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Abstract: Multi-level decisions on sensor detection is able to improve the detection performance on the final decision made at
the fusion center (FC) in wireless sensor networks (WSN). In this paper, the performance analysis of an M -ary signaling (MS)
scheme using analog transmission and a k-bit transmission (KB) scheme is both examined for distributed binary detection. Under
the multi-level decision algorithms, each sensor sends a signal carrying the information of a quantized version of a local decision
statistic such as the conditional mean or the log-likelihood ratio. In MS, the output of the quantizer is transmitted directly without
digitalizing and coding process, while in KB, each quantization output is coded with k bits and hereby a sensor sends a k-bit
hard local decision to the FC. At the FC, the linear combiner detection rule on the transmission schemes is both adopted to make
the final decision. The effects of the sensor decision and the transmission errors are incorporated in the analysis of the erroneous
performance of the final decision. The goal of the proposed schemes is to minimize the final errors at the FC via optimizing the
region allocation on the multi-level decision at the sensor. The numerical results illustrate that the proposed schemes achieve
significant improvement in error performance over the conventional schemes under either additive white Gaussian noise (AWGN)
channel or Rayleigh faded channel.
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1. Introduction
Distributed detection fusion using multiple sensors has

been employed in a wide variety of applications in wireless
sensor networks (WSN), including power spectrum sensing
in cognitive radios [1-3], environmental and structural
monitoring in wireless sensor networks [4-6], intruder
detection in surveillance systems [7, 8], and wireless
communications [9]. Among the topologies considered in the
existing works, the parallel fusion network has received the
most attention [10]. Conventionally, in the distributed parallel
fusion network, a phenomenon in a specified environment
is first observed by a sensor, and a decision based on the
observation is made without exchanging the information with
other local sensors. In distributed detection, the decision made

by local sensors is carried out by some preliminary processing
of sensor observations, usually the quantization process. Then,
each sensor transmits a signal to the fusion center (FC)
carrying the information of its decision in accordance with
the quantization level of its observation. In the conventional
system, the decision is usually binary and hence a sensor sends
a quantized version of a local decision statistic, which can also
be regarded as a one-bit hard local decision. The FC makes an
overall decision on the phenomenon after collecting all the data
from each of the sensors. The decision at the FC, however, can
be erroneous due to mistakes on the detection by the sensors
or the effects of channel errors.

When the decision made by each local sensor is binary,
the sensor observation in the multiple-sensor system can be
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considered being recorded by each sensor via one single bit
only, which is usually referred to as hard-decision fusion [10].
In contrast to the binary local decision case, many works have
also studied the case of soft-decision fusion, in which the
sensor observation is divided into M regions, where M is an
arbitrary integer with M > 2 [1, 2, 11-17]. The work in
previous study [11] considers the system in which the local
sensor sends an additional quality information bit along with
the binary decision bit to the FC. In the works [1, 2, 12, 13, 14,
18, 19], the local soft-decision is made using log-likelihood
ratio (LLR) quantizer. In the study [15], the multiple-bit local
decision is made in accordance with the quantization level of
received signal energy. In the works [16, 17], a multiple-bit
decision carrying the quantized membership function of sensor
observations is made by each local sensor and sent to the FC.
Several other works have also studied the soft decision fusion
in distributed detection system [9, 20-23].

However, the works mentioned above all assume that the
information of soft local decision is digitally transmitted
to the FC, in which the information of each quantization
level is mapped to several digital bits and the local soft-
decision (quantizer output) or the local decision performance
corresponding to the received quantization level is then utilized
by the FC to make its final decision, and usually Gray coding
is employed in the mapping of the multiple bits. Besides, the
demanding channel bandwidth in the literature [1, 2, 11-17] is
scaled with the number of quantization levels. As opposed to
the existing works mentioned above, this study considers both
uncoded (analog) and digital transmission schemes between
the local sensors and the FC. The sensor observation is divided
into M regions, M ≥ 2 [26]. The information of the soft
local decision in each region is sent via uncoded (analog)
transmission to the FC without digitalizing and coding process,
which is defined as M -ary signaling (MS). On the other hand,
if the local decision is digitally transmitted to the FC via
multiple bits, the scheme is defined as k-bit transmission (KB)
and the number of the quantization levels on the observation is
restricted to 2k. At the FC, the linear combiner detection rule
is adopted to make the final decision. Either the MS scheme
or the KB scheme is aimed to achieve higher information
recorded towards the phenomenon in the environment at the
sensor and lower error probability under the same energy
consumption on the final decision at the FC.

In the proposed MS scheme, the detection on the
phenomenon is divided intoM equally spacing regions, where
M is an arbitrary integer withM ≥ 2. When the detection falls
within a specific region, a conditional mean is adopted as a
representation of the observation in the region, and an uncoded
transmission carrying the information of the quantization is
sent to the FC [26]. The goal of the proposed scheme is
to minimize the decision errors at the FC via optimizing
the region allocation, i.e., varying the width of each of the
M regions [26]. The error performances using maximum-
a-posteriori (MAP) and equal-gain-combining (EGC) fusion
rules at the FC are both analyzed. Nevertheless, in the
proposed KB scheme, a k-bit sequence encoded from the
quantization, instead of the value of the quantization itself,

is sent to the FC. Both Gray code and regular binary code
are employed in the encoding of the k bits. At the FC, the
hard decision is performed first on each of the transmitted bits
and EGC is adopted on the hard-limited data to make the final
decision. Similarly, the main aim is to minimize the final errors
at the FC via optimizing the region allocation. Furthermore,
the performance comparison of the MS and the KB schemes
is conducted with the signal transmitted over either additive
white Gaussian noise (AWGN) channel or Rayleigh faded
channel. The proposed schemes are illustrated with numerical
examples to show their significant improvement in error
performance and increased information available at the FC as
compared with the conventional schemes.

The remainder of this paper is organized as follows. Section
2 will first depict the MS and the KB mechanisms for
binary distributed detection problem. This is followed by
the performance analyses for the corresponding schemes in
Section 3. Section 4 presents the results of MS and KB and
their comparison, and Section 5 concludes this work.

2. Design of Multi-level Decision Scheme
In a WSN environment under binary hypothesis H0 and H1

shown in Figure 1, we assume a phenomenon A either H0 :
A = γ or H1 : A = −γ, where γ > 0, occurs symmetrically
with equal prior probability P [H0] = P [H1] = 0.5.
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Figure 1. WSN with multi-level decision scheme on sensor detection

L sensors observe the measurements generated from H0 or
H1 and the observation value by the l-th sensor is denoted
by Wl, l = 1, . . . , L, independent and identically distributed
(i.i.d.) from sensor to sensor. Also, assume H0 : Wl = γ +
ηl; H1 : Wl = −γ+ηl, where ηl is a standard normal random
variable. The probability density function (PDF) of Wl

conditioned on H0 or H1 is fWl|H0
(w) = e−(w−γ)2/2/

√
2π

or fWl|H1
(w) = e−(w+γ)2/2/

√
2π. In the considered parallel

fusion networks, the l-th sensor makes its own binary decision
X , independent of all other nodes. Conventionally, the binary
decision is X = ±1 and the signal sl transmitted to the

FC by the l-th sensor is sl =

{ √
E, Wl > 0

−
√
E, Wl < 0

, where
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E is the energy of the transmitted signal. In addition, an
identical local decision rule is assumed among all the sensors.
An erroneous decision at the sensor occurs with probability
P [Wl < 0|H0] = P [Wl > 0|H1] = Q(γ), where Q(γ)
is the standard normal complementary cumulative distribution
function. The received signal from the l-th sensor at the FC is
Rl = sl + nl, where nl is the Gaussian noise in the AWGN
channel. All nl’s are assumed i.i.d. with E[nl] = 0 and
Var[nl] = N0/2 for l = 1, 2, ..., L. The final decision made at
the FC is

L∑
l=1

Rl > 0⇒ Decide H0

L∑
l=1

Rl < 0⇒ Decide H1

(1)

and its error probability Pe is [24, 25]

Pe = P

[
L∑

l=1

Rl < 0

∣∣∣∣∣H0

]
= P

[
L∑

l=1

Rl > 0

∣∣∣∣∣H1

]

=
L∑

i=0

(Li )Q(γ)i (1−Q(γ))L−iQ

(
(L− 2i)

√
2E

LN0

)
.

(2)

Moreover, if the transmitted signal to the FC by
the l-th sensor is considered one single bit ul, ul ={

1, sl =
√
E

0, sl = −
√
E

, the hard decision rule is first applied

on the received signal Rl, and the decoded bit ûl is ûl ={
1, Rl > 0
0, Rl < 0

. The bit error probability is P[ûl 6= ul] =

Q(
√

2E
N0

). The final decision made at the FC is via the majority
rule.

L∑
l=1

ûl >
L

2
⇒ Decide H0

L∑
l=1

ûl =
L

2
⇒ Randomly decide H0 or H1

L∑
l=1

ûl <
L

2
⇒ Decide H1.

The error probability Pe is [24, 25]

Pe =



∑L
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√
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√
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)
)L−i
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i=L+1

2
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√
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)i
(
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√
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N0

)
)L−i

+0.5(LL
2

)Q(
√

2E
N0

)
L
2

(
1−Q(

√
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)
)L

2
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(3)

2.1. M -ary Signaling

A multi-level decision algorithm is applied on the
observation at each sensor [24, 25, 26], where Wl at

the l-th sensor is divided into M equally spacing regions
as shown in Figure 1. When M = 2N is even,
the 2N regions are I−N , I−(N−1), . . . , I−1, I1, . . . , IN , and
the (2N − 1) boundaries are −(N − 1)∆,−(N −
2)∆, . . . ,−∆, 0,∆, . . . , (N − 1)∆. ∆ is the width of
each region except for the two end regions I−N and IN .
Similarly, when M = (2N + 1) is odd, the (2N +
1) regions are I−N , I−(N−1), . . . , I−1, I0, I1, . . . , IN , and
the 2N boundaries are −(N − 1

2 )∆,−(N − 3
2 )∆, . . .,

− 1
2∆, 1

2∆, . . . , (N − 1
2 )∆. Define pn = P [Wl ∈ In|H0] =

Q(dlow−γ)−Q(dup−γ), n = −N,−(N −1), ..., N , where
dlow and dup denote the lower and upper bounds of In, i.e.,
In = {Wl|dlow < Wl < dup}. (dup − dlow) is ∆ except for
I−N and IN , where dlow = −∞ for I−N and dup =∞ for IN .
From symmetry, P [Wl ∈ In|H1] = P [Wl ∈ I−n|H0] = p−n.
M -level quantization X is applied on the observation, and

xn is the representation value of X in the n-th region In.
At the l-th sensor, xn is defined as the conditional mean
when Wl falls in In, i.e., xn = E[Wl|Wl ∈ In] =
P [H0]E[Wl|H0,Wl ∈ In] + P [H1]E[Wl|H1,Wl ∈ In] [26].

xn =
1

pn + p−n
(
e−(dlow−γ)2/2 − e−(dup−γ)2/2

√
2π

+ pnγ

+
e−(dlow+γ)2/2 − e−(dup+γ)2/2

√
2π

− p−nγ).

(4)

From symmetry, x−n = −xn and x0 = 0. Note that
I0, p0 and x0 exist only when M is odd. |xi| increases as
|Wl| increases and vice versa. The conventional scheme is
regarded as M = 2. The signal sl transmitted to the FC
by the l-th sensor is xn

√
E, uncoded and in accordance with

the decision on Wl ∈ In. The signal set is thus extended
from {±1}, binary in the conventional fusion system, to
{x−N , x−(N−1), . . . , xN}, and thus M -ary signaling (MS) is
achieved in the proposed algorithm. Given γ and E/N0, the
goal of the proposed algorithm is to minimize the error rate
Pe of the final decision at the FC via varying ∆ to obtain the
optimal region allocation. The error performance is improved
through the optimization, and this procedure does not exist
in the conventional fusion scheme. The average consumed
energy Ē of the transmitted signal is Ē =

∑N
n=−N pnx

2
nE,

while the consumed energy in the conventional fusion system
is always Ē = E. The error performance will be examined
under the same energy spent on the transmission to the FC.

2.2. k-bit Transmission

A different approach on the transmission by the l-th sensor
is when M = 2k, k = 1, 2, 3, ..., a k-bit sequence based
on the detection of Wl ∈ In., instead of the value of xn, is
transmitted to the FC. The proposed algorithm is defined as
the k-bit transmission (KB) scheme. The transmitted signal is
hence (±

√
E,±

√
E, ...,±

√
E)1×k, e.g., for k = 3, (000) is

(−
√
E,−

√
E,−

√
E) and (001) is (−

√
E,−

√
E,
√
E), etc.

The consumed energy Ē is thus kE. Gray code and regular
binary code are both considered in the encoding of the k bits,
as is depicted in Figure 1 with k = 3. Each transmitted bit is
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first hard-limit decoded at the FC and the estimation x̂l from
the l-th sensor is obtained for the FC to make the final decision.
Similarly, Pe is minimized via varying ∆ to obtain the optimal
region allocation in the KB scheme.

3. Performance Analyses

3.1. M -ary Signaling

The received signal from the l-th sensor at the FC is Rl =
sl + nl, and the PDF of Rl is

fRl|H0
(rl) =

N∑
n=−N

pne
−(rl−xn

√
E)2/N0

√
πN0

fRl|H1
(rl) =

N∑
n=−N

p−ne
−(rl−xn

√
E)2/N0

√
πN0

=

N∑
n=−N

pne
−(rl+xn

√
E)2/N0

√
πN0

= fRl|H0
(−rl) (5)

The optimal MAP rule on the log-likelihood [25, 26] is
applied to obtain the final decision Â = ±γ, i.e., H0 or H1.

L∑
l=1

log(fRl|H0
(rl))

Â=γ
>
<

Â=−γ

L∑
l=1

log(fRl|H1
(rl)). (6)

Without loss of generality, assume H0 occurs, i.e., A = γ,
and thus the error probability Pe of the final decision is

Pe = P

[
L∑
l=1

log

(
fRl|H0

(rl)

fRl|H1
(rl)

)]
< 0 (7)

Given γ,N,L,∆, and E/N0, Pe is derived via numerical
analysis, and is optimized, i.e., minimized, by revising ∆
through changing the boundaries of In’s iteratively.

The knowledge of pn is, however, a requirement for the
MAP rule. When the information of pn is unavailable at the
FC, a sub-optimal EGC rule [25, 26] is adopted.

L∑
l=1

Rl
Â=γ
>
<

Â=−γ
0, (8)

and hence

Pe = P

[
L∑
l=1

Rl < 0|H0

]

=

∫ 0

−∞
fR1|H0

(r) ∗ fR2|H0
(r) ∗ . . . ∗ fRL|H0

(r)dr,

(9)

where the asterisk ∗ denotes the convolution of the functions.
Similarly, Pe under the EGC rule is found via numerical
analysis and its optimization lies in ∆.

Furthermore, when the channel between the sensor and the

FC is faded, the received signal from the l-th sensor becomes
Rl = Λlsl + nl, where Λl is the propagation gain and is
modeled a Rayleigh random variable with the PDF fΛl(z) =

2ze−z
2

and E[Λ2
l ] = 1, and thus Ē =

∑N
n=−N pnx

2
nE remains

the same. Assume the fading is i.i.d. among the sensors, and
the PDF of Rl given H0 is

fRl|H0
(rl) =

N∑
n=−N

pn(
e−r

2
l /N0

√
πN0(1 + xnE/N0)

+

2xn
√
ErlQ

(
−rl
√

2x2
nE

N0(N0+x2
nE)

)
e−r

2
l /(N0+x2

nE)

(N0 + x2
nE)3/2

). (10)

When the EGC rule is applied at the FC,

Pe = P

[
L∑
l=1

Rl < 0|H0

]

=

∫ 0

−∞
fR1|H0

(r) ∗ fR2|H0
(r) ∗ . . . ∗ fRL|H0

(r)dr, (11)

and, similarly, Pe is obtained and optimized via numerical
analysis.

3.2. k-bit Transmission

When a k-bit sequence is transmitted by the l-th sensor, the
received signal Rl at the FC is Rl = (±

√
E + n1,±

√
E +

n2, . . . ,±
√
E) +nk), ni ∼ N(0, N0/2) is the Gaussian noise

in the AWGN channel, i = 1, 2, ..., k. The hard-decision rule
is applied on each of the k bits and the bit error probability is

Q(
√

2E
N0

). The estimation x̂n from the k received bits is first
made. For example, when k = 3, x̂l = x−4 if the decoded bits
are (000), and x̂l = x−3 if the decoded bits are (001), etc. The
probability on x̂l can thus be derived. For example, when k =
3 and Gray code is employed,

P [x̂l = x−4] = p−4P000→000 + p−3P001→000

+p−2P011→000 + p−1P010→000 + p1P110→000

+p2P111→000 + p3P101→000 + p4P100→000, (12)

where P000→000 = (1−Q(
√

2E
N0

))3, P001→000 = P010→000 =

P100→000 = Q(
√

2E
N0

)(1 − Q(
√

2E
N0

))2, P011→000 =

P110→000 = P101→000 = Q(
√

2E
N0

)2(1 − Q(
√

2E
N0

)),

P111→000 = Q(
√

2E
N0

)3.
The majority rule is applied on the final decision at the FC.

L∑
l=1

x̂l > 0⇒ Decide H0

L∑
l=1

x̂l = 0⇒ Randomly decide H0 or H1
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L∑
l=1

x̂l < 0⇒ Decide H1 (13)

Moreover, when the information of pn is shared at the FC,
the estimation x̂l from the k decoded bits can be otherwise
interpreted as the log-likelihood in In. For example, when k =
3, x̂l = log p−4

p4
if the decoded bits are (000), and x̂l = log p−3

p3

if the decoded bits are (001), etc. The majority rule on the final
decision remains the same under the log-likelihood estimation.
The error probability Pe of the final decision from the above is
obtained via numerical analysis, and, similarly, minimized via
varying ∆.

When the k-bit sequence is transmitted over a Rayleigh
faded channel, the entire k bits are assumed through the same
fading. When k = 1, the bit error probability is (0.5 −
0.5/

√
1 +N0/E). When k ≥ 2 and assume q out of the k

bits are in error, the error probability is∫ ∞
0

2ae−a
2

Q(a

√
2E

N0
)q(1−Q(a

√
2E

N0
))k−q da. (14)

For example, k = 3, q = 0,

P000→000 =

∫ ∞
0

2ae−a
2

(1−Q(a

√
2E

N0
))3 da (15)

k = 3, q = 1,

P000→001 =

∫ ∞
0

2ae−a2

Q(a

√
2E

N0
)(1−Q(a

√
2E

N0
))2 da (16)

k = 3, q = 2,

P000→011 =

∫ ∞
0

2ae−a2

Q(a

√
2E

N0
)2(1−Q(a

√
2E

N0
)) da (17)

k = 3, q = 3,

P000→111 =

∫ ∞
0

2ae−a
2

Q(a

√
2E

N0
)3 da, etc. (18)

Hence, the probability on x̂l can be derived accordingly.
Similarly, the error probability Pe of the final decision is
minimized via varying ∆ when the channel fading exists.

4. Results
Pe of the WSN under MS with γ = 1 is shown in Figure

2. Pe is lower than that of the conventional system and is
improved as M increases. The error performance under the
MAP rule is better than that of the EGC rule. No remarkable
difference exists between the performance of the MAP rule
and the EGC rule when SNR is high or when M is large, and
the performance remains virtually the same for M ≥ 50. The
flooring of the curves at high SNR is due to the fact that the
erroneous behavior of the transmitted signal to the FC vanishes
as SNR increases and hence the behavior is dominated by the
decision errors made by the sensors only.

-5 0 5 10 15 20 25

10-4

10-3

10-2

Ē/N0

Pe

(dB)

conventional(M=2)
3 regions
4 regions
5 regions
6 regions
7 regions
8 regions
50 regions
64 regions
101 regions
MAP
EGC

Figure 2. Pe of MS with γ = 1 and L = 16 over AWGN.

With γ = 1, the performance of MS under EGC and KB is
compared in Figure 3. A crossover exists between MS and KB
as SNR increases with KB under either Gray or regular coding.
This is because the effect of an erroneous signal sent by the
sensor is alleviated in the hard-decision process of the received
bit in KS when SNR is high. Regular coding outperforms Gray
coding with k = 2, 3, 6. This is due to the property of Gray
code that the nearest codewords differ in one single bit and,
nevertheless, most of the codewords differing in one single bit
are not the nearest neighbors, especially when k is large. The
corresponding curves of MS and KB emerge since no mistakes
occur at the transmission part as SNR increases.

-5 0 5 10 15 20 25

10-4

10-3

10-2

10-1

Ē/N0

Pe

(dB)

conventional(M=2,k=1)
4 regions
8 regions
64 regions
M-ary
k-bit, Regular
k-bit, Gray

Figure 3. Pe of MS and KB with γ = 1 and L = 16 over AWGN.

The comparison of KB decoded under the conditional mean
and under the log-likelihood is shown in Figure 4. No
significant difference is observed between the two algorithms,
which indicates, unlike the MAP rule in MS, sharing the
information of pn’s at the FC does not necessarily improve the
performance of KB.
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Regular
Gray
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Figure 4. KB under Conditional Mean and under Log-likelihood with γ = 1 and
L = 16 over AWGN.

Figure 5 shows the error performance with γ = 5. No
obvious difference exists between the behaviors of MS under
either the MAP or the EGC rules for M = 2 to 101. When γ
is large, the uncertainty of the decision a sensor makes on its
observation is extremely low, and no significant gain exists on

-10 -8 -6 -4 -2 0 2 4 6 8 10
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

M-ary
M=2-101

Ē/N0

Pe

(dB)

conventional(k=1)
4 regions
8 regions
64 regions
k-bit, Regular
k-bit, Gray
log-likelihood

Figure 5. Pe of MS and KB with γ = 5 and L = 16 over AWGN.

the performance of MS, whatever value M is. The
quantizationX by the sensor is always the two end points, i.e.,
P[X = ±xN ] ' 100%. ∆ tends to be tiny and the two end
regions I−N and IN dominate the decision on the observation
and the MS scheme is virtually binary. Nevertheless, the
performance of KB is worse than that of MS and deteriorates
generically as k increases. This is due to the spreading of
the energy on the multiple transmitted bits and the innate
disadvantage of the hard-decision decoding on the received
bits at the FC.

With γ = 1, Figure 6 shows the performance of MS under
EGC and KB over a Rayleigh faded channel. Pe is improved as
M or k Increases. KB outperforms MS at high SNR because
when the fading is critical, the reliability of the hard-decision
decoding in KS is higher than that from the combination of the
soft information in MS.
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Figure 6. Pe of MS and KB with γ = 1 and L = 16 over Rayleigh Faded Channel.

Finally, the error rates with γ = 5 over a Rayleigh faded
channel are shown in Figure 7. Note the similarity between
the performances of AWGN channel and of Rayleigh faded
channel. When γ is large and the uncertainty of a sensor’s
decision is low, likewise the MS scheme is virtually binary
and the performance of KB is worse than that of MS when the
signal is transmitted over a fading channel.

5. Conclusions

We have analyzed and compared the performances of MS
and KB under multi-level decisions for distributed binary
detection. The decision errors at the FC is minimized via
optimizing the region allocation. In addition, the comparison
of Gray coding and regular coding in KB has been made, and
the performances of the proposed schemes over an AWGN
channel and a fading channel have been both examined. The
results confirm that the goal of better error performance under
the MS and the KB algorithms is achieved, especially when
the certainty of the detection made by the sensor on the
environment is low.
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Figure 7. Pe of MS and KB with γ = 5 and L = 16 over Rayleigh Faded Channel.
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