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Abstract: The theoretical and phenomenological aspects of the Next-to-Minimal Supersymmetric Standard Model 

(NMSSM) is reviewed. The model includes an additional gauge singlet S which generates the µ- term dynamically and the 

µ- problem in MSSM is solved. The different masses of seven Higgs bosons and the bounds of the mass parameters have 

been discussed. 

Keywords: NMSSM, MSSM, Gauge Singlet S, µ- Problem, Mass Parameters 

 

1. Introduction 

Supersymmetry[1,2] is one of the most appealing 

concepts of Physicsbeyond the Standard Model(SM). The 

main motivation of Supersymmetry is to stabilize the 

hierarchy[3] between the electroweak and the GUT or Plank 

scale. In the Standard Model (SM), the Higgs boson mass 

gains radiative corrections which depend quadratically on 

the cut-off scale of the theory, threatening to generate a 

mass which is far too large to explain electroweak 

symmetry breaking. The supersymmetry ensures that the 

contribution of new supersymmetric particles exactly cancel 

the quadratic divergence of their Standard Model partners, 

removing the sensitivity of the Higgs mass to the cut off 

scale in a natural way. In this way Supersummetry stabilizes 

the Higgs mass at a phenomenologically acceptable scale 

(below TeV). The MSSM contains a µ- parameter in the 

superpotential where µ is a dimensionful parameter. It 

enters the Higgs potential with the soft scalar masses to 

determine the vacuum expectation value of the Higgs fields. 

This parameter has to be adjusted by hand to a value at the 

electroweak scale, in order to provide the correct pattern of 

electroweak symmetry breaking. This is a problem of the 

model and is called µ-problem[4]. In the NMSSM[5,6,7] an 

additional gauge singlet S (the complex scalar component 

of a chiral superfield�� ) is introduced which generates the 

µ-term dynamically, i.e. an effective µ-term arises 

spontaneously and the adjustment by hand drops out. The 

effective µ-parameter may then naturally be expected to be 

of the electroweak scale, μ = λ〈�〉  .In this sense the 

NMSSM is a natural extension of the MSSM. 

The superpotential for the NMSSM is given by 

�	
��
 = ��
� + ������ + �� ��                  (1) 

Where ��
�  gives the Yukawa couplings for the 

Standard Model fermions. Without the k term the 

superpotential would have a �(1)/  symmetry, so called 

Peccei-Quinn symmetry[8]. This additional symmetry 

would alter the phenomenology completely. The role of the 

k term is to break this �(1)/  symmetry. The k term is 

introduced trilinear such that k is dimensionless. However, 

there remains a discrete �� symmetry[9,10] which is 

moreover broken spontaneously. In principal this leads to 

the domain wall problem. Introducing additional, but 

suppressed terms, the �� symmetry can be broken without 

changing phenomenology at the electroweak scale. It is 

assumed that the domain wall problem is circumvented in 

this way without any modifications except far beyond the 

electroweak scale.Thus NMSSM provides a lot of new 

phenomenological aspects which is absent in SM [11] and 

MSSM[12]. 

However, the Higgs bosons in MSSM and NMSSM are 

given in the table below  

 



35 ParthaPratim Pal:  Study of Higgs Phenomenology in the Next-to-Minimal Supersymmetric Standard Model (NMSSM)  

 

 

Table 1. Higgs bosons in MSSM and NMSSM. 

Model Symmetry Superpotential CP-even CP-odd Charged 

MSSM - 	μ	����  ���, � �  !�  �±  

NMSSM �� ������ + �� ��  ���, � �	, ���  !��	, ! �  �±  

 

The paper is organized as follows: Section 2 gives the 

expressions of the Higgs potential in NMSSM. Tadpole 

conditions are discussed in section 3. The expressions of the 

masses of Higgs scalars in NMSSM is given in section 4. In 

section 5 various parameter constraints have been discussed. 

The conclusions are given in section 6. 

2. The Higgs Potential in NMSSM 

The Higgs fields of the NMSSM consists of the usual two 

Higgs doublets as in the MSSM together with an extra Higgs 

singlet, 

�� = #��$���%	, �� = #�����&%	, �                            (2) 

The extra singlet is allowed to couple only to the Higgs 

doublets of the model, and consequently the couplings of the 

new fields to gauge bosons will only be manifested via their 

mixing with the other Higgs fields. 

The tree-level Higgs potential[10] is composed of three 

parts, 

' = '( + ') + '�*+,                               (3) 

With, 

'( = |��|	 	(|��| + |��| ) + |����� + .� |         (4) 

') = /0$//01 (|��| − |��| ) + � 3 |��$��|          (5)

'�*+, = 456 |��| +457 |��| +4� |�| + [�!9����� + ��.!��� + ℎ. <. ]                             (6) 

where g and 3/ being the gauge couplings of ��(2)?	 and U(1) interactions respectively. The Higgs potential contains seven 

parameters: λ and k from the superpotential and !�	,!9, 456, 457 	@AB	4C from the soft supersymmetry breaking terms. 

3. Tadpole Conditions 

Let us expand the potential about the VEVs represented by D� , D� 	, DC and the phases θ and φ. The parameterization of the 

scalar fields is as follows: 

�� = E �√ (D� + ℎ� + G@�)��& H , �� = IJK E ��$�√ (D� + ℎ� + G@�)H , � = �√ IJL(DC + ℎC + G@C)                       (7)

Where we have taken the vacuum-expectation values D�	, D� 	, DC to be real and non-negative. The values D�	, D� 	@AB	DC will 

take the values for which the potential V in equation(3) has a global minimum. In the parameterization (7) the vacuum denoted 

by <> precisely means 

〈��〉 = EM7√ 0H	 , 〈��〉 = IJK E0M6√ H	, 〈�〉 = IJL MO√                                                       (8) 

The condition for the scalar potential to have an extremum at the vacuum is that the first derivatives with respect to the 

Higgs fields evaluated at the vacuum vanishes 

0 = �M7 〈 PQPR7〉 = 457 − S9 M6MOM7 + /0$//01 (D� − D� ) + |9|0 (D� + DC ) − T M6MO0M7                               (9) 

0 = �M6 〈 PQPR6〉 = 456 − S9 M7MOM6 + /0$//01 (D� − D� ) + |9|0 (D� + DC ) − T M7MO0M6                              (10) 

0 = �MO 〈 PQPRO〉 = 4C − S9 M7M6MO + S�DC + |9|0 (D� + D� ) + |.| DC − SD�D�                                  (11) 

0 = �M6 〈 PQPU7〉 = �M7 〈 PQPU6〉 = V9DC − � VDC                  (12) 

0 = �MO 〈 PQPUO〉 = V9 M7M6MO + V�DC + VD�D�                  (13) 

Where the introduced abbreviations are 

S = SI	[�.∗IJ(K& L)]                              (14) 

V = VX[�.∗IJ(K& L)]                                (15) 
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S9 = �√ SI[�!9IJ(K$L)]                      (16) 

V9 = �√ VX[�!9IJ(K$L)]                        (17) 

S� = �√ SI[.!�IJ�L]                          (18) 

V� = �√ VXY.!�IJ(K$L)Z                        (19) 

These conditions are called tadpole conditions in the sense 

that the conditions make the tadpole diagrams vanish if we 

set the Higgs fields to their VEVs. Here R and I are 

dimensionless parameters and S9, S�, V9 and V�  have the 

dimension of mass. 

From e[\ (12) and (13), the following two conditions are 

obtained- 

] V9 = − � VDCV� = − � V M7M6MO
^                                    (20) 

Only one of the three imaginary parts I, V9 , V� is physical, 

when complex parameters are introduced, they must be 

chosen to satisfy the tadpole conditions (20). 

4. The Mass of Higgs Scalars 

In the NMSSM seven Higgs bosons are created: 3 CP- 

even (���, � � , ��� ), two CP-odd (!�� , ! � ) and two charged 

(�±). Their tree level masses are given below[10] 

_5± = _ ̀ +_a − � (�D)                       (21) 

_`0 = _ ̀(1 + �b <cd eC�GA 2e	)               (22) 

_`f = − �√ .DC!�                       (23) 

_5g =	_ ̀ h1 + �b <cd eC�GA 2ei          (24) 

_50,f = � j_k + � .DCl4.DC + √2!�n 	±	op_k − � .DCl4.DC + √2!�nq + <cd eC[2� DC −_ ̀�GA 2e] r               (25) 

Where D = sD� + D� = 246	uI', d@Ae = M6M7 	 , d@AeC = MOM  

and negative value for !� being preferred. 

It can be noted that the heavy CP-odd Higgs boson !  is 

degenerate with the heaviest CP-even Higgs boson ��. 

Moreover, 

_5f +_50 = _v + � .DC(4.DC + √2!�)              (26) 

The sum of the two lightest scalars, is independent of the 

couplingλ and _ ̀ . 

5. Parameter Constraints 

There are seven parameters in the Higgs potential- λ and k 

from the superpotential and !9	, !�	, 457 , 456 , 4C  from the 

soft supersymmetry breaking terms. The field values at D� , D� 	@ABDC		@wI	3GDIA	xy	dℎI following equations[10] 

457 = h/0$//0i1 (D� − D� ) − � � D� + � l√2!9 + .DCn�DC M6M7 − � � DC                                      (27) 

456 = h/0$//0i1 (D� − D� ) − � � D� + � l√2!9 + .DCn�DC M7M6 − � � DC                                      (28) 

4C = −. DC − � � 	D + .�D�D� + �√ �!9 M6M7MO − �√ .!�DC                                           (29) 

The renormalization group equations for λ, k and top 

Yukawa coupling ℎ,  are related to the gauge couplings and 

are given by 

16z �/{0�, = xJ3J                               (30) 

16z �R|0�, = ℎ, [� + 6ℎ, − �}� 3� − 33  − ����3� ]          (31) 

16z �90�, = � [4� + 2. + 3ℎ, − 33  − ��3� ]          (32) 

16z ��0�, = 6. [� + . ]                         (33) 

Here, x� = ��� , x = 1, 3� = o��3/	, 3 = 3@ABd =
�c3 �0
���0  where Q is the renormalization scale. 

Values of λ and k in the perturbative regime at the GUT 

scale is given by 
9 � ≤ 1	, � � ≤ 1	. But λ and k are reduced to 

small values at the electroweak scale and their combined 

approximate bound is given by [10] 

� + . ≤ 0.5                                       (34) 

λ must not become too small. If λ becomes too small then 

the phenomenological constraints on µ require DC to be large 

and the link with the other Higgs VEVs is lost. A small value 

of tanβ is favoured and it is kep t ≤ 10	.DC is expected to vary 

from 3D	dc	15D . 

The value of !�  is determined from the requirement of 

vacuum stability. Positive and large value of !� destabilizes the 

vacuum and the mass squared of the lightest pseodoscalar 

becomes negative. The soft SUSY breaking term containing !� 

is a cubic coupling proportional to �� , so the effect of varying 
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!� is only communicated through the singlet contribution of the 

Higgs fields. The heavy Higgs bosons and one of the lighter 

scalars are very insensitive to the choice of !�. !9is also constrained by vacuum stability and its natural 

value is approximately µ tanβ . 

6. Conclusions 

The present paper investigates the Higgs sector of the Next-

to-Minimal Supersymmetric Standard Model. In this model the 

µ problem of MSSM is solved by introducing a new singlet 

Higgs field S. The expressions of the Higgs boson masses have 

been introduced and it provides a nice insight into the mass 

hierarchies. The present paper also throws light into the 

tadpole condition. The MSSM limit can be regained by letting 

λ and k → 0 while keeping µ,!9 and !� fixed. The bounds of 

the mass parameters have been discussed. The requirement of 

vacuum stability provides useful bounds on the mass 

parameters. The lightest Higgs boson in the NMSSM is 

heavier than the one of the MSSM due to additional terms in 

the tree level Higgs potential proportional to � ; the additional 

contribution is ∆4R = 90/0_v �GA 2e . It is obvious that the 

upper bound on the mass of the lightest Higgs boson is 

expected to be larger than that in the MSSM. 
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