but its

complexity is troubling and it relies on several artifacts of

Sun's Java Virtual Machine implementation. Understanding

how to create such a hybrid system is a main area for future

research. Training throughout the company focused on

architectural reviews, secure coding, and testing processes.

The training materials were initially licensed from a major

university, and have since been customized to their needs. H

further customizes the training for product groups, to

maximize relevance to the staff. While training is usually a

one-time event, organizational turnover is high enough that

the training is repeated in each location on a regular basis. In

some cases, threat modeling as part of the design process. A

company-wide license to use a source code analysis tool,

along with training by the evangelist team on how to use the

tool effectively[11]. An in-house penetration testing team,

coupled with third-party penetration testing when the need

arises (e.g., because the in-house team is unavailable).Use of

a third-party team to assess the security status of products

being considered for OEM or acquisition, to minimize the

risk of acquiring security vulnerabilities along with products.

This review team currently operates after the OEM

arrangement or acquisition has been completed. The

evangelist team believes it would be more effective before

the deal is signed, but that change has not occurred. Software

testing is one of the most fundamental assurances for the high

quality of a developed product [2]. Quality of software

represents consumer satisfaction across the breadth of a

products´ features, including assurances about safety, privacy

and security. The commercial software industry typically

employs Quality Assurance (QA) technicians through a

dedicated QA department. The area of formal testing is

identified as a major difference between the commercial and

open source projects. The section is by no means arguing

against system wide tests but is pointing out the interesting

side effects that could result from abusing the system on the

commercial side and the extra diligence for the lack of it on

the free side. We believe that if QA abuse is true on the

commercial side then abiding by good development practices

like unit tests and developer diligence while reaping the

benefit and the extra assurance of system testing could boost

the quality and stress the competitive edge that it has in this

area. Consumers can reap the benefits of all of this by having

a super reliable system upon delivery that could be deployed

with more confidence. Despite the claims by the open source

proponents that open source is more secure, a more close

examination of the OSS and IP development processes shows

advantages and disadvantages on both sides. The claim of

open source intrinsic advantage over “closed source” could

not be verified from the examined perspectives.

4. Conclusions

Hackers are now targeting the organization’s data, putting

at great risk of organization and its stakeholders. A secure,

formal and structured software development methodology,

along with enforceable and pertinent policies was our main

target on this project development. A stunning combination

54 Diponkar Paul et al.: Performance Evaluation and Operation of Enterprise Resource Planning (ERP) Software Security System

of software assurance is achieved when the above things are

combined with a professional certification. In our view

“openness”, being the most controversial aspect discussed,

may not have a big advantage in security. This is evident

from the fact that expert “eyeballs” make the difference to

the casual developer review. The openness of open source

doesn’t automatically make it more secure, but it creates an

opportunity for motivated individuals to pool together

security expertise to do code reviews, security auditing and

create tools to help improve security. Two great examples of

this are the Sardonyx project On the other hand, disclosing

source code can be a slight advantage to the expert hacker in

reducing the overhead of analyzing issued patches to produce

an exploit for un-patched systems. Lack of formal testing

may constitute a disadvantage to open source but produces an

implicit advantage by making developers work in a more

responsible manner. The numbers come in support of

findings that both sides exhibit a mixed set of pros and cons.

The record of problems found in OSS and IP don´t suggest

the superiority of one over the other when it comes to

security [1]. Both open source and IP software have suffered

from an abysmal rate of security failures in the last few years.

In both worlds the number and sophistication of attacks are

on the rise. If software is to meet future needs of business,

government and home users, there has to be an order of

magnitude improvement in the resilience of software

products to attack. Finally we believe that there is a slew of

inherent potential on both sides that could be leveraged.

There is also room for hybrid models reaping the advantages

of both camps. This might be evident from the hybrid

development model used with Mozilla Companies like Apple

and Sun have taken the initiative to freely publish the source

code of projects, indicating potentially closer steps toward a

hybrid model. With increased software security incidents,

regulatory and compliance requirements, and globalization

all changing the landscape of security, one simply cannot

take the chance of releasing vulnerable software. Hackers are

now targeting your organization’s data, putting at great risk

your organization and its stakeholders. Damage to your

reputation caused by a security breach, and the ensuing loss

of customer trust and confidence, might prove irreparable. In

today’s business environment, software assurance is

imperative. In addition to network perimeter security controls,

organizations must ensure that software security controls are

designed, developed, and deployed to protect their critical

information assets. A secure, formal and structured software

development methodology, along with enforceable and

pertinent policies, must become a part of any organization’s

operations.

References

[1] Voas, “Certifying Software for High-Assurance Envi-
ronments,” IEEE Software, vol. 16, no. 4, July/Aug.1999, pp.
48–54.

[2] W. Councill, “Third-Party Testing and the Quality of Software
Components,” IEEE Software, vol. 16, no. 4, July/Aug. 1999,
pp. 55–57.

[3] A. Ghosh and G. McGraw, “An Approach for Certify- ing
Security in Software Components,” Proc. 21st Nat’l
Information Systems Security Conf., Nat’l Inst. Stan- dards
and Technology, Crystal city, Vir., 1998, pp.82–86.

[4] ISO/IEC-15408 (1999), Common Criteria for Informa- tion
Technology Security Evaluation, v2.0, Nat’l Inst. Standards
and Technology, Washington, DC, June1999,
http://csrc.nist.gov/cc. (current Dec. 2001)

[5] K. Khan, J. Han, and Y. Zheng, “A Framework for an Active
Interface to Characterize Compositional Security Contracts of
Software Components,” Proc. Australian Software Eng. Conf.,
IEEE CS Press, Los Alamitos, Calif., 2001, pp. 117–126.

[6] C.A. Berry, J. Carnell, M.B. Juric, M.M. Kunnumpurath, N.
Nashi, and S. Romanosky, J2EE Design Patterns Applied.
Wrox Press, 2002.

[7] Blakley, C. Heath, and Members of the Open Group
SecurityForum, Security Design Patterns: Open Group
Technical Guide, 2004.

[8] Braga, C. Rubira, and R. Dahab, “Tropyc: A Pattern Language
for Cryptographic Software,” Proc. Fifth Conf. Pattern
Languages of Programming (PLoP), 1998.

[9] P.J. Brooke and R.F. Paige, “Fault Trees for Security
SystemDesign and Analysis,” Computers and Security, vol. 22,
no. 3, pp. 256-264, Apr. 2003.

[10] K.-Y. Cai, Introduction to Fuzzy Reliability. Kluwer
AcademicPublishers, 1996.

[11] K.-Y. Cai, “System Failure Engineering and Fuzzy
Methodology: An Introductory Overview,” Fuzzy Sets and
Systems, vol. 83, no. 2,pp. 113-133, Oct. 1996.

