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Abstract: We employ the parametric generalization of Nikiforov-Uvarov method to obtain the bound state solutions the 

relativistic Klein-Gordon equation under equal scalar and vector modified Scarf II potential. The energy eigenvalues and the 

corresponding wave functions expressed in term of Jacobi polynomial are equally obtained. Our results will have many 

applications in many branches of physics especially nuclear physics where it could be used in describing nuclei 

interactions .For further guide to interested readers, we have also provided numerical data which discuses the energy spectra. 
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1. Introduction 

It is a well known fact that when a particle is in a strong 

potential field, the relativistic effect must be considered, 

leading to the relativistic quantum mechanical description of 

such particle [1-5].  In the relativistic limit, the particle 

motions are commonly described using either the Klein-

Gordon equation or the Dirac equation [1, 3] depending on 

the spin character of the particle.  The spin-zero particles for 

example, the mesons are described by the Klein-Gordon 

equation. On the other hand, the half integral spin particles 

such as electron are described satisfactorily by the Dirac 

equation. One of the interesting problems in nuclear and high 

energy physics is to obtain exact or approximate solutions of 

the Klein-Gordon and Dirac equations.  In recent years, many 

studies have been carried out to explore the relativistic 

energy eigenvalues and the corresponding wave functions of 

the Klein-Gordon and Dirac equations [6-9]. These 

relativistic equations contain two objects: the vector potential ���� and the scalar potential����. 

The Klein-Gordon equation with the vector and scalar 

potentials can be written as follows 

�− �	 

� − �����
 − ∇
 + ����� + ��
� ���, �, �� = 0    (1) 

where � is the rest mass, 	 

� = � is the energy eigenvalues, ����  and ����  are the vector and scalar potentials 

respectively.  Many researchers have studied the bound states 

of the Klein-Gordon and the Dirac equation with mixed 

potentials by assuming equal scalar and vector potentials.  

For example, these investigations have employed Woods-

Saxon potential [10], Hartmann potential [11], anharmonic 

oscillator potential [2], ring shape pseudoharmonic potential 

[12], Kratzer potential [13, 14] and Poschl-Teller and Rosen 

Morse potential [15].  Different methods such as the 

asymptotic iteration method (AIM) [16], supermmetry 

quantum mechanics [17], Nikiforov-Uvarov (NU) method 

[10, 18] and others have been used to solve the differential 

equations arising from these considerations. 

However, exact analytical solutions of the Klein-Gordon 

equations are possible only in the s-wave case with the 

angular momentum quantum number � = 0 for some typical 

exponential type potential models [19].  Conversely, 

when  � ≠ 0 , one can only solve approximately the Klein-

Gordon equation and the Dirac equation for some potentials 

using a suitable approximation scheme [20]. 

The bound state energy spectra and the corresponding 

wave functions for the scarf – type potential have been 

investigated by a variety of method. The main aim of this 

paper is to obtain the energy eigenvalues and corresponding 

wave functions of the Klein-Gordon equation with modified 

Scarf II potential using a new improved approximation 

scheme [21] to deal with the centrifugal term under the frame 

work of  Nikiforov-Uvarov method. This potential has many 

applications in nuclear physics and in describing nuclei 

interactions. 
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2. Nikiforov-Uvarov Method and its 

Parametric Form 

The Nikiforov-Uvarov method (NU) [22] was proposed to 

solve the second order linear differential equation by 

reducing it to a generalized hypergeometric-type of the form  

 ������ + ��� �!� � ���"� + !#� �!$� � ���� = 0,              (2) 

where the prime denote the differentiation with respect 

to �, %��� &'( %���� are polynomials at most second degree, )*��� is a first degree  polynomial.  In order to find the exact 

solution to equation (2), we set the wave function as   

��"� = +���,���                                        (3) 

Substituting Eq. (3) into Eq. (2) reduces Eq. (2) into a 

hypergeometric type equation  

%���,-����� + )���,-� ��� + .,-��� = 0                 (4) 

where the wave function +���  is defined as a logarithmic 

derivative in the following forms and its solutions can be 

obtained from  

/0� �1� � = 2� �!� �                                (5) 

where 3��� is at most first-degree polynomials. 

The other part ,���  is the hypegeometric type function 

whose polynomial solutions are given by the Rodriques 

relation 

,-��� = 456� � 75
7 5 8%-���9���:                     (6) 

where ;-  is the normalization constant and the weight 

function 9��� satisfy the condition  

77 <%���9���= = )���9���                            (7) 

The required 3��� and . for the NU method are defined as 

3��� = !0� �>��
 ± @A!0� �0>��
 B
 − %���� + C%���              (8) 

and  

. = C + 3����                             (9) 

respectively. Therefore, the determination of C in Eq. (8) is 

the necessary condition in the calculation of 3��� for which 

the determinant of the square root in Eq. (8) is set to zero. 

The eigenvalues equation defined in Eq. (9) takes the form 

. = .- = −' 7�7 − D
 '�' − 1� 7$!7 $ , ' = 0, 1, 2 …                (10) 

where  

)��� = )*��� + 23���                                    (11) 

and its derivative is negative which in the necessary 

condition for bound state solutions.  The energy eigenvalues 

equation is obtained by comparing Eqs. (9)  and (10). 

Now, in order to clarify the parametric generalization of 

the NU method [23], let us take the following Schrödinger 

like equation written for any potential: 

������ + HI>H$  �D>HJ � ����� + D $�D>HJ �$ 8−KD�
 + K
� − KL:���� = 0. (12) 

Comparing Eq. (12) with Eq. (2), we obtain the following 

parametric polynomials. 

)*��� = MD − M
�, %��� =  ��1 − ML��, %���� = −KD�
 + K
� − KL  (13) 

Substituting Eqs. (13) into Eq. (8), we obtain  

3��� = MN − MO� ± 8�MP − MLC±��
�MQ+C±�� + MR:I$   (14) 

where 

MN = 12 �1 − MD�, MO = 12 �M
 − 2ML�, MP = MO
 + KD  
MQ = 2MNMO − K
, MR = MN
 + KL                        (15) 

We obtain the parametric C±  from the condition that the 

function under the square root should be the square of a 

polynomial,  

C± = −�MQ + 2MLMR� ± 2SMRMT                         (16) 

where MT = MLMQ + ML
MR + MP . The function 3���  in Eq. (4) 

becomes  

3��� = MN + MO� − U<SMT + MLSMR=� − SMRV         (17) 

for the negative C>value, we have 

C> = −�MQ + 2MLMR� − 2SMRMT                      (18) 

thus, from the relation  )��� = )*��� + 23���, we have  

)��� = MD + 2MN − �M
 − 2MO�� − 2U<SMT + MLSMR=� − SMRV. (19) 

Thus the necessary condition for the bound state solution 

is imposed by the relation, 

'τ ��� = −2ML − 2U<SMT + MLSMR=V < 0.                  (20) 

Equating Eq. (9) with Eq. (10) and making use of Eqs. (13), 

(17), (18) and (20) we obtain the parametric energy 

eigenvalue equation for potential under consideration as 

�M
 − ML�' + ML'
 − �2' + 1�MO + �2' + 1�USMT +M3M8+M7+2M3M8+2M8M9=0       (21) 

the weight function 9��� is obtain as 

9��� = �HI]�1 − ML��HII               (22) 

and together with Eq. (6), we obtain 

,-��� = 9-�HI],HII��1 − 2ML��, MD^ > 1, MDD > −1 ,    (23) 

where 
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MD^ = MD + 2MN + 2SMR                               (24) 

MDD = 1 − MD − 2MN + 
HJ SMT                        (25) 

and -̀�a,b��1 − 2ML�� are the Jacobi polynomials. Also, the 

second part of the wave functions can be found from Eq. (5) 

as 

+��� = �HI$�1 − ML��HIJ , MD
 > 0, MDL > 0,       (26) 

where 

MD
 = MN + SMR                                  (27) 

MDL = − − MN + DHJ <SMT − MO=                      (28) 

Hence, the wave function has the form  

�-��� = c-�HI$�1 − ML��HIJ -̀�HI],HII��1 − 2ML��       (29) 

where c- is the normalization constant. 

3. Factorization Method for Klein-

Gordon Equation 

The three dimensional Klein-Gordon equation with the 

mixed vector and scalar potentials can be written as [24] 

8∇
 + ����� − ��
 − ����� + ��
:���, �, �� = 0,      (30) 

where � is the rest mass, � is the relativistic energy, ����and ���� are the scalar and vector potentials respectively. ∇
  is 

the Laplace operator, M  is the speed of light and ħ  is the 

reduced planck’s  constant which have  been set to unity.  In 

spherical coordinates, the Klein-Gordon equation for a 

particle in the present of a modified Scarf II potential ���� 

becomes 

e Df$ 

f + A�
 

fB + Df$ ghi j 

j Asin � 

fB + Df$ ghi$ j 
$

n$ −2���+���+           �2�+�2�+�2−�2��, �, �=0                          

(31) 

If one assigns the corresponding spherical total wave 

function as  

���, �, �� = o�f�f p��, ��                     (32) 

Where 

p��, �� = q���r���                          (33) 

Thus, the wave function in Eq. (31) is separated into 

variables and the following set of equations are obtained 

7$o�f�7f$ + e�
 − �
 − 2<����� + �����= + �
��� +�
��� − sf$t u��� = 0,                             (34) 

7$v�j�7j$ + cot � 7v�j�7j + e. − z$
ghi$ jt q��� = 0                (35) 

7${�n�7n$ + |
r��� = 0                                 (36) 

where |
 and  . = ��� + 1� are the separation constants. 

The solutions of equation (35) and (36) are well known 

[25]. 

4. Solutions of the Radial Klein-Gordon 

Equation 

The modified scarf II potential is defined in the form [26]   

���� = − D
 A}
 + ~
 − D
B sech
 �� + D
 �}
 − ~
� tanh
 ��  (37) 

where }, ~  are potential parameters and �  is range of the 

potential.  We have shown in Fig.1 and Fig. 2, the plot of the 

Scarf II potential as a function of r for � = 1,2,3,4, ~ =0.25, } = 0.1 and � = 1,2,3,4, ~ = 0.9, } = 0.1 respectively. 

The radial equation of the Klein-Gordon equation for the 

special case ���� = ���� is obtained as 

7$o�f�7f$ + e�
 − �
 + D
 A}
 + ~
 − D
B �� + �� sech
 �� −�� + ���}
 −   ~
� tanh
 �� − sf$t u��� = 0.              (38) 

 

Fig. 1. Graph of modified  Scarf II potential as a function of r for various values of α= 1, 2, 3 and 4 with β=0.25 and ϒ=0.1. 

Equation (38) cannot be solved analytically because of the 

centrifugal term. We now use the new improved 

approximation scheme [21] for the centrifugal term as 
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Df$ ≈ 4�
 eM� + ��$��
�D>��$���$t = 4�
 eM� + DNghi�$ �ft       (39) 

where M� = DD
 is an arbitrary dimensionless constant.  In this 

study we set M� = 0, which reduces Eq. (39) to conventional 

approximation scheme [27]. 

Substituting Eq. (39) into Eq. (38), we obtain  

7$o�f�7f$ + e�
� + �D� sech
 �� − �
� tanh
 �� − �$����D�ghi�$ �ft u��� = 0, (40) 

where 

��
� = �
 − �
, �D� = �� + �� A}
 + ~
 − D
B�
� = �� + ���}
 − ~
� �        (41) 

 

Fig. 2. Graph of modified Scarf II potential as function of r for various values of α=1, 2, 3 and 4 with β=0.9 and ϒ=0.2. 

Introducing a new variable s = sinh
 �� and substituting 

into Eq. (40), we have the following hypergeometric equation, 

7$
7 $ + AI$� B �D� � 7o� �7 + D $�D� �$ 8−��
 + Λ
��
��
 − �
 +�2�−�2u�=0,           (42) 

where the following dimensionless quantities have been used 

in obtaining Eq. (42) 

−�
 = �$�
N�$ , �
 = �I�N�$ , Λ
 = �$�N�$ , �
 = ����D�N            (43) 

By comparing Eq. (42) with Eq. (12), we obtain the 

parameter set 

MD = 12 , M
 = −1, ML = −1 

KD = �
 +∧
, K
 = �
 − �
 + �
, KL = �
 

MN = 14 , MO = 12 , MP = 14 + �
 + Λ
 

MQ = 14 − �
 − �
 + �
 , MR = 116 + �
 

MT = 116 + �
 + Λ
, MD^ = 1 + 2� 116 + �
  
MDD = −2 + � 116 + �
 + Λ
,  MD
 = 14 + � 116 + �
 

MDL = DN − @ DDP + �
 + Λ
                    (44) 

Using Eqs.(14),(16) and (44),we  obtain the 3��� as 

3��� = D�
 N ±

��
��
�
���
�  @ DDP + �
 + Λ
 + @ DDP + �
¡ � + @ DDP + �


¢£� C� = − ADR − �
 + �
 − �
B + 2@A DDP + �
B A DDP + �
 + Λ
B
 @ DDP + �
 + Λ
 − @ DDP + �
¡ � − @ DDP + �


¢£� C> = − ADR − �
 + �
 − �
B − 2@A DDP + �
B A DDP + �
 + Λ
B

�                              (45) 

Also using Eq. (17), we find the following physical values 

3��� = D�
 N − � @ DDP + �
 + Λ
 − @ DDP + �
¡ � − @ DDP + �
�                                (46) 

Using Eqs. (18) and (44), we calculate the negative C> required for the  NU method as 
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C> = − ADR − �
 + �
 − �
B − 2@A DDP + �
B A DDP + �
 + Λ
B ,                                              (47) 

also using Eq. (20), we obtain ) ′��� as 

'τ ��� = −2 �@ DDP + �
 + Λ
 − @ DDP + �
 − 2� < 0                                               (48) 

which is the essential condition for bound state  solution. 

Using Eq. (21), we obtain the energy equation 

�
 = �
 + �
 + LR + '�' + 1� − �2' + 1� �@ DDP + �
 +∧
− @ DDP + �
� − 2@A DDP + �
B A DDP + �
 +∧
B           (49) 

Substituting Eq. (43) into (49), we obtain the energy eigenvalues of the system as 

�
� = −�D� �
 �A' + D
B  @�I��$ + �$��$ + DN − @DN + ��� + 1�¡ − '�' + 1� − LR −     ����D�N + D
 @A��� + 1� + DNB A�I��$ + �$��$ + DNB�        (50) 

Table 1. Bound state energy of modified Scarf II potential for m=1, β=0.1 

and } = 0.5. 

n l Energy level for α= 0.05 Energy level for α= 0.02 

0 0 -0.9988833719 -0.9998214143 

1 0 -0.9808632976 -0.9969601604 

2 0 -0.9532660434 -0.9926544837 

2 1 -0.9403772913 -0.9906754702 

3 0 -0.9153260356 -0.9868875282 

3 1 -0.8970545708 -0.9841738993 

3 2 -0.8759417654 -0.9810903687 

4 0 -0.8658498872 -0.9796363035 

4 1 -0.8414572273 -0.9761751685 

4 2 -0.8137558567 -0.9723369444 

4 3 -0.7824411338 -0.9681176407 

5 0 -0.8029842902 -0.9708712115 

5 1 -0.7712911982 -0.9666462166 

5 2 -0.7355115429 -0.9620351196 

5 3 -0.6951073549 -0.9570329614 

5 4 -0.6493503753 -0.9516342660 

The energy eigenvalues of this system is computed for 

m=1, , ~ = 0.1, } = 0.5 for various values of potential range � = 0.05 &'( 0.02  as presented in table 1. The weight 

function in Eq. (22) can be calculated as 

9��� = �D�
@ II¤�¥$�1 + ��>
@ II¤�¦$�∧$
                 (51) 

which gives the first part of the wave function in Eq. (3) as 

,-��� = -̀�D�
§,
¨��1 + 2��                            (52) 

where 

© = � 116 + �
 &'( ª = −� 116 + �
 +∧
 

Also, the second part of the wave function in Eq. (26) can 

be found as 

+��� = �I«�§�1 + ��I«�¨
                          (53) 

Hence, the unnormalized wave function is obtained as 

�-,���� = c-�sinh
 ����I«�§��cosh
 ���I«�¨ -̀�D�
§,
¨��1 + 2 sinh
 ���, (54) 

where c- is the normalization constant. 

5. Conclusion 

We have obtained the energy spectra and the 

corresponding wave functions of the Klein-Gordon equation 

under equal scalar and vector modified Scarf II  potential by 

using Nikiforov-Uvarov method and employing the improved 

approximation scheme to deal with the centrifugal term. We 

found a closed form of the energy eigenvalues for arbitrary � 
state.The behaviours of the potential with the particle 

position, r for various potential parameters are presented.The 

numerical data of our results are also presented as a guide to 

our readers. This system can be  used to investigate the 

relativistic symmetries of the Dirac equation [28].  
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