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Abstract: Epidemiologic, clinical and experimental data indicates that a majority of brain disorders including 

schizophrenia (SCZ), posttraumatic stress disorder (PTSD), and ischemic stroke (IS) are multifactorial disorders with 

strong and complex genetic component. Identification of all genetic variations associated with these disorders may 

sufficiently contribute to understanding of their basic pathomechanisms and encourage development of new innovative 

approaches to their early diagnosis and treatment. The aim of this review article is to provide overview of our recent studies 

on evaluation of potential association of SCZ, PTSD and IS with functional single nucleotide polymorphisms (SNPs) of 

synaptic plasticity and apoptosis regulatory genes in Armenian population. Here, our attention was focused on genes 

encoding netrin G1 (NTNG1), brain-derived neurotrophic factor (BDNF), complexin-2 (CPLX2), nerve growth factor (NGF) 

and its receptor (NGFR), annexin family proteins - annexin A5 and annexin A11 (ANXAV, ANXA11), and B-cell lymphoma 

2 (Bcl-2) family proteins - Bcl-2 proper and Bcl-2-associated X protein (BCL2, BAX). Genomic DNA samples of diseased 

and healthy individuals were genotyped for a number of SNPs of the mentioned genes using polymerase chain reaction 

with sequence-specific primers (PCR-SSP). The significance of differences in genotype and allele frequencies and minor 

allele carriage between patients and healthy control subjects was determined using Pearson’s Chi-square test. P-values less 

than 0.05 were considered statistically significant. Significant associations were found between: (1) SCZ and BDNF rs6265, 

CPLX2 rs1366116, rs3892909, NGF rs6330, rs4839435, NGFR rs734194, rs11466155, rs2072446, ANXAV rs11575945, 

BAX rs1057369 SNPs; (2) PTSD and CPLX2 rs1366116, BCL2 rs956572 SNPs; (3) IS and NTNG1 rs628117, CPLX2 

rs1366116, ANXAV rs11575945 SNPs. The obtained results indicated the involvement of genetically determined alterations 

in synaptic plasticity and apoptosis in pathomechanisms of SCZ, PTSD and IS. The minor T allele of the CPLX2 gene 

rs1366116 polymorphism represents risk factor for all studied diseased conditions indicating important functional 

significance of this genetic variation in maintenance of synaptic plasticity. Another important conclusion of these studies is 

that minor alleles of some polymorphic variants of genes, encoding synaptic plasticity and apoptosis regulatory proteins, 

may play a protective role relative to SCZ decreasing the risk for development of this disorder. In summary, our studies 

emphasize the important contribution of changes in synaptic plasticity and apoptosis regulation to pathomechanisms of 

SCZ, PTSD, and IS as well as significant input of genetic factors to these changes. 

Keywords: Schizophrenia, Posttraumatic Stress Disorder, Ischemic Stroke, Synaptic Plasticity, Apoptosis,  

Regulatory Genes, Single Nucleotide Polymorphisms, Genotyping, Association 
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1. Introduction 

Epidemiologic, clinical and experimental data indicates 

that a majority of brain disorders are multifactorial disorders 

with strong and complex genetic component [1-3]. Among 

those disorders are schizophrenia (SCZ) [4], posttraumatic 

stress disorder (PTSD) [5], and ischemic stroke (IS) [6]. All 

three disorders are severe diseased conditions and contribute 

significantly to disability and mortality of the human 

population worldwide [7-9]. Molecular pathomechanisms 

responsible for generation, progression and unfavorable 

clinical outcome of SCZ, PTSD and IS are only beginning to 

be understood, and currently available prognostic, diagnostic 

and treatment measures related to these disorders are not 

very efficient. Identification of all genetic variations 

associated with these disorders may sufficiently contribute to 

understanding of their basic pathomechanisms and 

encourage development of new innovative approaches to 

their early diagnosis and treatment. Several studies, including 

our own, suggest implication of alterations in synaptic 

neuronal plasticity and apoptosis to pathophysiology of SCZ, 

PTSD, and IS [10-19]. This review provides overview of our 

recent studies (including published [20-33] and unpublished 

data) on evaluation of potential association of SCZ, PTSD 

and IS with functional single nucleotide polymorphisms 

(SNPs) of synaptic plasticity and apoptosis regulatory genes. 

Here, our attention was focused on genes encoding netrin G1 

(NTNG1), brain-derived neurotrophic factor (BDNF), 

complexin-2 (CPLX2), nerve growth factor (NGF) and its 

receptor (NGFR), annexin family proteins - annexin A5 and 

annexin A11 (ANXAV, ANXA11), and B-cell lymphoma 2 

(Bcl-2) family proteins - Bcl-2 proper and Bcl-2-associated 

X protein (BCL2, BAX). Genomic DNA samples of diseased 

and healthy individuals were genotyped for a number of 

SNPs of the mentioned genes using polymerase chain 

reaction with sequence-specific primers (PCR-SSP). Brief 

characteristics of selected genes and SNPs are given in Table 

1. 

Table 1. Brief characteristics of selected genes and SNPs. 

Gene SNP 

Name ID Location ID Substitution+ Position Location (type) 

NTNG1 22854 1p13.3 rs628117 A>G 107997106 intronic 

BDNF 627 11p13 rs6265 G>A 27679916 exonic (missense) 

CPLX2 10814 5q35.2 
rs1366116 C>T 175297531 intronic (5' near gene) 

rs3892909 C>T 175305591 intronic 

NGF 4803 1p13.1 
rs6330 G>A 115829313 exonic (missense) 

rs4839435 G>A 115858104 intronic 

NGFR 4804 17q21-q22 

rs11466155 C>T 44942998 exonic (synonymous) 

rs2072446 C>T 47587819 missense 

rs734194 T>G 47591609 3'-UTR 

ANXAV 308 4q27 rs11575945 -1C>T 122617745 Kozak sequence 

ANXA11 311 10q21-23 rs1049550 G>A 81916682 missense 

BAX 581 19q13.33 rs1057369 A>G 49464866 intronic 

BCL2 596 18q21.33 
rs956572 G>A 60820571 intronic 

rs1801018 A>G 60985879 exonic (synonymous) 

+ on forward strand.  

2. Methodology 

2.1. Study Population 

Study subjects were chronic patients with paranoid form 

of SCZ and with PTSD of combat origin, patients with 

acute IS, and healthy individuals (HI) with no family or 

past history of any mental, cerebrovascular or 

cardiovascular disorders, as well as disorders characterized 

by alterations in apoptosis and synaptic plasticity. All 

subjects were Armenians born and living in Armenia. Both, 

the informed consents from all study subjects and the 

approval of the Ethics Committee of the Institute of 

Molecular Biology (IRB #00004079) were received for 

these studies.  

2.2. Methods 

About 5 ml of peripheral venous blood was collected 

from each study subject and transferred to EDTA-con- 

taining tubes. Genomic DNA samples were isolated from 

fresh blood according to a standard phenol-chloroform 

method [34] and stored at -30°C until use. Using PCR-SSP 

method [35] DNA samples were genotyped for NTNG1 

rs628117, BDNF rs6265, CPLX2 rs1366116, rs3892909, 

NGF rs6330, rs4839435, NGFR rs11466155, rs2072446, 

rs734194, ANXAV rs11575945, ANXA11 rs1049550, BAX 

rs1057369, BCL2 rs956572, rs1801018 functional SNPs. 

The SNPs were selected based on either their functionality 

according to the National Center of Biotechnology 

Information (NCBI) databases 

(http://www.ncbi.nlm.nih.gov/) or tagging results obtained 

using the International HapMap Project database 

(http://hapmap.ncbi.nlm.nih.gov). All primers for PCR-SSP 

were designed using the genomic sequences in the 

GenBank nucleotide sequence database 

(https://www.ncbi.nlm. nih.gov/genbank/) and are indicated 
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in Table 2. The presence/absence of allele-specific 

amplicons in the PCR products was visualized in 2% 

agarose gel stained with ethidium bromide fluorescent dye 

using DNA molecular weight markers as a reference. To 

check the reproducibility of results, randomly selected 

DNA samples (10% of total) were genotyped twice.  

2.3. Data Analysis 

The distributions of genotypes for all investigated SNPs 

were checked for correspondence to the Hardy-Weinberg 

(H-W) equilibrium. In order to find potential relevance of 

the selected SNPs to SCZ, their genotype and allele 

frequencies and minor allele carriage rates in patients and 

HI were compared. The significance of differences in 

genotype and allele frequencies and minor allele carriage 

between patients and HI was determined using Pearson’s 

Chi-square test. P-values less than 0.05 were considered 

statistically significant. P-values adjusted by Bonferroni 

multiple comparison correction are further indicated as 

Pcorrected, and those not adjusted - as Pnominal.  

Table 2. Primers designed for the selected SNPs. 

SNP Nucleotide sequence of primers  

rs628117 

standard allele: 5′ ATCCTTGGAATGAAAGCCCA 

minor allele: 5′- ATCCTTGGAATGAAAGCCCG 

constant: 5′-TCACTGCCCTCTGTGTGCAGTG 

rs6265 

standard allele: 5′- GGCTGACACTTTCGAACACG  

minor allele: 5′- GGCTGACACTTTCGAACACA  

constant: 5′- GTTACCCACTCACTAATACTG 

rs1366116 

standard allele: 5′-ATGTGTAGGAAAATGGCTTCG 

minor allele: 5′-ATGTGTAGGAAAATGGCTTCA 

constant: 5′- CAATGGCCTCTGACTGGTG 

rs3892909 
standard allele: 5′- GGTGAGGCTGCTGTCTGC 

minor allele: 5′-GGTGAGGCTGCTGTCTGT 

SNP Nucleotide sequence of primers  

constant: 5′-CTGCTTCATGACGAAGTCCA 

rs6330 

standard allele: 5′-GCATCTTGCTCTGTGCAGAT 

minor allele: 5′-GACACACCATCCCCCAAGC 

constant: 5′-GACACACCATCCCCCAAGT 

rs4839435 

standard allele: 5′-TGGGTGCCAAAAAGCTTGGC 

minor allele: 5′-TGGGTGCCAAAAAGCTTGGT 

constant: 5′-GCAGCTCCTGCAATTATCCA 

rs11466155 

standard allele: 5′-AGGCTATGTAGGCCACAAGG 

minor allele: 5′-AGGCTATGTAGGCCACAAGA 

constant: 5′-CAGAGGGCTCGGACAGCACA 

rs2072446 

standard allele: 5′-GTCCACACCCCCAGAGGGCTC 

minor allele: 5′-GTCCACACCCCCAGAGGGCTT 

constant: 5′-AGCAGCCAGGATGGAGCAAT 

rs734194 

standard allele: 5′-GCTGGAGCTGGCGTCTGTCT 

minor allele: 5′-GCTGGAGCTGGCGTCTGTCG 

constant: 5′-CTAGAGCTGGGAGAAATCCC 

rs11575945 

standard allele: 5′-CCTGACCTGAGTAGTCGC C 

minor allele: 5′-CCTGACCTGAGTAGTCGCT 

constant: 5′-GCCACGTCACCAGCTGTTGC 

rs1049550 

standard allele: 5'-CTGCCGCTGCTTGTTGGAGCG 

minor allele: 5'-CTGCCGCTGCTTGTTGGAGCA  

constant: 5'-CACCCTCCAGGATGCCCTCATAT 

rs1057369 

standard allele: 5'-ATCTTCTTCCAGATGGTGAGT 

minor allele: 5'-ATCTTCTTCCAGATGGTGAGC 

constant: 5'-TTACAGGTGTGAGCCACCATG 

rs956572 

standard allele: 5'-AGAGGGAGTCATGACTGAATC 

minor allele: 5'-AGAGGGAGTCATGACTGAATT 

constant: 5'-CAGATCTGTGCTTGAACCTCA 

rs1801018 

standard allele: 5'ATCTCCCGGTTATCGTACCCT 

minor allele: 5'-ATCTCCCGGTTATCGTACCCC 

constant: 5'-GATCCGAAAGGAATTGGAATA 

3. Results and Discussion 

The results of genotyping are presented separately for 

each diseased condition in Tables 3-5. 

 

Table 3. Genotype, allele, and minor allele carriage frequencies of the selected SNPs in patients with SCZ and HI. 

SNP ID Genotypes Alleles Carriage Ref. 

rs628117 AA AG GG A G G 

[20,22, 24] 
SCZ (n=103) 32 50 18 57 43 68 

HI (n=105) 34 41 25 55 45 66 

Pcorrected= 0.68a 0.73b 

rs6265 GG GA A A G A A 

[20-22,24, 28-30] 
SCZ (n=103) 44 50 6 69 31 55 

HI (n=105) 65 33 2 8 19 35 

Pcorrected= 0.004 a 0.003b 

rs1366116 CC CT TT C T T 

[26,30] 
SCZ (n=260) 26 50 24 51 49 74 

HI (n=260) 53 37 10 71 29 47 

Pcorrected= 1E-49a 2E-19b 

rs3892909 CC CT TT C T T 

[26,30] 
SCZ (n=260) 33 51 16 58 42 67 

HI (n=260) 23 50 27 48 52 77 

Pcorrected= 0.00a 0.01b 

rs6330 GG  GA AA G A A 

[27,33] 
SCZ (n=200) 43 46 11 66 34 57 

HI (n=250) 65 29 6 80 20 35 

Pcorrected= 0.00a 0.00b 

rs4839435 GG  GA AA G A A 

[27,33] SCZ (n=225) 24 56 20 52 48 76 

HI (n=225) 58 37 5 76 24 42 
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SNP ID Genotypes Alleles Carriage Ref. 

Pcorrected= 0.00a 0.00b 

rs11466155 CC CT TT C T T 

[27,28, 33] 
SCZ (n=200) 39.5 44 16.5 62 38 60.5 

HI (n=225) 20 52 28 46 54 80 

Pcorrected= 0.00a 0.00b 

rs2072446 CC CT TT C T T 

[27,28, 33] 
SCZ (n=200) 34 53 13 61 39 66 

HI (n=250) 56 33 11 89 29 47 

Pcorrected= 0.00a 0.00b 

rs734194 TT TG GG T G G 

[27,28, 33] 
SCZ (n=200) 70 27 4 83 17 31 

HI (n=250) 54 37 9 73 27 46 

Pcorrected= 0.01a 0.02b 

rs11575945 CC CT TT C T T 

[25,26, 30] 
SCZ (n=225) 24 56 20 52 48 76 

HI (n=225) 58.3 36.4 5.3 76 24 42 

Pnominal= 0.00a 0.00b 

rs1049550 GG GA AA G A A 

unpublished 
SCZ (n=225) 30 53 17 56 44 70 

HI (n=225) 34 48 18 58 42 66 

Pnominal= 0.64a 0.42b 

rs1057369 AA AG GG A G G 

[32] 
SCZ (n=330) 27 55 18 55 45 73 

HI (n=326) 18 53 29 45 55 82 

Pcorrected= 0.00a 0.02b 

rs956572 GG GA AA G A A 

[32] 
SCZ (n=330) 34 53 13 60 40 66 

HI (n=326) 36 46 18 59 41 64 

Pcorrected= 1.81a 1.63b 

rs1801018 AA AG GG A G G 

[32] 
SCZ (n=330) 26 55 19 54 46 74 

HI (n=326) 21 57 22 49 51 79 

Pcorrected= 0.37a 0.35b 

a Comparison of minor allele frequency between SCZ and HI.  
b Comparison of minor allele carriage between SCZ and HI. 

Table 4. Genotype, allele, and minor allele carriage frequencies of the selected SNPs in patients with PTSD and HI. 

SNP ID Genotypes Alleles Carriage Ref. 

rs1366116 CC CT TT C T T 

[26,31] 
PTSD (n=87) 39 41 20 60 40 61 

HI (n=75) 60 32 8 76 24 40 

Pcorrected= 0.01a 0.02b 

rs3892909 CC CT TT C T T 

[26,31] 
PTSD (n=87) 18 52 30 44 56 82 

HI (n=75) 20 55 25 47 53 80 

Pcorrected= 1.7a 2.4b 

rs11575945 CC CT TT C T T 

[26,31] 
PTSD (n=80) 79 17 4 87.5 12.5 21 

HI (n=75) 71 28 1 85 15 29 

Pcorrected= 1.4a 0.75b 

rs956572 GG GA AA G A A 

upublished 
PTSD (n=132) 14 46 40 37 63 86 

HI (n=131) 35 47 18 59 41 65 

Pnominal= 0.00a 0.00b 

a Comparison of minor allele frequency between PTSD and HI;  
b Comparison of minor allele carriage between PTSD and HI. 

Table 5. Genotype, allele, and minor allele carriage frequencies of the selected SNPs in patients with IS and HI. 

SNP ID Genotypes Alleles Carriage Ref. 

rs628117 AA AG GG A G G 

[23] 
IS (n=127) 17 47 36 41 59 83 

HI (n=128) 37.5 40 22.5 57 43 62.5 

Pcorrected= 0.00a 0.00b 

rs1366116 CC CT TT C T T unpublished 
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SNP ID Genotypes Alleles Carriage Ref. 

IS (n=172) 41 36 23 59 41 59 

HI (n=225) 53 38 9 72 28 47 

Pcorrected= 0.00a 0.03b 

rs3892909 CC CT TT C T T 

unpublished 
IS (n=172) 23 50 27 46 54 77 

HI (n=225) 20 52 28 47 53 80 

Pcorrected= 1.4a 1.0b 

rs11575945 CC CT TT C T T 

unpublished 
IS (n=94) 48 42 10 69 31 52 

HI (n=110) 75 25 0 88 12 25 

Pnominal= 0.00a 0.00b 

a Comparison of minor allele frequency between IS and HI.  
b Comparison of minor allele carriage between IS and HI. 

The distribution of genotypes for all selected SNPs in all 

study groups complied with H-W equilibrium. 
Significant associations (either positive or negative) were 

found between: (1) SCZ and BDNF rs6265, CPLX2 

rs1366116, CPLX2 rs3892909, NGF rs6330, NGF 

rs4839435, NGFR rs734194, NGFR rs11466155, NGFR 

rs2072446, ANXAV rs11575945, BAX rs1057369 SNPs; (2) 

PTSD and CPLX2 rs1366116, BCL2 rs956572 SNPs; (3) IS 

and NTNG1 rs628117, CPLX2 rs1366116, ANXAV 

rs11575945 SNPs.  

Based on character of association (positive or negative), 

minor alleles of the BDNF gene rs6265 SNP, CPLX2 

rs1366116 SNP, NGF gene rs6330 and rs4839435 SNPs, 

NGFR gene rs2072446 SNP, and ANXAV gene rs11575945 

SNP, can be considered risk factors of SCZ, whereas the 

presence of minor alleles of the CPLX2 gene rs3892909, 

and NGFR gene rs734194 and rs11466155 SNPs, and BAX 

gene rs1057369 SNP decreases the risk for development of 

this disorder.  

In case of PTSD, the CPLX2 gene rs1366116 SNP and 

BCL2 gene rs956572 SNP were identified as risk factors for 

this diseased condition.  

Finally, data obtained in case of IS demonstrated that 

minor alleles of the NTNG1 gene rs628117 SNP, CPLX2 

gene rs1366116 SNP and the ANXAV gene rs11575945 SNP 

increase risk for development of stroke.  

Brain-derived neurotrophic factor promotes several 

functions of neurons, modulates neurotransmission, 

contributes to neuronal growth, survival, and differentiation, 

and regulates synaptic transmission and cognitive processes 

[36]. The missense rs6265 SNP of the BDNF gene affects 

activity-dependent secretion of this neurotrophic factor, 

memory, and hippocampus functions [37]. Association of 

the BDNF gene rs6265 SNP with human cortical 

morphology and bilateral reductions of hippocampus gray 

matter volumes in the rs6265*A minor allele carriers 

compared with the standard rs6265G allele homozygotes 

was demonstrated [38], and a crucial role of this SNP in 

neuroplasticity alterations in SCZ was revealed [39]. In 

addition, a relationship of the rs6265 genotypes with age of 

onset and the psychotic symptoms of SCZ was observed 

[40]. Moreover, the BDNF gene rs6265*A minor allele was 

found to associate with increased aggressive behavior in 

SCZ-affected subjects [41]. However, the results from the 

meta-analyses of association of the BDNF gene rs6265 SNP 

with SCZ are controversial, which may reflect the ethnic 

differences between studied groups [42,43]. According to 

our data, in Armenian population the rs6265*A minor allele 

frequency was significantly higher in patients with SCZ 

than in HI, and the carriers of this allele were 

overrepresented in patients compared with HI 

[20-22,24,28-30]. Our results are in concordance with the 

recent meta-analysis data [42]. We also demonstrated that 

SCZ is characterized by decreased blood levels of 

brain-derived neurotrophic factor and that this parameter is 

lower in the BDNF gene rs6265*A minor allele carriers 

compared to standard rs6265G allele homozygotes [30].  

Neuroprotein netrin G1 is an important promoter of 

neurite outgrowth, regulator of synapse formation and 

functional activity [44]. Changes in expression levels of the 

NTNG1 gene were found in a number of diseases 

characterized by altered synaptic plasticity including SCZ, 

bipolar disorder, temporal lobe epilepsy, and Rett syndrome 

[45-49]. Nevertheless, only few studies have evaluated 

possible association between the NTNG1 gene 

polymorphisms and diseased conditions. Among those are 

genome wide association study shown no association 

between common SNPs of the NTNG1 gene and anorexia 

nervosa in Europeans [50], study  of  Zhu et al [51] 

demonstrated positive association of the NTNG1 gene 

rs4132604 SNP and the haplotype of rs4132604, rs2218404, 

and rs1373336 SNPs of this gene with SCZ. In addition, 

analyzes of 21 SNPs of the NTNG1 gene in 124 Japanese 

schizophrenic pedigrees revealed association of SCZ with 

specific haplotypes encompassing alternatively spliced 

exons, SNPs, and haplotypes clustered in the 5'-region of the 

NTNG1 gene [45].  Further, Ohtsuki et al investigated 56 

tag SNPs of the NTGN1 gene and found association between 

SCZ and the rs628117 SNP located in intron 9 in the same 

haplotype block [48]. However, our own data presented in 

this review demonstrated no association between the 

rs628117 SNP and SCZ in Armenian population [20,22,24]. 

This discrepancy between our results and those reported by 

Ohtsuki et al most probably reflects population/ethnic 

differences between the study groups. Our study for the first 

time demonstrated the presence of positive association 

between the rs628117 SNP of the NTNG1 gene and IS [23]. 

Association between any functional SNP of the NTNG1 gene 
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and IS has not been assessed before in any population. 

Complexin-2 is a member of complexin family of 

presynaptic regulatory proteins expressed mainly by 

excitatory neurons [52]. It has been shown that 

downregulation of complexin-2 might lead to changes in 

neurotransmitter release and deficit in synaptic transmission 

causing significant cognitive and behavioral abnormalities 

and is implicated in pathogenesis and progression of many 

diseased conditions characterized by altered cognitive 

function and behavior [53,54]. In particular, decreased 

expression levels of this protein in the prefrontal cortex, 

cerebellum, and hippocampus of patients with SCZ were 

observed [55], and our own studies revealed decreased 

production of complexin-2 protein in the blood of SCZ [30] 

and PTSD [14,15,18] affected subjects. The results obtained 

in our study with the CPLX2 gene indicated that the 

rs1366116*T minor allele of this gene was overrepresented 

in SCZ, PTSD, and IS patients when compared to HI 

suggesting a positive association of this polymorphism with 

these diseased conditions [26,30]. While no association 

between the CPLX2 rs3892909 SNP and PTSD [26,31] or IS 

[unpublished data] was found, rs3892909*T minor allele of 

this SNP was more frequent in controls than in SCZ patients 

[26,30] indicating protective role of this allele against SCZ. 

It should be noted that these are the first studies exploring 

association of the CPLX2 gene rs1366116 and rs3892909 

SNPs in PTSD and IS in any population. Regarding SCZ, 

earlier it was shown that current cognitive performance in 

SCZ patients is modified by a number of CPLX2 variants 

modulating posttranscriptional gene expression, and that a 

haplotype covering six SNPs, including rs1366116 and 

rs3892909, showed high association with this disease [56]. 

Nerve growth factor and its receptor are other essential 

mediators of synaptic and morphological plasticity, neuronal 

growth, survival, and differentiation, especially in the 

developing brain [57,58]. The mature form of nerve growth 

factor derives from a precursor, which was recently 

discovered to exert crucial brain functions responsible for 

mood and cognitive activities [59]. It was reported that in 

generalized anxiety disorder the blood levels of nerve 

growth factor increase after successful cognitive behavioral 

therapy [60]. Moreover, decreased blood levels of this 

protein in patients with SCZ were observed [61,62]. Also, it 

has been shown that chronic cannabis abuse raises NGF 

serum concentrations in drug-naive patients with SCZ 

compared to HI [63]. The results of our study demonstrate a 

positive association between SCZ and the rs6330 SNP of the 

NGF gene as well as the rs11466155 and rs2072446 SNPs of 

the NGFR gene [27,28,33]. Also, a negative association 

between this disorder and rs4839435 SNP of the NGF gene 

as well as the rs734194 SNP of the NGFR gene was found 

[27,28,33]. A non-synonymous rs6330 SNP of the NGF 

gene is thought to affect intracellular processing and 

secretion of the NGF protein [64]. Earlier it was shown that 

the rs6330 SNP is associated with executive dysfunction in 

patients with Alzheimer’s disease, anxiety related traits and 

affective disorders [65]. However, study of association 

between SCZ and the rs6330 SNP of the NGF gene has been 

performed for the first time by us [27,28,33]. The same 

applies to the rs4839435 SNP of the NGF gene [27,33]. 

Another polymorphism of the NGF gene, the rs12760036 

SNP was shown to associate with susceptibility to SCZ in 

Korean population, and significant differences in the AG 

and CA haplotype frequencies in the linkage disequilibrium 

block within the rs12760036 and rs4839435 SNPs between 

SCZ patients and HI were found indicating the 

rs12760036*C minor allele as a risk factor for SCZ in 

Koreans [66]. Regarding the NGFR gene SNPs, our study 

for the first time demonstrated association of the rs2072446, 

rs11466155 and rs734194 SNPs of this gene with SCZ 

[27,28,33]. Notably, the rs11466155 synonymous SNP of 

the NGFR gene was not studied before in any diseased 

condition. It has to be also mentioned that no data relative to 

functional state of nerve growth factor and its receptor in 

SCZ either at protein or genetic levels were reported before. 

The rs2072446 SNP of the NGFR gene and the haplotype 

containing the rs734194 SNP in the 3'-UTR region of the 

NGFR gene were recently found to be associated with an 

increased risk of Alzheimer’s disease in Chinese [67]. 

Annexin-A5 protein is able in the presence of Ca
+2 

to bind 

to negatively charged phospholipids, which from the early 

stages of apoptosis already transfers from the inner to the 

outer membrane of a cell undergoing apoptosis [68-69]. 

Annexin-A5 is an important modulator of the process of 

phagocytosis of apoptotic cells and inflammatory reactions 

directed to removal of dying cells. Increased levels of this 

protein induce development of inflammatory reactions 

[70-72], which are characteristic features of SCZ [22], 

PTSD [14], and IS [73]. The increased serum levels of this 

protein were found by us in IS [19] and SCZ [25] and by 

other research group in SCZ [74], and we also detected the 

decreased levels of this protein in PTSD [15,18]. The 

rs11575945 SNP (-1C/T) in the Kozak consensus sequence 

of the regulatory part of the ANXAV gene plays a key role in 

the initiation of transcription [75], and the rs1157945*T 

minor allele of this gene correlates with the higher level of 

synthesis of this protein in the blood [75]. All mentioned 

above initiated our interest to study this SNP in SCZ, PTSD 

and IS. In case of IS, the rs1157945 SNP represents a special 

interest, since earlier it was shown that the rs1157594 SNP 

of the ANXAV gene positively associates with cardiovascular 

disorders [75] and that rs1157594*T minor allele of this SNP 

increases the risk for development of venous thromboses 

[76]. While our results on genotyping of the rs1157945 SNP 

of the ANXAV gene suggest no association between this SNP 

and PTSD [26,31], we revealed positive association between 

the rs1157945 SNP and SCZ [25,26,30] as well as the 

rs1157945 SNP and IS [unpublished data]. These results 

enable to consider the T minor allele of the rs1157945 SNP 

as a risk factor for both SCZ and IS. It has to be mentioned 

that in the earlier published study the association between 

SCZ and functional SNP of another representative of the 

annexin family, the ANXA7 gene, was shown [77]. Also, in 

our study presented here we found no association between 
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the ANXA11 gene functional rs1049550 SNP and SCZ 

[unpublished], whereas results of our previous 

investigations indicated increased expression levels of this 

gene in SCZ [16]. 

A family of Bcl-2 proteins constitutes one of the most 

biologically relevant classes of apoptosis regulators acting at 

the effecter stage of apoptosis, with some members 

functioning as suppressors of apoptosis and others as 

promoters of apoptosis. The ultimate vulnerability of cells to 

diverse apoptotic stimuli is determined by the relative ratio 

of various pro-apoptotic and anti-apoptotic members of the 

Bcl-2 family [78,79]. Bcl-2 proper and Bax are members of 

the Bcl-2 family proteins [80]. Bcl-2 proper is an integral, 

membrane-associated protein with anti-apoptotic and 

antioxidative effects [80,81]. Bcl-2 is a major anti-apoptotic 

protein that inhibits apoptotic and necrotic cell death 

induced by a diverse set of adverse conditions [82]. Bcl-2 

also plays critical roles in neuronal morphogenesis and 

synaptic plasticity [83,84], and reduced Bcl-2 function is 

hypothesized to contribute to the impairment of cellular 

plasticity and resilience in patients with mood disorders [82]. 

BAX is pro-apoptotic member of the family of Bcl-2-related 

proteins, which has an extensive amino acid homology with 

Bcl-2 [85, 86]. Whether the cell will live or die may depend 

on the level of either protein; while Bcl-2 prevents death, 

BAX is a death promoter [78-80]. Postmortem studies 

demonstrated the increased expression level of BAX 

encoding gene [87] as well as high BAX/Bcl-2 proteins ratio 

in the temporal cortex of patients with SCZ [88]. However, it 

is yet unclear whether these pathologic alterations are 

genetically determined or caused by other factors. The 

potential association between SCZ and functional SNPs of 

genes encoding Bcl-2 family proteins, BAX rs1057369 and 

BCL2 rs956572, rs1801018, was assessed for the first time 

by us [32], and no study has yet explored these SNPs in SCZ 

in any other population. The same applies to our study on 

evaluation of association between the BCL2 gene rs956572 

SNP and PTSD [unpublished data]. The BAX gene 

rs1057369 SNP was found by us negatively associated with 

SCZ: the presence of BAX rs1057369*G minor allele, 

especially in homozygous form, was associated with 

decreased risk of developing SCZ [32]. It has to be 

mentioned that no data on association of this SNP with any 

diseased condition has been reported before. Opposite to the 

BAX gene rs1057369 SNP, the BCL2 gene rs1801018 and 

rs956572 SNPs have been intensively studied in different 

conditions. The rs1801018 SNP was mostly found to be 

associated with oncological disorders [89-92] as well as with 

poorer clinical outcomes and mortality in patients with 

traumatic brain injury [93]. The rs956572 SNP was shown to 

associate with the risk for developing bipolar disorder and 

was nominated as modulator of the expression of Bcl-2 

protein and cellular vulnerability to apoptosis [94]. 

Preclinical studies show that this SNP exerts functional 

effects on Bcl-2 expression, as the A homozygous genotype 

is associated with significantly lower Bcl-2 mRNA 

expression, 50% lower Bcl-2 protein levels, and greater 

cellular sensitivity to stress-induced apoptosis [94]. This 

SNP was reported to affect gray matter volume in areas 

known to play key roles in the neurobiology of reward 

processes and emotion regulation and in the 

pathophysiology of mood disorders [95]. Also, it was 

demonstrated that the rs956572 SNP may modulate 

cognitive function and regional gray matter volume in 

non-demented elderly men, and affect language 

performance through its effect on the right middle temporal 

gyrus [96]. In addition, it was shown that the rs956572 SNP 

associates with increased anterior cingulate cortical 

glutamate [97] and disrupted intracellular calcium 

homeostasis in bipolar I disorder [98] and that abnormal 

BCL2 gene expression in the AA genotype of the rs956572 

SNP contributes to dysfunctional Ca
2+

 homeostasis [99]. 

Our study revealed no association between SCZ and the 

BCL2 gene rs956572 and rs1801018 SNPs [32] and 

indicated positive association between the BCL2 gene 

rs956572 SNP and PTSD [unpublished data]. 

In summary, with regard to the genes encoding the 

synaptic plasticity regulatory proteins, we found positive 

associations between SCZ and the BDNF gene rs6265 SNP, 

the NGF gene rs6330 and rs4839435 SNPs, as well as the 

NGFR gene rs2072446 SNP, whereas negative association 

with this disorder was found for the CPLX2 gene 

rs3892909 SNP as well as the NGFR gene rs734194 and 

rs11466155 SNPs. For the CPLX2 gene rs1366116 SNP 

positive association with all three diseases was found, and 

the same association was detected between IS and the 

NTNG1 gene rs628117 SNP.  

In case of the genes encoding the apoptosis regulatory 

proteins, we found positive associations of the ANXAV gene 

rs11575945 SNP with both SCZ and IS as well as of the 

BCL2 gene rs956572 SNP with PTSD. Also, we 

demonstrated that proapoptotic BAX gene rs1057369 SNP is 

negatively associated with SCZ.  

Since our studies refer to one distinct population 

(Armenians), the obtained results, particularly those reported 

by us for the first time, should be replicated in other populations. 

Not all genes assessed in SCZ have been evaluated by us in 

PTSD and IS. This should be done in the future studies and 

more functional SNPs of the selected genes should be 

investigated in each disorder to have a complete view on the 

role of genetic predisposition and gene-environment 

interactions in pathomechanisms of SCZ, PTSD, and IS.  

4. Conclusions 

On the basis of the obtained results we conclude that 

genetically determined alterations in synaptic plasticity and 

apoptosis are involved in pathomechanisms of SCZ, PTSD, 

and IS. The minor T allele of the CPLX2 gene rs1366116 

polymorphism represents risk factor for all studied diseased 

conditions indicating important functional significance of 

this genetic variation in maintenance of synaptic plasticity. 

Another important conclusion of these studies is that minor 

alleles of some polymorphic variants of genes, encoding 



26 Anna Boyajyan et al.:  Genetic Variations Associated with Brain Disorders: Focus on Synaptic Plasticity and  

Apoptosis Regulatory Genes in Schizophrenia, Posttraumatic Stress Disorder and Ischemic Stroke 

synaptic plasticity and apoptosis regulatory proteins, may 

play a protective role relative to SCZ decreasing the risk for 

development of this disorder. In summary, our studies 

emphasize the important contribution of changes in 

synaptic plasticity and apoptosis regulation to 

pathomechanisms of SCZ, PTSD, and IS as well as 

significant input of genetic factors to these changes. 
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