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Abstract: The variational quantum Monte Carlo method was applied to investigate the ground states of the helium atom and 
helium like ions with atomic number from 1 to 10 and the first four excited states of the helium atom. Furthermore, the 
investigation of the ground state of helium, Li+, and Be2+ in a confined impenetrable spherical box. Moreover, the calculation 
of the ground state of the helium atom in a strong magnetic field using four simple trial wave functions. The trial wave 
functions consist of usual orbital hydrogen wave functions multiplied by correlation function. Using four different correlation 
wave functions, we describe the interaction of the two electrons with each other and having a small number of variational 
parameters. 
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1. Introduction 

The most atomic theories arise from the independent 
electron shell model which assumes that every electron is 
moving in a field combined of the nucleus and the mean 
distribution of the other electrons. In this model, the effect of 
two-electron repulsion neglected. This is leading to 
inaccurate results for the calculated energies of the helium 
atom and its ions. The study of the effects of the two-electron 
correlation has been a subject of interest in atomic physics. 
The ground state of helium and its ions calculated by using 
wave functions from the orbital product times correlated 
function depending on the distance between the two 
electrons. These wave functions depend on several variable 
parameters, which should satisfy the variational principle to 
give improved values for energies. The integration of the 
functions of inter-electronic distance is difficult so that the 
topic of electron correlation studied by using numerical 
methods. One of the most important numerical methods is the 
variational Monte Carlo (VMC) method [1]. It is based on a 
combination of two ideas, namely, the variational principle 
and the Monte Carlo evaluation of integrals using importance 

sampling based on the Metropolis algorithm [2]. 
A series of papers have been presented to study the 

correlated wave functions and their effect on the calculated 
energies. U. Kleinekathöfer et.al [3] proposed a simple non-
variational wave function of the two-electron atoms. The 
electron-electron correlation described by an ansatz that has 
the correct behavior for ���  and ��� = 	∞ . An additional 
parameter calculated from a perturbation calculation to the 
ground-state energies for the helium like atoms with (�	 =
	1	– 	10 ) and illustrates the importance of asymptotic 
behavior and the correlation factor to the values of calculated 
energies. It is the first successful derivation of a non-
variational wave function for simple two-electron atoms and 
ions. Because of its simplicity and accuracy, this wave 
function should prove very useful for calculating the effect of 
the collective properties of two-electron systems. It should 
also be possible to extend this treatment to excited states, 
diatomic molecules and atom surface interactions. 

Hiroyuki Nakashima and Hiroshi Nakatsuji [4] solved the 
Schrödinger equation very accurately for the helium atom 
and its isoelectronic ions ( �	 = 	1	– 	10 ) with the free 
iterative complement interaction method followed by the 
variational principle. They obtained highly accurate wave 
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functions and energies of the helium atom and its 
isoelectronic ions. The calculated energy was correct over 
40-digit accuracy. 

C. Le Sech [5] developed simple analytic two variational 
parameters wave functions for the ground state of H−, He, 
Li+, Be2+ and B3+ atoms (ions). These functions fulfill the 
cusp conditions at the singularities of the Coulombic field 
and include the correct behavior for large inter-particle 
separations. These functions should be useful for the 
computation of the processes involving two-electron systems. 
A further improvement obtained by a term with a third 
parameter is added to the function, so that more accurate 
values for the obtained energies. 

D. Bressanini and G. Morosi [6] improved highly compact 
wave functions with a clear physical meaning for the He 
atom and He-like isoelectronic ion. The electron-nucleus and 
electron-electron (Jastrow factor) terms used to satisfy the 
correct asymptotic behavior for both short and long inter-
particle distances. Some parameters were chosen to satisfy 
exactly the cusp conditions. While the others optimized by 
VMC calculations. They tested the validity of the 
coalescence wave function approximation. The � -
dependence of the optimized parameters makes it possible to 
write a general form of the wave function, and by using � as 
an explicit parameter and four parameters independent of �. 
They checked the validity of this wave function on the case �	 = 	30. 

Rabeet Singh Chauhan and Manoj K. Harbola [7] modified 
Le Sech wave function, which gives very accurate total 
energies for He-like systems so that both the energies and the 
densities obtained from the modified wave function are 
relatively more accurate. An advantage of the method used in 
this work is its relative computational ease in comparison to 
the conventional variational method of Hylleraas using many 
parameters. The accuracy of the resulting densities implies 
that these can be used with confidence to perform 
fundamental density functional theory investigations. 

Ajit J. Thakkar and Toshikatsu Koga [8] reported 
variational calculations for the ground states of the helium 
atom and its isoelectronic ions H−, Li+… Ne8+. The 
calculations used generalized Kinoshita expansions with 
freely optimized, non-integer powers of the Hylleraas 
coordinates. One hundred-term expansion of this type leads 
to better energies than any other expansions in the literature 
with comparable numbers of terms. 

New functional kind has been proposed by Richard 
Habrovský [9], for helium-like atoms. These functions 
depend explicitly on interelectronic and hyperspherical 
coordinates. The ground state energy of the helium atom has 
been calculated using the variational method with a basis, 
including a single exponential parameter using 
hyperspherical coordinates. For the helium atom, the wave 
functions matched the Kato cusp conditions. The important 
feature of proposed wave functions is the inclusion of 

negative powers of � = 
��� + ���  in combination with 
positive powers of ���  into the wave function. He showed 
that this is a necessary condition for the proposed wave 
function to be a formal solution of the Schrödinger equation. 

In his work, he proposed a new ansatz wave function for the 
helium-like ion. The energy of the helium atom obtained with 
the use of hyper-radial coordinates showed that the wave 
functions are close to the exact solution of the Schrödinger 
equation. The remarkable property of these functions is the 
chosen expansion coefficient for the functions of the same 
type. It was shown in [10] a simple exponential of � 
describes the behavior of the wave functions fairly well in 
limit cases �� = 	0, �� = 	0	or ��� = 	0. 

An implementation of the Hartree–Fock (HF) method 
using a Laguerre-based wave function described by A. W. 
King, A. L. Baskerville, and H. Cox [11] to study the ground 
state of two-electron atoms in the fixed nucleus 
approximation, and by comparison with fully correlated 
energies, used to determine accurate electron correlation 
energies. A variational parameter included in the wave 
function rapidly increased the convergence of the energy. The 
one-electron integrals solved by a series solution and an 
analytical form found in the two-electron integrals. This 
method is used to produce accurate wave functions, energies 
and expectation values for the helium isoelectronic sequence 
and calculating the critical nuclear charge for binding two 
electrons within the HF approach. The wave functions are 
shown to provide accurate nucleus electron cusps and 
expectation values of the inter-particle distances for all 
systems considered. These HF energies calculated using a 
wave function that depends explicitly on the inter-electron 
distance, were used to calculate accurate correlation energies. 

Recently, asymptotic behavior of two-electron expectation 
values in two-electron excited states studied by Montgomery 
et.al [12]. Also, Jing Li et.al [13] compared many-body 
approaches against the helium atom exact solution. 
Moreover, Mohammad Mostafanejad [14] reviewed the 
fundamental ideas of the free complement method through its 
application on both ground and first excited states of the 
helium atom. 

For many-electron atoms, many researchers studied the 
effect of confinement by impenetrable as well as non-
impenetrable spherical boxes. Most of the studies have 
considered the case of the helium atom as the simplest few-
body system to study electron correlation effects as a 
function of the cavity dimension into which they embedded. 
The effect of confinement on the electron correlation arises 
due to the Coulomb interaction between the two electrons. 
Methods such as the variational method, self-consistent, 
configuration interaction (CI) and quantum Monte Carlo 
(QMC) methods have also been used to study the properties 
of the helium atom and its ions confined in an impenetrable 
spherical box. 

An important study has been presented to calculate the 
compression effects in helium-like atoms (� = 1 − 5) 
constrained by hard spherical walls [15]. X. Wen-Fang [16] 
presented a description of the helium atom under spherical 
parabolic confinement potential using the adiabatic 
hyperspherical approach method. The obtained results proved 
that the energies of a spherical parabolic well are in good 
agreement with those of an impenetrable spherical box for 
the larger confined potential radius. 
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C. Laughlin and S. I. Chu [17] used Hylleraas-type basis 
functions, which include the interelectronic distance ��� , to 
perform accurate calculations for the ground-state energies of 
a helium atom confined in the center of a spherical cavity in 
both cases penetrable and impenetrable cavities. In the case 
of strong confinement of helium atom embedded in a 
spherical box with impenetrable walls [18], the time-
independent Schrödinger equation was solved using first-
order Rayleigh–Schrödinger perturbation theory and then the 
calculations were extended using fifth-order variational 
perturbation theory. The results provided good alternative 
approaches for the calculation of the ground state energy for 
a strongly confined helium atom. 

Hartree-Fock method and Gaussian basis sets were used to 
calculate numerous calculations for atoms in penetrable and 
impenetrable walls. Mariano Rodriguez-Bautista et.al [19, 
20] used Roothaan’s approach to solve the Hartree-Fock 
equations for atoms confined by soft walls using the basis set 
with correct asymptotic behavior. Also, Toby D. Young et.al 
[21] used two different basis set methods to calculate atomic 
energy within the Hartree-Fock theory of the confined helium 
atom. 

Recent progress was reviewed by E. Ley-Koo [22] in the 
field of confined atoms and molecules. Jacob Katriel et.al 
[23] revised singly-excited and singlet-triplet pairs of states 
of two-electron spherically symmetric systems that are 
degenerate in the absence of inter-electronic repulsion. Also, 
they studied the two-electron quantum dot confined by either 
a harmonic potential or by an infinite spherical well. 
Furthermore, Álvaro Luzón et.al [24] studied the first excited 
states of the helium atom confined under impenetrable 
spherical walls. Also, Michael-Adán et.al [25] studied spatial 
confinements that induce localization or delocalization on the 
electron density in atoms and molecules. They examined the 
Shannon entropy in configuration space for the hydrogen 
atom submitted to different potentials: infinite potential, 
Coulomb potential, harmonic oscillator, constant potential 
and dielectric continuum. 

Moreover, many research groups have added to the 
understanding of atomic and molecular systems in strong 
magnetic fields by applying different HF methods, density 
functional theory, and CI calculations. X. Wang et.al [26] 
applied approximate expansions of Gaussian-type functions 
of ��� to replace the integer and half-integer powers of ��� in 
Hylleraas-Gaussian basis and used a full (CI) method to 
calculate the energies of a helium atom in magnetic fields 
between 0 and 100 �. �. Most of their results were improved 
at 10�� order in precision compared to the results of the full 
CI method with a Gaussian basis or with incomplete 
Hylleraas-Gaussian basis, when the electrons restricted to a 
small spatial extent in a strong magnetic field. 

S. Boblest et.al [27] used the combination of a two-
dimensional HF method and a diffusion QMC method for a 
thorough investigation of the ground state configurations of 
all atoms and ions with � = 2 − 10 except for hydrogen-like 
systems in strong magnetic fields. They obtained the most 
comprehensive data set of ground-state configurations as a 
function of the magnetic field strength to analyze and 

compare the properties of systems with different core 
charges. 

Accurate theoretical and experimental methods are used to 
investigate the behavior of atoms in a strong magnetic field. 
Wuming Zhu and S. B. Trickey [28] used anisotropic 
Gaussian type orbital basis functions to calculate H through 
C (1 ≤ Z ≤ 6) and ions Li+, Be+ and B+ in a wide of magnetic 
field (B) range (0 ≤ B ≤ 2000 a.u.) which showed an 
accuracy better than single-electron basis sets. Abdullah 
Zafar et.al [29] used active laser spectroscopy to make high-
resolution magnetic field measurements in hydrogen and 
helium plasmas. 

S. B. Doma et.al [30] used the VMC method to calculate 
the ground state of the helium atom as well as the ground 
state of hydrogen negative ion in the presence of a magnetic 
field regime between 0	a.u. and 10 a.u. They used two types 
of compact and accurate trial wave functions. The results are 
in good agreement with the exact values. Also, Doma and El-
Gammal [31] presented a study for helium, Li+ and Be2+ ions 
under the compression effect of a spherical box. They used 
optimized wave function with five variational parameters. 
Furthermore, they investigated the total energies of the 
excited states of the helium atom in a strong magnetic field, 
taking into account the point of transition from the ground 
state to the excited states [32]. Moreover, S. B. Doma et.al 
[33] used the VMC technique to study the lithium atom and 
its like ions up to �	 = 	10 in the presence of a magnetic 
field. The calculations for the ground and some excited states 
performed for magnetic field strengths ranging from zero up 
to 100  a.u. Most of their work depended on the Jastrow 
correlation wave function to consider the electron-electron 
interaction. 

However, it is always required to find a way to simplify 
the calculations. Therefore, the purpose of this paper is to 
solve the Schrödinger equation for two-electron atoms by 
using different correlation functions to investigate the ground 
state energy of helium and helium-like ions and the low-lying 
excited states of the helium atom. Furthermore, we study the 
confinement effect of the helium atom by impenetrable as 
well as non-impenetrable spherical boxes. Moreover, we 
investigate the helium atom in a strong magnetic field. The 
method and the technique of the variational Monte Carlo 
were described well in [34]. 

2. Hamiltonian 

The Hamiltonian operator for helium like atoms in atomic 
units, when the nucleus is assumed to be with infinite mass, 
is given by 

� = ��
� ∑ ∇������ −∑ �

 ! + �
 "#

����                   (1) 

where �  is the atomic number, �� = |%�|  is the distance 
between the &'( electron and the nucleus, ��� is the distance 
between the two electrons and ∇�� is the Laplacian operator of 
the &'( electron. In Hylleraas coordinates, (1) can be written 
as follows 
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3. The Trial Wave Functions for the 

Ground State of Helium and  

Helium-Like Ions 

Our calculations for the ground-state of helium and its 
isoelectronic ions are based on using total trial wave function 
consists of correlation function multiplied by spin function 
and orbital function, taken from Slater determinant for the 
ground state of the two-electron atom. Since the Hamiltonian 
operator (2) does not depend on the spin of the two electrons 
we are interested only on the orbital part of the trial wave 
function, which is given by 

Ψ> = ?(��, ��)@(���)                            (3) 

where 

?(��, ��) = 4ABC 9 D�A( "E #)                    (4) 

The atomic number � is replaced in (4) by F which is used 
here as a variational parameter and is called the effective 
nuclear charge. For function @(���) , we present different 
types of correlation functions. The first of which is given 
simply by 

@�(���) = DG "#                                  (5) 

The second is the Jastrow correlation function [35] given 
by 

@�(���) = D H"#I("JKH"#)                            (6) 

The third is the well-known Hirschfelder correlation 
function [36] 

@L(���) = 1 + �
M ���D�N "#                          (7) 

And finally, the fourth is the U. Kleinekathöfer et.al 
correlation function [3] given by 

@�(���) = 1 − OPQH"#
�EMR                                  (8) 

In the above functions S, T, U  and V  are non-linear 
variational parameters. The parameter W  helps in satisfying 
Kato-cusp condition [34], which equals 2  for unlike spins 
and 4 for like spins. 

4. The Trial Wave Functions for the  

Low-Lying Excited States of Helium 

In this section, we present the trial wave functions for the 
lowest four excited states, corresponding to the 
configurations 1s2s and 1s2p. 

a. For the lowest ortho (space-antisymmetric) state 23S, 
corresponding to the configuration 1s2s, we consider 
the following simple trial wave function 

Ψ�BY(��, ��) = Z[?�7(��)?�7(��) − ?�7(��)?�7(��)\@(���)                                                 (9) 

b. The state 21S is a para (space-symmetric) state corresponding to the configuration 1s2s and its trial wave function is, 
then, of the form 

Ψ�"Y(��, ��) = Z[?�7(��)?�7(��) + ?�7(��)?�7(��)\@(���)                                               (10) 

c. For the 21P state, which is the lowest para-state corresponding to the configuration 1s2p, we consider the trial wave 
function 

Ψ�"](��, ��) = Z^?�7(��)?�_`(��) + ?�7(��)?�_`(��)a@(���)                                        (11) 

d. For the 23P state, which is the lowest ortho state corresponding to the configuration 1s2p, the trial wave function takes 
the form 

Ψ�B](��, ��) = Z^?�7(��)?�_`(��) − ?�7(��)?�_`(��)a@(���)                                         (12) 

where ?�7(�) = exp(−Fe�)                                                   (13) 
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?�7(�) = (1 − F��/2)exp(−F��/2)                (14) 

?�_`(�) = �exp(− F�� 2⁄ )h�,`(,, i) ,j = 0,±1 (15) 

In the above equations Fe	�.l	F�  are variational 
parameters and Z is the normalization constant. @(���) is the 
correlation wave function as described in equations from (5) 
to (8), with the same variational parameters. 

5. The Hamiltonian and Trial Wave 

Function for Confined Helium Atom 

and Ions 

In this section, we study the helium atom under 
compression effects using the VMC method by using an 
impenetrable spherical box. Also, we will extend our 
calculations to include some helium like ions, namely: Li+ 
and Be2+. The non-relativistic Schrödinger equation for 
confined two-electron helium-like systems with nuclear 
charge � can be written as (in atomic units) [37] 

�m = − �
�∑ ∇���n�� − �

 " − �
 # + �

 "# + o56;p(��, ��).   (16) 

where the confining potential o56;p(��, ��)  is due to an 
impenetrable spherical box of radius �5  and is given by 

o56;p(��, ��) = q 0, 	��, �� < �5∞, 	��, �� ≥ �5 	                      (17) 

Our goal now is to solve the eigenvalue problem 

�mΨm = t56;pΨm                                         (18) 

for the lowest eigenvalue, t56;p, by using the following trial 
wave function 

Ψm = 4ABC 9 D�A( "E #)@(���) 41 −  "#
 u#9 41 −

 ##
 u#9        (19) 

where @(���) is the Jastrow correlation wave function and the 
presence of the cutoff factor 

v1 − ����5�wv1 −
����5�w 

is to guarantee that the boundary conditions Ψm = 0  at �� = �5  or �� = �5  are satisfied [31]. 

6. The Hamiltonian and Trial Wave 

Function for the Helium Atom in 

Strong Magnetic Field 

In this section, we assume that the nuclear mass is infinite, 
and the magnetic field is oriented along the F −axis. Hence, 
the non-relativistic Hamiltonian �xyz for the helium tom in a 
homogeneous magnetic field can be written as [30]: 

�xyz = − �
�∑ ∇���n�� − �

 " − �
 # + �

 "# + �
{|�}� + ~(��E���)

� . (20) 

where | is the strength of the magnetic field in atomic units, }� = (��� + ���) + (��� + ���) , �A  is the F -component of the 
total spin, �A  is the F -component of the total angular 

momentum, 
~#�#
{  is the diamagnetic term, 

~
� �A is the Zeeman 

term and |�A represents the spin Zeeman term. 
For the ground state of helium �A = 0 and �A = 0, and the 

proposed trial wave function is presented as follows 

Ψxyz = 4ABC 9 D�A( "E #)D��
�
���"#E�##�@(���)           (21) 

where D������"#E�##�  is the lowest Landau orbital wave 
function with � as a variational parameter. 

7. Results 

7.1. The Ground State of Helium 

The results of calculating the ground state energies of the 
helium and helium like ions by using the first trial wave 
function showed that the best value of the energy obtained 
for (F = � − 0.14) and (S = 0.26). 

The variation of the ground state energy of helium with 
respect to the two variational parameters F and S of the first 
trial wave function is shown in Figure 1. 

 

Figure 1. Variation of the ground state energy of helium with respect to the 

variational parameters by using the first trial wave function. Energy on �-

axis, S on �-axis and the parameter F on the h-axis. 

In Table 1 we present the values of the parameters of the 
2nd, 3rd and 4th trial wave functions for which the best values 
of the ground state energy of helium and helium-like ions 
obtained. (F = � − 0.1564). 
Table 1. The best values of the parameters for helium and helium-like ions 

using 2nd, 3rd and 4th trial wave functions. 

Z z β µ λ 

1 0.8436 0.17 −0.03 −0.05 
2 1.8436 0.35 0.11 0.22 
3 2.8436 0.52 0.23 0.50 
4 3.8436 0.62 0.35 0.60 
5 4.8436 0.75 0.50 0.90 
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Z z β µ λ 

6 5.8436 0.97 0.75 1.70 
7 6.8436 1.50 0.91 1.86 
8 7.8436 1.90 1.10 1.88 
9 8.8436 2.21 1.18 1.90 
10 9.8436 2.42 1.28 1.92 

In Table 2 we present the calculated energies (t ), in 
atomic units, and their associated standard deviation (�) for 
helium and helium-like ions using the four different trial 
wave functions. The corresponding exact energies are shown 
in this table. 

Table 2. Calculated energies (t), and standard deviation (�), compared with exact energies for helium and helium-like ions using the different correlation 

wave functions. 

� ��	(�.�. )� ��	(�.�. )� ��	(�.�. )� ��	(�.�. )� ��	(�.�. ) 
1 

−0.506800 −0.527689 −0.508988 −0.508972 
−0.527751 

1.60×10-5 1.60×10-5 1.50×10-5 1.50×10-5 

2 
−2.889717 −2.903591 −2.890321 −2.890372 

−2.903724 
4.10×10-5 3.70×10-5 3.70×10-5 3.70×10-5 

3 
−7.266911 −7.279808 −7.267239 −7.267313 

−7.279913 
6.60×10-5 5.80×10-5 5.90×10-5 5.90×10-5 

4 
−13.642842 −13.655489 −13.642899 −13.642705 

−13.655566 
9.10×10-5 8.20×10-5 8.10×10-5 8.40×10-5 

5 
−22.018364 −22.030883 −22.018444 −22.018612 

−22.030972 
1.16×10-4 1.04×10-4 1.03×10-4 1.05×10-4 

6 
−32.394005 −32.406193 −32.393139 −32.393543 

−32.406247 
1.41×10-4 1.25×10-4 1.22×10-4 1.20×10-4 

7 
−44.768887 −44.780988 −44.768593 −44.769543 

−44.781445 
1.65×10-4 1.41×10-4 1.43×10-4 1.45×10-4 

8 
−59.144550 −59.155899 −59.143051 −59.144581 

−59.156595 
1.89×10-4 1.58×10-4 1.64×10-4 1.69×10-4 

9 
−75.519073 −75.531621 −75.519440 −75.520035 

−75.531712 
2.17×10-4 1.79×10-4 1.87×10-4 1.95×10-4 

10 
−93.894539 −93.906744 −93.894531 −93.895332 

−93.906807 
2.38×10-4 1.98×10-4 2.10×10-4 2.23×10-4 

1. Using 1st correlation. 2. Using 2nd correlation. 3. Using 3rd correlation. 4. Using 4th correlation. 5. Exact values [8]. 

In Figure 2 we present the variation of the ground state 
energy of helium with respect to the two variational 
parameters F and T, by using the second trial wave function. 

 

Figure 2. Variation of the ground state energy of helium with respect to the 

variational parameters, using the second trial wave function. Energy on �-

axis, T on �-axis and the parameter F- on h-axis. 

In Figure 3 we present the variation of the ground state 
energy of helium with respect to the parameters F and U, by 
using the third trial wave function. 

 

Figure 3. Variation of the ground state energy of helium with respect to the 

variational parameters, using the third trial wave function. Energy on �-

axis, U on �-axis and the parameter F on h-axis. 

The variation of the ground state energy of helium with 
respect to the two variational parameters F and V of the fourth 
trial wave function is shown in Figure 4. 

7.2. The Low-Lying Excited States of Helium 

Using the trial wave functions for the excited states of 
helium, we find that Fe = 2 , so that the effective nuclear 
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charge is constant for all the excited states. This is may be 
due to the fact that one of the two electrons is in the 1s state 
and the other electron is at a higher level. The values of the 

variational parameters F�, S, T, U and V are given in Table 3. 

 

Figure 4. Variation of the ground state energy of the helium atom with respect to the variational parameters, using the fourth trial wave function. Energy on �-

axis, V on �-axis and the parameter F on h-axis. 

 

Figure 5. Variation of the energy of the state 23S with respect to the variational parameters, using the first trial wave function. Energy on �-axis, V on �-axis 

and F on h-axis. 

Table 3. The best values of the variational parameters for the low-lying excited states of helium using the four trial wave functions. 

State �� � � � � 

23S 1.620 0.10 0.30 0.100 0.300 
21S 0.865 0.04 0.65 0.178 0.535 
21P 1.000 0.03 1.00 0.200 0.690 
23P 1.200 0.01 0.40 0.100 0.300 



49 Salah Badawi Doma et al.:  Applications of the Variational Quantum Monte Carlo Method to the Two-Electron Atoms  
 

The resulting values of the energies of the low-lying excited states of helium are given in Table 4. 

Table 4. Calculated energies (t) with standard deviation (�) compared with exact energies for the low-lying excited states of helium using the different trial 
wave functions. 

State �� ( . ¡.)	� �� ( . ¡.)	� �� ( . ¡.)	� �� ( . ¡.)	� �� ( . ¡.) 
23S 

−2.168946 −2.168902 −2.168500 −2.168533 − 2.1750051 
1.6×10-5 1.5×10-5 1.6×10-5 1.7×10-5 − 2.1752293763 

21S 
−2.145346 −2.145965 −2.145213 −2.145255 

−2.1460 
2.4×10-5 2.0×10-5 2.1×10-5 2.0×10-5 

21P 
−2.122766 −2.123401 −2.12248 −2.123371 − 2.1238431 
8.0×10-6 4.0×10-6 5.0×10-6 4.0×10-6 − 2.123842897 

23P 
−2.130310 −2.131621 −2.131104 −2.131477 − 2.1331646 
8.0×10-6 5.0×10-6 6.0×10-6 5.0×10-6 − 2.133164074 

1. Using 1st correlation. 2. Using 2nd correlation. 3. Using 3rd correlation. 4. Using 4th correlation. 5. Best values [38]. 

For the dependence of the excited state energies of helium 
on the used trial wave functions, we present only the case of 
the first excited state. Accordingly, we present in Figures 5-8 

the variations of the energy of the state 23S with respect to 
the parameters, by using the four trial wave functions, 
respectively. The other three cases are similar. 

 

Figure 6. Variation of the energy of the state 23S with respect to the variational parameters, by using the second trial wave function. Energy on �-axis, T on �-

axis and the parameter F� on h-axis. 

 

Figure 7. Variation of the energy of the state 23S with respect to the variational parameters, by using the third trial wave function. Energy on �-axis, U on �-

axis and the parameter F� on h-axis. 
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Figure 8. Variation of the energy of the state 23S with respect to the variational parameters, by using the fourth trial wave function. Energy on �-axis, V on �-

axis and the parameter F� on h-axis. 

7.3. The Ground State of the Confined Helium Atom and 

Ions 

In this section, we present the results of applying the VMC 
method to the case of the confined helium atom. The ground 
state of the confined helium atom, Li+ and Be2+ were 
calculated for different values of the radius �5 . All energies 
obtained in atomic units with a set of 10{ Monte Carlo points 
to make the statistical error as low as possible. 

In Table 5 we present the results obtained for the ground 
state of the confined helium atom (� = 2) together with the 
corresponding results available in previous works. The 
obtained energies calculated for a wide range of values of �5 . 
In Table 6 we present the energies of the ground state of the 
confined Li+ as functions of the spherical box radius. Finally, 
in Table 7 we present the resulting energies of the ground 
state of the confined Be2+ as functions of the spherical box 
radius. It seen from these tables that the small values of the 
spherical box radius �5  describe the case of strong 
confinement where for large values, �5 ≥ 3.5 , the 
compression effect becomes not noticeable and the energy is 
nearly stable and approaches to the corresponding exact 
value. Our results are in good agreement, in comparison, with 
previous data. As the atoms are compressed, they become 
constrained in a diminishing spherical box so that according 
to the quantum mechanical uncertainty principle, the 
electrons increase their momentum and thereby leading to a 
net gathering of kinetic energy. When the increase in the 
confinement kinetic energy becomes predominant and cannot 
be compensated by the increase of the Coulomb attractive 
energy, the energies of the confined helium atom increase. 

Table 5. Energies of the ground state of the confined helium atom as 

functions of the spherical box radius. All values are in atomic units. 

%¢ Present work [15] [39] [17] 

0.5 22.7411 22.7413 22.7437 22.741303 

0.6 13.3181 13.3182 13.3204 13.318127 

%¢ Present work [15] [39] [17] 

0.8 4.6102 4.6104 4.6125 4.610408 

1.2 −0.7087 −0.7088 −0.7070 −0.708802 

1.4 −1.6172 −1.6173 −1.6156 −1.617330 

1.8 −2.4226 −2.4245 −2.4230 - 

2.5 −2.8111 −2.8078 - - 

3.5 −2.8919 −2.8936 - - 

4 −2.8987 −2.9004 −2.8988 −2.900534 

5 −2.9033 −2.9034 −2.9020 −2.903408 

6 −2.9035 −2.9037 −2.9024 −2.903650 

Table 6. Energies for the ground state of the confined Li+ as functions of the 

spherical box radius. All values are in atomic units. 

%¢ Present work [15] [39] 

0.5 11.76771 11.7768 11.7790 

0.6 3.9934290 3.9262 3.9284 

0.8 −2.893898 −2.8632 −2.8612 

1.2 −6.407358 −6.4065 −6.4047 

1.4 −6.855290 −6.8732 −6.8713 

1.8 −7.192726 −7.1906 −7.1880 

2.5 −7.358839 −7.2740 - 

3.5 −7.280496 −7.2798 - 

4 −7.27923 −7.2799 −7.2783 

5 −7.279204 −7.2799 −7.2784 

6 −7.279143 −7.2799 −7.2784 

Table 7. Energies for the ground state of the confined Be2+ as functions of 

the spherical box radius. All numbers are in atomic units. 

%¢ Present work [15] [39] 

0.5 0.10801980 0.1056 0.1078 

0.6 −6.288159 −6.2423 −6.2402 

0.8 −11.26839 −11.2679 −11.2658 

1.2 −13.36396 −13.3733 −13.3701 

1.4 −13.556580 −13.5590 −13.5552 

1.8 −13.63929 −13.6449 −13.6415 

2.5 −13.65413 −13.6553 - 
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%¢ Present work [15] [39] 

3.5 −13.65678 −13.6555 - 

4 −13.6514 −13.6555 −13.6539 

5 −13.657630 −13.6555 −13.6519 

6 −13.65711 −13.6555 −13.6539 

It can be concluded that our results for helium ions (Z=3, 
4) for all values of �5  exhibit good accuracy comparing with 
the other data. When the nuclear charge increase, the 
Coulomb attraction between the nucleus and the electron 
becomes stronger, which keeps the electrons moving ever 
closer to the nucleus and then lead to a more compact atom. 
The rate of energy increases speeds up as the nuclear charge 
of the atom increase. 

7.4. The Ground State of Helium Atom in a Strong 

Magnetic Field 

The VMC method is employed to calculate the ground-
state energies of the helium atom in a magnetic field regime 
between 0 − 100	�. � . Our consideration focused on the 
ground state of the helium atom by using the four trial wave 
functions. All energies are obtained in atomic units, with a 
set of 10{  Monte Carlo integration points to make the 
statistical error as low as possible. Table 8 shows the 
calculated energies for some magnetic field strength between 0 − 100	�. � using the four trial wave functions. 

 

Table 8. Calculated energies (t) with standard deviation (�) for the ground state of helium in a strong magnetic field by using the four trial wave functions. 
Previous results [26]. and [40] are also shown. 

£	(�. �. ) ��	(�.�. )� ��	(�.�. )� ��	(�.�. )� ��	(�.�. )� ��	(�.�. ) �¤	(�.�. ) 
0 

−2.889717 −2.890321 −2.890321 −2.890372 
−2.9037155 −2.903473 

4.10×10-5 3.70×10-5 3.70×10-5 3.70×10-5 

1 
−2.720316 −2.723862 −2.723657 −2.723412 

−2.7302745 −2.730015 
3.70×10-5 2.70×10-5 2.80×10-5 2.70×10-5 

2 
−2.320803 −2.321350 −2.325323 −2.326035 

−2.3305260 −2.330270 
4.00×10-5 2.60×10-5 2.90×10-5 2.70×10-5 

5 
−0.552179 −0.564582 −0.564437 −0.565329 

−0.5757384 −0.575411 
5.70×10-5 3.70×10-5 3.80×10-5 3.70×10-5 

10 
3.104873 3.100894 3.093419 3.092997 

3.0636900 3.064202 
9.90×10-5 7.50×10-5 8.50×10-5 8.20×10-5 

20 
11.351747 11.335456 11.328710 11.332875 

11.2660889 11.266617 
1.78×10-4 1.38×10-4 1.53×10-4 1.51×10-4 

50 
38.271343 38.231319 38.245316 38.232738 

38.0754859 38.07607 
3.56×10-4 3.82×10-4 3.41×10-4 4.15×10-4 

100 
85.203957 85.176094 85.213577 85.193115 

84.9176979 84.918049 
7.27×10-4 6.78×10-4 5.64×10-4 6.41×10-4 

1. Using 1st correlation. 2. Using 2nd correlation. 3. Using 3rd correlation. 4. Using 4th correlation. 5. Previous results [26]. 6. Previous results [40]. 

8. Conclusions 

The trial wave function for the ground state of the helium 
atom and helium like ions, which considers the cusp 
conditions, gives results in excellent agreement with the 
corresponding exact values. 

The obtained excited state energies of helium, by using the 
second trial wave function, are also in good agreement with 
the previous results. 

For the excited states of helium, when the two electrons 
are located in different shells, the electron in the 1- orbit is 
affected by the nucleus charge so that the parameter Fe  is 
equal to �  (nuclear charge), while the F�  parameter of the 
other electron is considered to be a variational parameter. 

The VMC method was employed to study the helium atom 
when it is compressed by a spherical box, for various values 
of the spherical box radii. In the case of small values of �5 , 
which describes the strong compression, as well as the case 
of large values of �5 , the calculated energies for both helium 
and its isoelectronic ions Li+ and Be2+ are also in good 
agreement with the previous results. 

The obtained energies of the helium atom in a strong 

magnetic field, by using our trial wave functions, are in good 
agreement with the best values, calculated in previous studies 
for helium in a strong magnetic field. 
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