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Abstract: Aim of the present study was to identify genomic regions and candidate genes impacting on somatic cell count in 
the Frizarta dairy sheep. A total number of 482 Frizarta ewes genotyped with the medium density SNP array with available 
records on milk somatic cell count were used. Associations between genomic markers and the trait under study were detected 
by application of a multi-locus mixed model treating markers as fixed additive effects. Positional candidate genes identified 
within 1Mb flanking distances from significant markers were in silico prioritized based on their functional similarity to a 
training gene list including 1,120 genes associated with the term ‘immunity’. Association analysis pinpointed 4 chromosome-
wide significant SNPs dispersed on four autosomes (OAR2, OAR18, OAR19 and OAR22). A total number of 37 positional 
candidate genes were identified within the searched genomic distances while 13 candidate genes were highly prioritized. Seven 
highly prioritized genes (NFIB, GFRA1, PSIP1, ARHGAP5, HECTD1, EMX2, STRN3) along with genes FREM1 and GPR33 

had evidenced involvement in immune-related processes. Current results extent previous findings by providing novel candidate 
genes for the somatic cell count phenotype in dairy sheep. 

Keywords: Somatic Cell Count, Mastitis, Dairy Sheep, GWAS, Prioritization Analysis 

 

1. Introduction 

Somatic cell count (SCC) in dairy sheep milk is important 
in many aspects, including health and production. As in dairy 
cows, mastitis in dairy ewes is associated with increased 
SCC in milk [1]. Hence, milk with elevated SCC is usually 
considered as an indication of intra-mammary infection 
(IMI) and selection for decreased SCC could lead to reduced 
susceptibility to mastitis [2]. IMI in dairy sheep differs from 
the respective bovine infections in both incidence and 
aetiology. In dairy ewes, lower incidence of clinical mastitis 
(CM) versus subclinical mastitis (SCM) is observed, while 
the major pathogens in this species are the coagulase-
negative Staphylococci [2]. Furthermore, in dairy ewes, SCC 
can reach highest counts (e.g. 4·106 cells/ml) without mastitis 
symptoms, with milk still of normal macroscopic appearance 
[3]. However, SCC levels between affected and non-affected 

udders seem to clearly differentiate, with sheep milk from 
udders free from IMI having an average of 0.185·106 cells/ml 
when contrasted to an average equal to 1.445·106 cells/ml of 
infected halves [3]. In milk from uninfected mammary 
glands, macrophages are the predominant cell type of the cell 
population (46 to 84%), followed by lymphocytes (11 to 
20%), polymorphonuclear neutrophilic leukocytes (PMN) (2 
to 28%) and epithelial cells (1 to 2%). In infected mammary 
glands, the percentage of PMN increases to 50% at a SCC of 
0.20·106 cells/ml and up to 90% at a SCC over 3·106 cells/ml 
[3] playing a protective role in the mammary gland [4]. 

The advent of high-throughput genotyping platforms made 
genome-wide association studies (GWAS) a reality and the 
identification of the responsible functional genes involved in 
SCC in dairy sheep a promising task. Early genome scans in 
the Spanish Churra sheep identified a single genome-wide 
suggestive QTL (Quantitative Trait Locus) for SCS (Somatic 
Cell Score) on OAR20 [5] with peak QTL location close to 
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marker OLADRBPS, which is located in the major 
histocompatibility complex (MHC). In a crossbred 
population of Sarda x Lacaune breeds, there were two 
genome-wide significant QTLs identified on OAR6 and 
OAR13, along with 11 genome-wide ‘suggestive’ QTLs 
associated with SCS (2). In a crossbred population of 
Lacaune x Manech breeds, a ‘suggestive’ genome-wide 
significant QTL was found on OAR14 for SCS [6]. In an 
Awassi x Merino crossbred population, a significant QTL for 
SCC was found on OAR14, whereas two ‘suggestive’ QTLs 
for this trait were reported on OAR17 and OAR22 [7]. Rupp 
et al. [8] identified a major QTL associated with SCC on 
ovine chromosome 3. Fine mapping of the region, provided 
one strong candidate SNP that mapped within the coding 
sequence of a highly conserved gene, suppressor of cytokine 
signalling 2 (SOCS2), mediated by the JAK/STAT signaling 
pathway. Using transcriptional profiling of the milk somatic 
cells of susceptible and resistant sheep infected by 
Staphylococcus sp., Bonnefont et al. [9] provided a list of 
differentially expressed genes between the resistant and 
susceptible animals that were associated with immune and 
inflammatory responses, leukocyte adhesion, cell migration 
and signal transduction. Most recently, Banos et al. [10] 
identified SNPs associated with mastitis traits on 
chromosomes 2, 3, 5, 16 and 19 and proposed relevant 
candidate genes such as SOCS2, CTLA4, C6, C7, C9, 
PTGER4, DAB2, CARD6, OSMR, PLXNC1, IDH1, ICOS, 
FYB and LYFR, implicated in innate immunity. 

In the present study, we performed a genome scan of 482 
Frizarta dairy ewes using a medium density genotyping SNP 
array to identify genomic regions associated with the SCC 
phenotype. We then applied in silico gene prioritization 
analysis of the positional candidate genes to identify the 
most plausible functional candidate genes for the trait. 
Current findings are expected to contribute to a better 
understanding of the genetic mechanisms underlying the 
SCC phenotype in the Frizarta dairy sheep. 

2. Material and Methods 

2.1. SNP Genotyping and Quality Control 

A total of 524 dairy ewes of the Frizarta breed were 
originally sampled. These ewes were randomly chosen from 7 
herds of the Cooperative of the Agricultural and Livestock 
Union of Western Greece (ALUWG) in Agrinio (north-

western Greece). Ewes are kept under an intense production 
system, with standardized conditions and feeding regime. 
DNA was extracted from blood samples using the NucleoSpin 
Blood kit (Macheray-Nagel). Sample genotyping based on the 
Illumina OvineSNP50 BeadChip was performed commercially 
at Neogen Europe, Ltd. From the 524 original samples, one 
sample could not be genotyped. Quality Control (QC) of the 
remaining 523 genotypes was performed in two stages, first on 
an ‘individual’ and second on a ‘marker’ basis. On the first 
level, samples were removed if they had: i) call rate<0.95 and 
ii) overall autosomal heterozygosity rate outside the 1.3 inter-
quartile range (0.346-0.389). Using these criteria, the number 
of available animals (samples) was reduced to 503. Marker 
QC was based on the following criteria: (i) call rate (>0.95), 
(ii) minor allele frequency (MAF)≥0.05 and (iii) Fisher’s 
Hardy-Weinberg equilibrium (HWE) p<0.0001. Only mapped 
autosomal SNPs were considered. From the originally 
available SNPs (n=54,013), the final number of SNPs retained 
for the GWAS was 42,884. 

2.2. Phenotypic Data 

There were SCC records for 482 out of the 503 genotyped 
animals fulfilling the QC criteria. These records were obtained 
using a MilkoScan™ FT system. Prior to analysis, original SCC 
values (given in 105 cells/ml) were logarithmically transformed 
to approximate normality using the following transformation 
function: lSCC=log(SCC.10-5 cells/ml). lSCC ranged from 0.07 
(104,972 cells/ml) to 4.42 (2,140,684 cells/ml) with average and 
standard deviation equal to 1.93 (381,055 cells/ml) and 0.96 
(194,531 cells/ml), respectively. SCC records were obtained 
from ewes dispersed in 7 herds, 5 lactations, 4 production years, 
3 lactation stages and 8 classes of month measurements. 
Detailed inspection of the number of observations per class 
effect showed that some of month measurement classes were 
not adequately represented. For this reason, grouping of 
observations for this particular effect was performed by 
grouping classes as follows: calendar month 1 (1, 2 and 3), 8 (8 
and 9) and finally 11 (11 and 12). Furthermore, three lactation 
stages were defined as follows: early: (1-100 days), middle 
(101-160 days) and late (>160 days) days of lactation. The final 
data set included SCC records per 7 herds, 5 lactations (classes: 
2, 3, 4, 5 and 6), 4 production years (classes: 2011, 2012, 2013 
and 2014), 4 months of measurement (classes: 1, 8, 10 and 11) 
and 3 lactation stages (classes: early, middle and late) (Table 1). 

Table 1. Number of observations (n) and means (M) with standard errors (SEM) for SCC at the logarithmic scale [log(SCC.10-5 cells/ml)] per fixed effect 

class. 

Herd Production year Lactation number Month of measurement Lactation stage 

Class (n) M ± SEM Class (n) M ± SEM Class (n) M ± SEM Class (n) M ± SEM Class (n) M ± SEM 

1 (125) 2.358 ± 0.051 2011 (45) 2.445 ± 0.091 2 (153) 1.979 ± 0.078 1 (20) 2.150 ± 0.113 1 (258) 1.727 ± 0.062 
2 (51) 1.998 ± 0.138 2012 (36) 2.126 ± 0.202 3 (109) 2.008 ± 0.087 9 (220) 2.147 ± 0.054 2 (196) 2.124 ± 0.061 
3 (62) 2.635 ± 0.088 2013 (42) 2.370 ± 0.109 4 (83) 1.946 ± 0.109 10 (192) 1.617 ± 0.074 3 (27) 2.548 ± 0.120 
4 (30) 2.289 ± 0.098 2014 (358) 1.800 ± 0.050 5 (59) 1.874 ± 0.128 11 (49) 2.145 ± 0.155   
5 (62) 2.107 ± 0.080   6 (77) 1.780 ± 0.109     
6 (137) 1.058 ± 0.080         
7 (14) 1.903 ± 0.177         
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Multifactor analysis of variance (ANOVA) of lSCC 

including all the fixed effects (herd, production year, 
lactation number, month of measurements and stage of 
lactation) revealed statistical significance of only herd effect 
(p<0.001). This factor alone explained 37.3% of the variance 
of the trait (results not shown). No interaction term was 
found to be statistically significant. 

2.3. Marker Association Analysis 

A multi-locus mixed linear (MLMM) model [11] was used 
to select significant SNPs as fixed (additive) covariates. This 
method employs a stepwise mixed-model regression 
procedure with forward selection and backward elimination. 
From the three model selection criteria that are implemented 
in MLMM for multi-testing correction, the modified 
Bayesian information criterion (mBIC), the extended 
Bayesian information criterion (eBIC) and the multiple 
Bonferroni criterion (mBonf), we used the eBIC criterion to 
select the significant SNP co-factors using a p threshold 
value of 0.10. Specifically, lSCC data were analysed using 
the following mixed model: 

y X wa u e= β+ + Ζ +  

where y is the vector of the lSCC, X is the incidence matrix 
relating observations to fixed effects, β is the vector of fixed 
(environmental) effects: herd (7 classes), lactation number (5 
classes: 2, 3, 4, 5, 6), production year (4 classes: 2011, 2012, 
2013 and 2014), month of measurement (4 classes: 1, 8 10 
and 11) and stage of lactation (3 classes: early, middle and 
late). Note that although the additional fixed effects (apart 
from herd) were found not to be statistically significant 
during multifactor ANOVA, an expanding fixed model was 
used during association analysis as these effects jointly 
explained an additional proportion of 3% of the lSCC 
variance. Furthermore, w is the vector of the SNP effects 
with elements coded as 0, 1 or 2 for homozygote of the 
reference allele, heterozygote and homozygote of the other 
allele, α is the vector of the fixed effect for the reference 
allele of the candidate SNP to be tested for association, Z is 
the incidence matrix relating observations to the random 
polygenic random effects, u is the vector of random 
polygenic effects, and e is the vector of random residuals. 
The random effects were assumed to be normally distributed 
with zero means and the following covariance structure: 

2
u

2
e

G 0uVar e 0 I

 σ =   σ   
 

where 2
uσ and 2

eσ  are the polygenic and error variance 

components, I is the nxn identity matrix, and G is the nxn 
genomic relationship matrix with elements of pairwise 
relationship coefficient using all the 42,884 SNPs. The 
genomic relationship coefficient between two individuals j 
and k, was estimated as follows: 

42,884
ij i ik i

i ii 1

(x 2p )(x 2p )1

42,884 2p (1 2p )=

− −
−∑  

where xij and xik the numbers (0, 1 or 2) of the reference 
allele(s) for the ith SNP of the jth and kth individuals, 
respectively, and pi is the frequency of the reference allele. 
Note that inclusion of the genomic relationship matrix in the 
model has been shown to correct for possible population 
structure and stratification in the data [12]. This analysis was 
carried out with SNP and Variation Suite ver. 8.7.0 (Golden 
Helix, Inc. 2016). 

2.4. Search for QTLs and Candidate Genes 

Since in this breed levels of linkage disequilibrium (LD) 
were higher than 0 between markers at genomic distances up 
to 1 Mb (results not shown), we searched within 1 Mb 
upstream and downstream each significant SNP for reported 
QTLs and positional candidate genes for the trait under 
study. The SheepQTLdb (release 36, August 22nd, 2018) and 
the latest sheep genome Oar_v4.0: 
http://www.ncbi.nlm.nih.gov/genome/?term=ovis+aries/ 
along with NCBI annotation release 102 of the sheep 
genome 
(http://www.ncbi.nlm.nih.gov/genome/annotation_euk/Ovis_
aries/102/) were used, respectively. 

2.5. In Silico Gene Prioritization Analysis 

We performed in silico prioritization analysis (PA) of the 
positional candidate genes using the ToppGene portal 
(https://toppgene.cchmc.org/prioritization.jsp). PA was based 
on the functional similarity of the candidate genes to a 
training gene list including n=1,221 genes that have been 
associated with the term ‘immunity’. The InnateDB 
(https://www.innatedb.com/) that is a knowledgebase of 
genes, proteins, experimentally-verified interactions and 
signaling pathways involved in the innate immune response 
of humans, mice and bovines to microbial infection was 
mined to retrieve the relevant associated genes. The 
following semantic annotations were used during PA: GO: 
Molecular Function, GO: Biological Process, Human and 
Mouse Phenotype, Pathway, Interaction, Gene Family and 
Co-expression. From the initial number of training genes, a 
total number of n=1,120 genes were mapped and finally used 
for training during PA. Note that two candidate genes i.e. 
FREM1 and GPR33 were omitted from PA as they were 
included in the training gene list. Genes with overall p-values 
lower than 0.05 were considered as highly prioritized. 

3. Results 

3.1. Significant SNPs 

Figure 1 shows the Q-Q (Quantile-Quantile) plot of the 
expected and the observed p-values (on the -log10 scale) of 
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the 42,884 SNPs. As Q-Q plot clearly shows, there is no 
evidence of any systematic bias due to population structure 
or analytical approach, a suggestion that was also supported 
by the estimated value for the genomic inflation factor 

(λ=1.051). The Q-Q plot along with the Manhattan plot 
depicted in Figure 2 also show that 4 SNPs depart from the 
expected probability indicating that they might be associated 
with the trait under study. 

 

Figure 1. Quantile-Quantile (Q-Q) plot of the expected (x-axis) versus the observed (y-axis) p-values (-log10 scale) of the SNPs. 

 

Figure 2. Manhattan plot depicting SNP associations with the SCC phenotype in the Frizarta dairy sheep. The plot shows the negative log-base-10 of the p 

value (y-axis) for each of the 42,884 SNPs across the 28 ovine autosomes (x-axis). Horizontal line denotes significance threshold (−log10(p value)=4.094). The 

four SNPs, dispersed on OAR2, OAR18, OAR19 and OAR22 passing the chromosome-wise significance threshold are also shown. 

Table 2. Name, position on ovine chromosomes and p-values of 

chromosome-wide significant SNPs. 

SNP OAR Position p-value -log10 (p-value) 

OAR2_87772629.1 2 82,595,501 8.973E-06 5.047 
OAR19_20722254.1 19 1,9801,023 5.924E-05 4.227 
OAR18_44175536.1 18 41,492,409 6.043E-05 4.219 
OAR22_41013052.1 22 36,223,181 8.060E-05 4.094 

A detailed description of the 4 departed SNPs is provided 
in Table 2. Specifically, the 4 SNPs that reached 
chromosome-wise statistical significance i.e. −log10(p 

value)=4.094 were detected on OAR2, OAR18, OAR19 and 
OAR22. 

3.2. Searched QTLs and Positional Candidate Genes 

A search for ‘Somatic Cell Score’ QTLs at SheepQTLdb 
revealed two QTLs, one on OAR2 mapped from 86.5 to 
117.9 Mb and another on OAR22 mapped from 5.8 to 31.8 
Mb (results not shown). In both cases, reported QTLs lie 
about 4 Mb away from the significant SNPs. Table 3 presents 
a list of positional candidate genes within 1 Mb distance 
from the 4 significant SNPs. A total number of 37 genes were 
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identified within the searched regions with 8, 10, 2 and 17 
candidate genes located on OAR2, OAR18, OAR19 and 

OAR22, respectively (Table 3). 

Table 3. Positional candidate genes located within 1 Mb distances from significant SNPs. 

Gene Gene description Gene location in Oar_v4.0 
NCBI  

gene ID 

Gene-SNP 

distance (bp) 

NFIB nuclear factor I/B 2: 82,203,556..82,423,726 100913158 171,775 
ZDHHC21 zinc finger, DHHC-type containing 21 2: 82,728,390..82,793,425 101121148 132,889 
CER1 cerberus 1, DAN family BMP antagonist 2: 82,810,222..82,815,069 101122006 214,721 
FREM1 FRAS1 related extracellular matrix 1 2: 82,833,553..83,016,760 101121399 238,052 
TTC39B tetratricopeptide repeat domain 39B 2: 83,148,036..83,303,125 101121659 552,535 
SNAPC3 small nuclear RNA activating complex polypeptide 3 2: 83,384,632..83,421,591 101121912 789,131 
PSIP1 PC4 and SFRS1 interacting protein 1 2: 83,426,169..83,462,898 100233239 830,668 
CCDC171 coiled-coil domain containing 171 2: 83,486,297..83,832,243 101122165 890,796 
STRN3 striatin 3 18: 40,416,405..40,520,814 101102517 971,595 
AP4S1 adaptor-related protein complex 4, sigma 1 subunit 18: 40,520,132..40,567,008 101115405 925,401 
HECTD1 HECT domain containing E3 ubiquitin protein ligase 1 18: 40,568,259..40,641,561 100135435 850,848 
HEATR5A HEAT repeat containing 5A 18: 40,701,525..40,800,708 101115909 691,701 
DTD2 D-tyrosyl-tRNA deacylase 2 (putative) 18: 40,826,489..40,836,811 101116351 655,598 
GPR33 G protein-coupled receptor 33 18: 40,852,409..40,853,736 101102762 638,673 
NUBPL nucleotide binding protein-like 18: 40,920,031..41,233,661 101116606 258,748 
ARHGAP5 Rho GTPase activating protein 5 18: 41,366,614..41,440,797 101116866 51,612 
AKAP6 A-kinase anchoring protein 6 18: 41,574,089..42,073,462 101117111 81,680 
NPAS3 neuronal PAS domain protein 3 18: 42,307,737..43,138,131 101103016 815,328 
GRM7 glutamate receptor, metabotropic 7 19: 18,525,586..19,471,907 443520 329,116 
LOC105603423 epidermal growth factor-like protein 6, human EGFL6 19: 19,846,286..19,851,084 105603423 45,263 
ATRNL1 attractin like 1 22: 34,467,463..35,279,716 101119865 943,465 
GFRA1 GDNF family receptor alpha 1 22: 35,379,304..35,612,886 101120125 610,295 
CCDC172 coiled-coil domain containing 172 22: 35,668,110..35,725,843 101103108 497,338 
PNLIPRP3 pancreatic lipase-related protein 3 22: 35,778,132..35,820,846 101103362 402,335 
PNLIP pancreatic lipase 22: 35,864,081..35,882,662 101103610 340,519 
LOC101120372 Inactive pancreatic lipase-related protein 1 22: 35,890,049..35,905,240 101120372 317,941 
PNLIPRP2 pancreatic lipase-related protein 2 22: 35,916,056..35,935,295 101103860 287,886 
C22H10orf82 chromosome 22 open reading frame, human C10orf82 22: 35,960,075..35,970,248 101120621 252,933 
HSPA12A heat shock protein family A (Hsp70) member 12A 22: 35,975,685..36,027,950 101120879 195,231 
ENO4 enolase family member 4 22: 36,149,792..36,177,110 101104109 46,071 
SHTN1 shootin 1 22: 36,179,953..36,293,552 101104358 0 
VAX1 ventral anterior homeobox 1 22: 36,384,969..36,389,063 101121136 161,788 
KCNK18 potassium channel, two pore domain subfamily K, member 18 22: 36,439,825..36,451,077 101121389 216,644 
SLC18A2 solute carrier family 18, member 2 22: 36,475,616..36,513,970 101104796 252,435 
PDZD8 PDZ domain containing 8 22: 36,516,506..36,599,063 101121648 293,325 
EMX2 empty spiracles homeobox 2 22: 36,738,845..36,744,354 101105042 515,664 
RAB11FIP2 RAB11 family interacting protein 2 (class I) 22: 37,177,703..37,220,788 101105457 954,522 

 

3.3. Prioritized Candidate Genes 

A total number of 13 genes (NFIB, GFRA1, PSIP1, 

ARHGAP5, GRM7, HECTD1, SLC18A2, SHTN1, VAX1, 

CER1, STRN3, NPAS3 and EMX2) were highly prioritized 
(overall p-value<0.05) according to the semantic annotations 
applied during PA (Table 4). The aforementioned genes 
along with FREM1 (OAR2) and GPR33 (OAR18) that were 
among the training genes, were considered as most plausible 
functional candidates for the trait under study. 

Table 4. Ranked gene list according to prioritization analysis. Genes with 

overall p-value<0.05 are considered as highly prioritized. 

Rank Gene Average score Overall p-value 

1 NFIB 0.920 0.010 
2 GFRA1 0.956 0.011 
3 PSIP1 0.846 0.011 
4 ARHGAP5 0.855 0.012 
5 GRM7 0.811 0.014 
6 HECTD1 0.767 0.018 
7 SLC18A2 0.808 0.019 

Rank Gene Average score Overall p-value 

8 SHTN1 0.760 0.029 
9 VAX1 0.814 0.034 
10 CER1 0.804 0.036 
11 STRN3 0.818 0.037 
12 NPAS3 0.733 0.040 
13 EMX2 0.750 0.043 
14 ATRNL1 0.574 0.050 
15 ZDHHC21 0.683 0.051 
16 RAB11FIP2 0.697 0.051 
17 NUBPL 0.675 0.052 
18 EGFL6 0.724 0.053 
19 PNLIP 0.640 0.054 
20 DTD2 0.672 0.055 
21 AKAP6 0.708 0.061 
22 AP4S1 0.689 0.081 
23 ENO4 0.913 0.085 
24 HSPA12A 0.569 0.106 
25 PDZD8 0.569 0.161 
26 PNLIPRP1 0.527 0.162 
27 TTC39B 0.403 0.177 
28 PNLIPRP2 0.489 0.185 
29 SNAPC3 0.461 0.203 
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Rank Gene Average score Overall p-value 

30 CCDC171 0.443 0.226 
31 KCNK18 0.389 0.245 
32 CCDC172 0.378 0.265 
33 PNLIPRP3 0.375 0.310 
34 HEATR5A 0.456 0.326 
35 C10orf82 0.248 0.551 

4. Discussion 

GWAS are powerful in determining genomic regions 
associated with a trait. Nevertheless, these regions often 
contain tens or hundreds of positional candidate genes and 
experimentally identifying the true causal genetic variants 
requires considerable costs, effort and time. One of the most 
intriguing challenge is thus as how to narrow down the 
candidates list and pinpoint the most plausible genetic 
variants for the trait under investigation. To address this 
challenge, in the present study, we applied in silico PA of the 
positional candidate genes and ended up with a total of 13 
highly prioritized (top) genes. A thorough search of the 
respective literature with regard to the biological function(s) 
of the top prioritized genes followed. This search showed 
that 7 prioritized genes i.e. NFIB, GFRA1, PSIP1, 

ARHGAP5, HECTD1, STRN3 and EMX2 have documented 

involvement in immune-related processes. Specifically, 
NFIB (Nuclear Factor I/B, ranked 1st in PA) is a member of 
the nuclear factor I family of proteins; the latter are known to 
be involved in viral and cellular transcription and specifically 
CD4 transcription [13]. GFRA1 (GDNF family receptor 
alpha 1, ranked 2nd in PA) is connected to GDNF (Glial cell-
derived neurotrophic factor) gene that exerts its effect on 
target cells by binding to GDNF family receptor-a. GDNFs 
are reported to be regulated by inflammatory cytokines [14]. 
PSIP1 (PC4 and SFRS1 interacting protein 1, ranked 3rd) 
encodes the lens epithelium-derived growth factor p75 
(LEDGF/p75), an important host co-factor that interacts with 
HIV-1 integrase to target integration of viral cDNA into 
active the outcome of HIV-1 infection genes [15]. 
ARHGAP5 (Rho GTPase activating protein 5, ranked 4th) 
participates in focal adhesion and specifically in leukocyte 
transendothelial migration, while HECTD1 (HECT domain 
containing E3 ubiquitin protein ligase 1, ranked 6th) 
participates to focal adhesion and macrophage activation 
[16]. STRN3 (striatin 3, ranked 11th) and EMX2 (empty 
spiracles homeobox 2, ranked 13th) are members of the gene 
network of Wnt/b-catenin pathway that plays a critical role 
in cell differentiation, growth, proliferation, survival and 
immune cell function [17]. 

Apart from the aforementioned genes, the list with the 
most plausible candidate genes should also comprise genes 
FREM1 and GPR33 that they were found among the training 
genes, thus having evidenced involvement in immune-related 
processes. Specifically, FREM1 (FRAS1 related extracellular 
matrix 1) is an extracellular protein with multiple annotated 
functional domains that interact with integrin, collagen, 
fibronectin, and interleukin 1 receptor (IL1R1) and influence 
transendothelial migration, epithelial integrity and 

inflammatory responses [18]. GPR33 (G protein-coupled 
receptor 33) is an orphan member of the chemokine-like 
receptor family and is highly expressed in dendritic cells that 
provide a functional link between innate and acquired 
immunity and orchestrate the interplay between T- and B- 
lymphocytes [19]. 

We further explored the role of the current candidate 
genes with regard to immunity by constructing a network 
depicting human genes co-expressed in memory CD4 T-
cells using information from the Immuno-Navigator 
database and the Network Analyst platform 
(https://www.networkanalyst.ca/). The resulting gene 
network is shown in Figure 3. As Figure 3 shows, this 
network is formed by 6 member genes including four of 
the candidate genes (ARHGAP5, STRN3, HECTD1, 
PSIP1) along with two connected genes (STK38, SART3). 

 

Figure 3. A minimum network showing 6 member genes co-expressed in 

human memory CD4 T cells. Apart from the four candidate genes 

(ARHGAP5, STRN3, HECTD1, PSIP1) denoted as blue coloured spheres, 

this network includes two more connected genes (STK38, SART3) denoted 

as red coloured spheres. Network was constructed using the NetworkAnalyst 

platform (ver. 3.0, https://www.networkanalyst.ca/) using data mined from 

the Immuno-Navigator database. 

Intuitively, genes that include or are in close proximity to the 
lead SNPs while having functional relevance with the trait under 
study are considered ideal functional candidates. However, 
proximity of a gene to the significant marker does not guarantee 
functional relevance and causative candidate genes may also 
exist among distantly located loci from the associated SNP in 
both qualitative [20] and quantitative traits [21]. In line with this 
scenario, the distance of the most plausible candidate genes 
from the respective significant SNPs ranged from 52 kb 
(ARHGAP5) to 972 (STRN3) kb, in the present study. 

5. Conclusion 

Employment of in silico prioritization analysis on results 
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of genome wide associations helped identifying novel 
candidate genes for SCC with documented involvement in 
immune-related processes such as focal adhesion, 
transendothelial migration, macrophage activation and 
inflammatory responses. In light of the relatively small 
number of animals used here, further studies employing 
higher number of animals with higher density arrays are 
warranted to disentangle the genetic basis of the SCC 
phenotype in dairy sheep. 
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