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Abstract: The chief aspect of solving Optimal Reactive Polispatch Problem (ORPD) is to minimize the real pow
loss and also to keep the voltage profile withim limits. In this paper, a new metaheuristic opting algorithm that is the
simulation of “Grand Salmon Run” (GSR) is develop&tle salmon run phenomena is one of the grandadmaiural
actions occurrence in the North America, whereiomB of salmons travel through mountain streamssfmawn. The
proposed GSR has been validated, by applying gtandard IEEE 30 bus test system. The results hese compared to
other heuristics methods and the simulation reseltsals about the good performance of the propakgxtithm.
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1. Introduction 2. Problem Formulation

Reactive power optimization plays a vital job irtioml ) .
operation of power systems. Many papers by various The Optlmgl_Pgwelr Flow problem has been considered
authors has been projected to solve the optimaitivea 25 general minimization problem with constraints] @an

power dispatch (ORPD) problems such as, gradiased P€ Mathematically written as :

optimization algorithm [1,2], quadratic programmintpn Minimize f(x, u) (1)
linear programming [3] and interior point method7} In : _

recent years standard genetic algorithm (SGA) [&] toe Subject to g(x, u)=0 2)
adaptive genetic algorithm (AGA) [9], Partial swarmgng
optimization PSO [10-11] have been applied for isgv
ORPD problems. The inability of the power systenmiget h(x,u) <0 3)
the demand for reactive power to preserve reguitage
profile in stressed situations acts very significamie in
causing voltage collapse. In the past many innoegati
algorithms such as Evolutionary Algorithm [12-13],
Genetic algorithm [14-15], Evolutionary strategj&6-18],
Differential Evolution [19-20], Genetic programmirfgl]
and Evolutionary programming [22] are used to sohany
rigid problems in optimization. In this researchpea
Grand Salmon Run [23-24] is used to solve the ORPD _ T
Problem. This algorithm (GSR) is applied to obtie %= (Per, B0, B, Vi, Vinss Qg+ Qng) - (4)
optimal control variables so as to improve the ag#t  The control variables are the generator bus vostatie

stability level of the system. The performance b€t shunt capacitors and the transformers tap-settings:
proposed method has been tested on IEEE 30 busnsyst

and the results are compared with the standard @A a u= (vg, T, QC)T (5)
PSO method.

Where f(x, u) is the objective function. g(x. u)dam(x, u)
are respectively the set of equality and inequality
constraints. x is the vector of state variables| ans the
vector of control variables.

The state variables are the load buses (PQ buses)
voltages, angles, the generator reactive powers thad
slack active generator power:

or



78

T
u= (Vg1, e, Vgng, Tor -, Tnw Qe -5 Qenve) (6)

Where Ng, Nt and Nc are the number of generators,
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Upper and lower bounds on the transformers tapsati

TN < T, < TM9* i € Ny (15)

number of tap transformers and the number of shunt Upper and lower bounds on the compensators reactive

compensators respectively.

3. Objective Function
3.1. Active Power Loss

The goal of the reactive power dispatch is to miném
the active power loss in the transmission netwarkich
can be mathematically described as follows:

F = PL = Yyenpr g (V2 + Vi — 2ViVjcos0;;)  (7)
or

F =PL ZZiENngi_Pd =Pgslack +ZNg

i#slack

Pgi_Pd (8)

powers:

QU™ < Q. < QI"™*,i € N (16)

Where N is the total number of buses; N the total
number of Transformers; Ns the total number of shunt
reactive compensators.

4. Grand Salmon Run

Grand salmon run phenomena is one of the annual
natural events happening in the North America. And
millions of salmons move about through mountaieatns
for spawning. Since these creatures provide onengrtite
food sources for living organisms, their way upstneis

Where g : is the conductance of branch between nodesfilled with serious danger. Among them, hungry Gljz

and j, Nbr: is the total number of transmissioredinin
power systems. fPis the total active power demang;: s
the generator active power of unit i, angs.f is the
generator active power of slack bus.

3.2. Voltage Profile Improvement

For minimization of the voltage deviation in PQ ésis

the objective function formulated as:
F=PL+w, XVD 9)

Wherew,: is a weighting factor of voltage deviation.
VD is the voltage deviation given by:

VD = ¥V, — 1] (10)
3.3. Equality Constraint

The equality constraint g(x, u) of the ORPD problism
represented by the power balance equation, wheréothl
power generation must envelop the total power deinagua
the power losses:

PG = PD + PL (11)
3.4. Inequality Constraints

The inequality constraints h(x, u) imitate the lisnbn

bears, human fishers and also waterfalls are nritstat
dangers that they have to face. The hungry Grib&grs
gather together in timbered valleys where they Hhont
whatever food source they can find. However, thap c
barely find food and also they are in threat by dryn
wolves. Salmons are the most significant food sador
these hungry bears. Bears converse with each tHerd

a way with higher amount of plump salmons. In falegy
follow the swarm intelligence system for huntingnsans
with superior merits. Humans are one of the othey k
hunters of salmons. These fishers often assemtAdaska
where there is a fitting condition for hunting ampbf
salmons. Humans often imitate some miscellaneous
heuristic methodologies to find a region that pesee
salmons with higher class and number. They emptouts
ships for investigate the whole way region. The ofghe
fishers are incorporated in areas with higher salmo
concentration. At the commencement of the salmon’s
relocation, they divide into subgroups using thefuition

and some stochastic interprets. Each of these group
follows dissimilar pathways to their target. Sonfethem
choose timbered passages which are full of difteuesafe
hunters such as Grizzly bears and salmon sharkie whi
others move towards oceans, lakes and ponds. ®heept
has been utilized to create a novel intellectuainaipation
algorithm. Fig 1,2,3,4 shows about the salmon rmyet,

components in the power system as well as the dimithynted by bear, flow through timbers and get huritgd
created to guarantee system security. Upper ancrlowfisher men.

bounds on the active power of slack bus, and neacti

power of generators:

;;igck < Pgslack < ;;%cck (12)
it < Qg < QUi € Ny (13)

Upper and lower bounds on the bus voltage magrstude

Vimin < VL < Vimax ,i eEN (14)

Fig 1. Grand Salmon Run.
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4.2. Pathways for Movement

Before movement, salmons decide their pathway based
on their intuition. This suggests a stochastic #imgf
control parameter for thrusting the salmon groupgidl
solutions) in both pathways (evolutionary opergtors
Equation (18) formulates a numerical form of this
procedure.

Np, = [u*~]

18
NP2=PS_NP1 ( )

solution sharing : {

Where Np, is the number of salmon groups passing
through ocean and ponds;, is the number of salmon
group passing through forested regions and mountain
canyons,P, is the number of all salmon groups which
participate in the migration andis a sharing factor that
represents the salmon’s instinct.
A. Crossing Lakes and Ponds

Fig 5. Salmon crossing the water flow.

This investigation has been shown in Fig 5 andbwess
mathematically modelled as

{XN = Xp +6(t, (ub — Xp))
Xy =Xp +6(t, Xz — b))

(19)

Fig 4. Salmon get hunted by fishermen.

The investigational proof shows that these creatheve Where t represents the current iteration numBigr,
a preference to cross from ponds and lakes modiethen  represents a new detected region (new solution)Xand
canyons and timbered passages [25]. Each of thage i@  shows the former region of the scout ship (fornuutson).
integrated with their own natural menaces. Commaerci 6(x,y) is Calculated using equation (20).
fishers are focussed on the ponds and ocean pathway

b
while Grizzly bears hunt the salmons that passuigo 5(x,y) = y * rand * (1 —g) (20)
mountain’s canyons and timbered regions [26]. Eath
these two main hunters utilizes different techngder WhereT is the number of the maximum iteratidnis a

hunting salmons with higher virtues. GSR utilizeaddove random number larger than 1 and rand is a randanbau

steps to handle an optimal reactive power dispptoblem. spanning to 0 and 1 with a uniform allocation.
o The main hunters find regions with an acceptabimea
4.1. Initialization concentration (solution fitness). After that, thiaform the

The solutions are initialized stochastically witheg on _recrmted agent o _Ut'l'z_e ne_arby regions to_ _flna_bren
each side of to the passage supremacy (betweerr lovigtense areas (solution with hlgher fltn_ess). ThiBzation
bound and upper bounds). Equation (17) represents hgs been accurately modelled in equation (21).
procedure which is_used to initialize random solgi with Xp =B * KXo — Xurz) + Xop1 (21)
respect to the solution space.

Wherep is a random number spanning to 0 and 1 with
[nitial solution = lb +rand x (ub = 1b)  (17)  yniform distribution, % represents the new detected
olution by the recruited agent,,Xis the solution obtained
)y the first main hunter andyX is the solution obtained by
the second one.

Where |Ib and ub are the lower and upper bound
respectively and rand is a random number with adeg
each side of to 0 and 1 with a standardized allocat
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4.3. Crossing Mountain Canyons and Forested Regions The transformer taps and the reactive power source
) ) ) installation are discrete with the changes step.01. The
The second operator simulates the Grizzly bearsiin ,q\yer |imits generators buses are represented bieZa

line of attack. They always notify each other i€¥Hind &  5anerators buses are: PV buses 2.5.8.11,13 andslads
suitable region. If they find an area with high@inson 1 .0 Gihers are PQ-buses.

intensity, they inform other bears. Bears huntingg lof

attack is scientifically expressed in equation (22) Table 2. Generators Power Limitsin MW and MVAR,
Xp = cos((p) * (BR _ LR) + By (22) Bus n° Pg Pgmin Pgmax Qgmin
1 97.00 50 200 -20
Where X% represents a new detected regioR, i the 2 80.00 22 80 -20
best reported region by the hunting team,id.the current 7Y i Pe S
. . . 8 20.00 11 32 -14
region for which the bears have decided to perfariocal 11 20.00 11 o8 10
exploitation andp is an arbitrary angle with a leg on eact 13 20.00 13 40 14
side of to 0 and 360 degrees. co} directs the bears to
their destination. Table 3. Values of Control Variables after Optimization and Active Power
Loss.
4.4. Regrouping for Spawning Conto o
At the end of the relocation, the survived salmgather ivn abicSl )
together in their target for spawning. In GSR, thigural x; izggjé
event is simulated through a collection trunk. Agalmons V5 1.0204
pass through their pathways (operator’'s performartbe V8 1.0261
salmon subgroups (solutions) are collected in aumi Vil 1.0721
trunk. In other words, the solutions are extradtech both 'I}ﬁll:l3_2 160381
operators and make a unique population. At thite sthe Té,g 002
algorithm has reached the end of the first iteratio 76,10 0.90
GSR algorithm for solving optimal reactive powel 728,27 0.90
problem. Q10 0.10
+ Step 1. Setting the control parameters (populatic P(Ecz)‘és 4%;81
size, solution space, number of variables VD 0.8992
iterations )

+ Step2. Initialize the salmon subgroups randomly ~ The proposed approach succeeds in maintenance the

» Step3. Choosing the pathways depend omlependent variables within their limits. Table 4nsoarize
migrationu. the results of the optimal solution obtained by PSGA

» Step4.compute the fitness of hunted salmomnd GSR methods. It reveals the decrease of reaempo
(hunted by Grizzly bears, human fishers, scoufoss after optimization.

ships)
«  Step5. Gather together salmon for spawn Table 4. Comparison Results.
» Step6. If yes take out the global solution or go ti SGA[9] PSO[10] GSR
step 3. 4.98 Mw 4.9262Mw 4.8901Mw
5. Simulation Results 6. Conclusion

GSR algorithm has been tested on the IEEE 30-Hus, 4 |n this paper, the proposed GSR has been sucdgssful
branch system. It has a total of 13 control vadabas implemented to solve ORPD problem. The main adggnta
follows: 6 generator-bus voltage magnitudes, %f the algorithm is solving the objective functiwith real
transformer-tap settings, and 2 bus shunt reactivepded of both continuous, discrete control varigsbknd
compensators. Bus 1 is the slack bus, 2, 5, 8ntil18 are easily handling nonlinear constraints. The proposed
taken as PV generator buses and the rest are B@isas.  algorithm has been tested on the IEEE 30-bus sysienh
The variables limits are listed in table 1. the results were compared with the other heuriatithods

» ) o such as SGA and PSO algorithm reported in thealitiee.
Table 1. Initial Variables Limits (PU).

Min. Max.

Control variables value it Type R f
ren
Generator: Vg 0.90 1.10 Continuous ererences
road Busi Vi 053 1.03 LTS [1] H.W. Dommel, W.F. Tinney. Optimal power flow solurtis.
! 092 1.03 DIEEEE IEEE, Trans. On power Apparatus and Systems, V@S-P

Qc 0.11 0.32 Discrete 87, octobre 1968,pp.1866-1876.
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