
 

International Journal of Energy and Power Engineering 
2014; 3(1): 1-6 

Published online January 20, 2014 (http://www.sciencepublishinggroup.com/j/ijepe) 

doi: 10.11648/j.ijepe.20140301.11  

 

 

Adaptive bacterial foraging oriented particle swarm 
optimization algorithm for solving optimal reactive power 
dispatch problem 

K. Lenin
1, *

, B. Ravindranath Reddy
2
, M. Surya Kalavathi

3
 

1Research Scholar, Jawaharlal Nehru Technological University Kukatpally, Hyderabad 500 085, India  
2Deputy Executive Engineer, Jawaharlal Nehru Technological University Kukatpally, Hyderabad 500 085, India 
3Professor of Electrical and Electronics Engineering, Jawaharlal Nehru Technological University Kukatpally, Hyderabad 500 085, India 

Email address: 

gklenin@gmail.com (K. Lenin) 

To cite this article: 
K. Lenin, B. Ravindranath Reddy, M. Surya Kalavathi. Adaptive Bacterial Foraging Oriented Particle Swarm Optimization Algorithm for 

Solving Optimal Reactive Power Dispatch Problem. International Journal of Energy and Power Engineering.  

Vol. 3, No. 1, 2014, pp. 1-6. doi: 10.11648/j.ijepe.20140301.11 

 

Abstract: This paper presents an algorithm for solving the multi-objective reactive power dispatch problem in a power 

system. Modal analysis of the system is used for static voltage stability assessment. Loss minimization and maximization of 

voltage stability margin are taken as the objectives. Generator terminal voltages, reactive power generation of the capacitor 

banks and tap changing transformer setting are taken as the optimization variables. Evolutionary algorithm and Swarm 

Intelligence algorithm (EA, SI), a part of Bio inspired optimization algorithm, have been widely used to solve numerous 

optimization problem in various science and engineering domains. Bacterial Foraging Optimization Algorithm (BFOA) has 

recently emerged as a very powerful technique for real parameter optimization. In order to overcome the delay in 

optimization and to further enhance the performance of BFO, this paper proposed a new hybrid algorithm combining the 

features of BFOA and Particle Swarm Optimization (PSO) called Adaptive bacterial foraging oriented particle swarm 

optimization (ABF-PSO) for solving reactive power dispatch problem .The simulation results demonstrate good 

performance of the ABF-PSO in solving an optimal reactive power dispatch problem. In order to evaluate the proposed 

algorithm, it has been tested on IEEE 30 bus system and compared to other algorithms reported those before in literature. 

Results show that (ABF-PSO) is more efficient than others for solution of single-objective ORPD problem. 

Keywords: Bacterial Foraging Optimization Algorithm, Particle Swarm Optimization, Optimal Reactive Power, 

Transmission Loss 

 

1. Introduction 

Optimal reactive power dispatch problem is one of the 

difficult optimization problems in power systems. The 

sources of the reactive power are the generators, 

synchronous condensers, capacitors, static compensators 

and tap changing transformers. The problem that has to be 

solved in a reactive power optimization is to determine the 

required reactive generation at various locations so as to 

optimize the objective function. Here the reactive power 

dispatch problem involves best utilization of the existing 

generator bus voltage magnitudes, transformer tap setting 

and the output of reactive power sources so as to minimize 

the loss and to enhance the voltage stability of the system. 

It involves a non linear optimization problem. Various 

mathematical techniques have been adopted to solve this 

optimal reactive power dispatch problem. These include the 

gradient method [1, 2], Newton method [3] and linear 

programming [4-7].The gradient and Newton methods 

suffer from the difficulty in handling inequality constraints. 

To apply linear programming, the input- output function is 

to be expressed as a set of linear functions which may lead 

to loss of accuracy. Recently 

Global Optimization techniques such as genetic 

algorithms have been proposed to solve the reactive power 

flow problem [8.9]. In recent years, the problem of voltage 

stability and voltage collapse has become a major concern 

in power system planning and operation. To enhance the 

voltage stability, voltage magnitudes alone will not be a 

reliable indicator of how far an operating point is from the 
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collapse point [10]. The reactive power support and voltage 

problems are intrinsically related. Hence, this paper 

formulates the reactive power dispatch as a multi-objective 

optimization problem with loss minimization and 

maximization of static voltage stability margin (SVSM) as 

the objectives. Voltage stability evaluation using modal 

analysis [10] is used as the indicator of voltage stability. 

Natural selection tends to eliminate animals with poor 

foraging strategies and favor the propagation of genes of 

those animals that have successful foraging strategies since 

they are more likely to enjoy reproductive success. After 

many generations poor foraging strategies are either 

eliminated or shaped into good ones. Based on the 

researches on the foraging behavior of E-coli bacteria K.M. 

Passino proposed a new Evolutionary computation 

technique known as Bacterial Foraging Optimization 

Algorithm (BFOA) [11], briefly explained in the following 

sections. However, during the process of chemo taxis, the 

BFOA depends on random search directions which may 

lead to delay in reaching global solution. In order to speed 

the convergence of Bacterial Foraging Optimization W. 

Karoni had proposed an improved BFOA namely BF-PSO 

[12]. The BF-PSO algorithm borrowed the ideas of velocity 

updating from particle swarm optimization (PSO), the 

search directions specified by the tumble of bacteria are 

oriented by the individual best location and global best 

locations concurrently. To reduce the time of optimization 

and to accelerate the convergence speed of group of 

bacteria near global optima for this BFO-PSO we propose a 

new hybrid algorithm "ABF-PSO" in which the chemo 

tactic step had been made adaptive. The performance of 

(ABF-PSO) has been evaluated in standard IEEE 30 bus 

test system and the results analysis shows   that our 

proposed approach outperforms all approaches investigated 

in this paper. The performance of (ABF-PSO) has been 

evaluated in standard IEEE 30 bus test system and the 

results analysis shows   that our proposed approach 

outperforms all approaches investigated in this paper. 

2. Voltage Stability Evaluation 

2.1. Modal Analysis for Voltage Stability Evaluation 

Modal analysis is one of the methods for voltage stability 

enhancement in power systems. In this method, voltage 

stability analysis is done by computing Eigen values and 

right and left Eigen vectors of a jacobian matrix. It 

identifies the critical areas of voltage stability and provides 

information about the best actions to be taken for the 

improvement of system stability enhancements. The 

linearized steady state system power flow equations are 

given by. 

�∆P
∆Q� � � J�θ      J�
 

J�θ     J�
     �                    (1) 

Where 

∆P = Incremental change in bus real power. 

∆Q = Incremental change in   bus   reactive 

Power injection 

∆θ = incremental change in bus voltage angle. 

∆V = Incremental change in bus voltage Magnitude 

Jpθ, J PV, J Qθ, J QV jacobian matrix are the sub-matrixes of 

the System voltage stability is affected by both P and Q. 

However at each operating point we keep P constant and 

evaluate voltage stability by considering incremental 

relationship between Q and V. 

To reduce (1), let ∆P = 0, then. 

∆Q � �J�
 � J�θJ�θ
��J�
�∆V � J�∆V                 (2) 

∆V � J�� � ∆Q                                        (3) 

Where 

J� � �J�
 � J��J����JPV�                             (4) 

J� is called the reduced Jacobian matrix of the system. 

2.2. Modes of Voltage instability 

Voltage Stability characteristics of the system can be 

identified by computing the Eigen values and Eigen vectors  

Let 

J� � ξ η                                    (5) 

Where, 

ξ = right eigenvector matrix of JR 

η = left eigenvector matrix of JR 

∧ = diagonal eigenvalue matrix of JR and 

J��� � ξ ��η                              (6) 

From (3) and (6), we have 

∆V � ξ ��η∆Q                              (7) 

or 

∆V � ∑ �� �
!�" ∆Q                              (8) 

Where ξi is the ith column right eigenvector and η the ith 

row left eigenvector of JR.  

 λi is the ith Eigen value of JR. 

The ith modal reactive power variation is, 

∆Q#$ � K$ξ$                                   (9) 

where, 

K$ � ∑ ξ$&'& � 1                             (10) 

Where 

ξji is the jth element of ξi 

The corresponding ith modal voltage variation is 

∆V#$ � )1 λ$⁄ +∆Q#$                      (11) 

It is seen that, when the reactive power variation is along 

the direction of ξi the corresponding voltage variation is 
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also along the same direction and magnitude is amplified 

by a factor which is equal to the magnitude of the inverse 

of the ith eigenvalue. In this sense, the magnitude of each 

eigenvalue λi determines the weakness of the corresponding 

modal voltage. The smaller the magnitude of λi, the weaker 

will be the corresponding modal voltage. If |    λi    |    =0 

the ith modal voltage will collapse because any change in 

that modal reactive power will cause infinite modal voltage 

variation.  

In (8), let ∆Q = ek   where ek has all its elements zero 

except the kth one being 1. Then,  

∆V �  ∑ ž�,  ξ�   
λ�$                          (12) 

ž�-     k th element of ž�      
V –Q sensitivity at bus k  

.
/

.�/
� ∑ ž�,  0�   

!�$  � ∑ �,�
!�$                       (13) 

3. Problem Formulation 

The objectives of the reactive power dispatch problem 

considered here is to minimize the system real power loss 

and maximize the static voltage stability margins (SVSM). 

This objective is achieved by proper adjustment of reactive 

power variables like generator voltage magnitude ( gi ) V , 

reactive power generation of capacitor bank (Qci), and 

transformer tap setting (tk).Power flow equations are the 

equality constraints of the problems, while the inequality 

constraints include the limits on real and reactive power 

generation, bus voltage magnitudes, transformer tap 

positions and line flows 

3.1. Minimization of Real Power Loss 

It is aimed in this objective that minimizing of the real 

power loss (Ploss) in transmission lines of a power system. 

This is mathematically stated as follows. 

P12334 ∑ g-6
�'7
8'�9
� 
8 :;< θ�8=
>-4�
-46$,&=                    (14) 

Where n is the number of transmission lines, gk is the 

conductance of branch k, Vi and Vj are voltage magnitude 

at bus i and bus j, and θij is the voltage angle difference 

between bus i and bus j. 

3.2. Minimization of Voltage Deviation 

It is aimed in this objective that minimizing of the 

Deviations in voltage magnitudes (VD) at load buses. This 

is mathematically stated as follows. 

Minimize VD = ∑ |V- � 1.0|>1-4�                    (15) 

Where nl is the number of load busses and Vk is the 

voltage magnitude at bus k. 

3.3. System Constraints 

In the minimization process of objective functions, some 

problem constraints which one is equality and others are 

inequality had to be met. Objective functions are subjected 

to these constraints shown below. 

Load flow equality constraints: 

CDE – CGE � HE ∑ IJKLJM� � NEO cos SEO
TUEO sin SEO

� � 0, X � 1,2 … . , [\                                            (16) 

]DE � ]GE � HE ∑ IJKLJM� � NEO cos SEO
TUEO sin SEO

� � 0, X � 1,2 … . , [\                                         (17) 

where, nb is the number of buses, PG and QG are the real 

and reactive power of the generator, PD and QD are the real 

and reactive load of the generator, and Gij and Bij are the 

mutual conductance and susceptance between bus i and bus 

j.Generator bus voltage (VGi) inequality constraint: 

HDE ̂E_ `  HDE ` HDÊ ab , X c [d                  (18) 

Load bus voltage (VLi) inequality constraint: 

HeE ̂E_ `  HeE ` HeÊ ab , X c [f                 (19) 

Switchable reactive power compensations (QCi) 

inequality constraint: 

]gE ^E_ `  ]gE ` ]gÊab , X c [h                     (20) 

Reactive power generation (QGi) inequality constraint: 

]DE ^E_ `  ]DE ` ]DÊab , X c [d                    (21) 

Transformers tap setting (Ti) inequality constraint: 

iE ̂ E_ `  iE ` iÊ ab , X c [j                   (22) 

Transmission line flow (SLi) inequality constraint: 

keE ̂E_ ` keÊ ab , X c [f                       (23) 

Where, nc, ng and nt are numbers of the switchable 

reactive power sources, generators and transformers.   

4. Bacterial Foraging Optimization 

Algorithm 

Bacterial Foraging optimization is based on foraging 

behavior of Escherichia coli (E.coli) bacteria present in the 

human intestine and been already implemented to real 

world problems [13]. In this foraging theory, the objective 

of the animal is to search for and obtain nutrients in a 

fashion that energy intake per unit time (E/T) is minimized 

[11]. A group of bacteria move in search of food and away 
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from noxious elements known as Foraging. BFO algorithm 

draws its inspiration from this foraging behaviour. Bacteria 

have a tendency to gather to the nutrient-rich areas by 

activity called Chemo taxis. Its movement and behaviour is 

characterized by the spinning flagella which acts as a 

Biological motor and helps bacteria to swim. An e.coli 

bacterium has 8-10 flagella placed randomly on its body 

with a speed of 100-200 rps. An E.coli bacteria alternates 

through running and tumbling. Running speed is 10-20m=s 

and they cannot swim straight. The flagella can rotate either 

clockwise or counter clockwise. When all the flagella rotate 

counter clockwise, they form a compact, helically 

propelling the cell along a trajectory, which is called “run”. 

When the flagella rotate in clockwise direction they enable 

the bacterium to move in different directions and cause 

bacteria to “tumble”. The bacterial foraging process 

consists mainly of four sequential mechanisms namely 

chemo taxis, swarming and reproduction and elimination-

dispersal.  

a. Chemo taxis:- An E.coli bacterium can move in two 

different ways: it can run (swim for a period of time) or 

tumble and alternates between these movements throughout 

its travel in search of food. In BFO, a unit walk with 

random direction represents a “tumble” and a unit walk 

with the same direction in the last step indicates “run”. In 

the computational chemo taxis, the movement of i
th

 

bacterium after one step can be represented as  

SE6l T 1, m, f= � SE6l, m, f= T n6X=o6l=              (24) 

Here SE6l, m, f=  denotes the location of i
th

 bacterium at j
th

 

chemo tactic k
th

 reproductive and l
th

 elimination and 

dispersal step. C(i) is the length of unit walk, which is 

constant in basic BFO and o6l= is the direction angle of the 

j
th

 step. When the bacterium is in run mode o6l=  is same 

as  o6l � 1=  , otherwise o6l=  is a random angle directed 

within a range of [0,2Π]. If the cost at  SE6l T 1, m, f=  is 

better than the cost at SE6l, m, f= , then the bacterium takes 

another step of size C(i) in that direction otherwise it is 

allowed to tumble. This process is repeated until the 

number of steps taken is greater than the number of 

iterations in chemo tactic loop, Nc 

b. Swarming: - A bacterium in times of stresses releases 

attractants to signal the bacteria to swarm together. Each 

bacterium also releases repellent to signal the others to be 

at a minimum distance from it. Thus all of them will have a 

cell to cell attraction via attractant and cell to cell repulsion 

via repellent. The cell to cell signaling in E.coli swarm may 

be mathematically represented as 

lpp�S, C6l, m, f=� � ∑ lpp qS, SE6l, m, f=rsE4� �
∑ ��tauuvapua_uwxy��zauuvapua_u ∑ 6S^ � S Ê =9{

^4� �� TsE4� ∑ �|v}{}~~}_u wxy��zv}{}~~}_u ∑ 6S^ � S Ê =9{
^4� ��sE4�        (25) 

Here lpp�S, C6l, m, f=� represents objective function value 

to be added to actual objective function, S is the total 

number of bacteria, P is the number of parameters to be 

optimized and S � )S�, S9, . . , S�+�  is a point in p-

dimensional search domain. dattractant is the depth of 

attractant released by the cell and zattractant is the measure of 

width of the attractant signal. hrepellent = dattractant is the height 

of repellant effect magnitude, zrepellent is a measure of width 

of repellant. These coefficients are to be taken judiciously. 

c. Reproduction:- After the completion of all Nc chemo 

tactic steps a reproduction step takes place. Fitness value of 

the bacteria is stored in ascending order. The lower half of 

bacteria having a higher fitness die and remaining Sr = S/2 

bacteria are allowed to split into two identical one. Thus the 

population after reproduction remains constant. 

d. Elimination and Dispersal: - There is a probability that 

bacteria may be stuck around the initial or local optima 

positions, it is required to diversify the bacteria either 

gradually or suddenly so that the possibility of being 

trapped in to local minima is eliminated and global optima 

is obtained. The dispersion operation takes place after a 

certain number of reproduction processes. A bacterium is 

chosen, according to a present probability ped , to be 

dispersed and moved to another position within the 

environment. This may disturb optimization process but 

prevent the local minima trapping. 

5. Bacterial Foraging Oriented with 

Particle Swarm Optimization  

(BF-PSO) 

BF-PSO algorithm combines both BFO and PSO. The 

aim is to make PSO ability to exchange social information 

and BF ability in finding new solution by elimination and 

dispersal, a unit length direction of tumble behavior is 

randomly generated. Random direction may lead to delay 

in reaching the global solution. In "BF-PSO" algorithm the 

unit length random direction of tumble behavior can be 

decided by the global best position and the best position of 

each bacterium. During the chemo taxis loop tumble 

direction is updated by: 

o6l T 1= � � � o6l= T n� � ��[t � 6y\w�j � yh���w[j= T h9 � ��[t � 6d\w�j � yh���w[j=     (26) 

Where pbest is the best position of each bacterium and 

gbest is the global best bacterium. The brief pseudo-code of 

BF-PSO has been provided below. Algorithm to solve 

optimal dispatch problem described below 

[Step 1] Initialize the parameters 

p,S,Nc,Ns,Nre,Ned,ped ,C(i)(i = 1,2,3,..,S)SE 



 International Journal of Energy and Power Engineering 2014; 3(1): 1-6 5 

 

 

where 

p –Dimension of the search space; 

S –Number of bacteria in the population; 

Ns –Swimming length after which tumbling of bacteria 

will be undertaken in chemotactic loop; 

Nc –The number of iterations to be undertaken in 

chemotactic loop, always Nc > Ns; 

Nre –Maximum no. of reproduction steps; 

Ned –the maximum no. of Elimination and dispersal 

events to be imposed over bacteria; 

ped –Probability with which elimination and dispersal 

will continue; 

SE–Location of the i
th

 (i = 1,2,3,..,S) bacterium; 

C(i) –Step size of the i
th

 bacterium taken in random 

direction, specified by tumble. Generate a random vector 

o6l= in the range [-11] C1,C2, � : PSO parameters 

[Step 2] Elimination and dispersal loop: l = l+1 

[Step 3] Reproduction loop: k = k+1 

[Step 4] Chemo taxis loop: j = j+1 

[Step 5] If j < Nc, go to [Step 4]. In this case, continue 

chemo taxis since the life of the bacteria is not over. 

[Step 6] Reproduction 

[Step 7] If k < Nre, go to the [Step 3]. Since in this case 

the specified reproduction steps are not reached, start the 

next generation of the chemo tactic loop. 

[Step 8] Elimination-dispersal: For i = 1,2,..,S with the 

probability ped , eliminate and disperse each bacterium, 

which results in keeping number of bacteria in the 

population constant. To do this, if a bacterium is eliminated, 

simply disperse one to a random location on the 

optimization domain. If l < Ned then go to [Step 2], 

otherwise end; 

6. Adaptive Bacterial Foraging 

Oriented Particle Swarm 

Optimization (ABF-PSO) 

To enhance the performance of BF-PSO we had 

proposed Adaptive Bacterial Foraging Oriented Particle 

Swarm Optimization (ABF-PSO). Chemo taxis is a 

foraging strategy that implements a type of local 

optimization where the bacteria try to climb up the nutrient 

concentration, avoid noxious substance and search for ways 

out of neutral media. A chemo tactic step size varying as 

the function of the current fitness value is expected to 

provide better convergence behavior as compared to a fixed 

step size. A simple adaption scheme for the step size for ith 

bacterium given in following equation 

n6X= � �O�6�=�
�O�6�=7�� � �

�7 �
J�6�=

                        (27) 

Where � is positive constant. 

lES = cost function of the ith bacterium. 

C(i) = variable run (step) length of ith bacterium. 

If lES  tends to zero then  n6X= � 0  and when lES � 

large, n6X= � 0. This implies that the bacterium which is in 

the vicinity of noxious substance associates with higher 

cost function. Hence it takes larger steps to migrate to a 

place with higher nutrient concentration. Use of Eqn (27) in 

Eqn (24) is expected to give improved convergence 

performance compared to fixed step size due to the above 

phenomenon. 

[Step 1] Same as that of BF-PSO based optimization 

[Step 2-3] Same as that of BF-PSO, but only difference 

is that while updating location in Eqn (24) (and also in 

swim) the adaptive run length unit, C(i) defined in Eqn (27) 

is used instead of fixed run length unit. 

[Step 5-8] Same as that of BF-PSO based technique. 

7. Simulation Results 

The validity of the proposed Algorithm technique is 

demonstrated on IEEE-30 bus system. The IEEE-30 bus 

system has 6 generator buses, 24 load buses and 41 

transmission lines of which four branches are (6-9), (6-10) , 

(4-12) and (28-27) - are with the tap setting transformers. 

The real power settings are taken from [1]. The lower 

voltage magnitude limits at all buses are 0.95 p.u. and the 

upper limits are 1.1 for all the PV buses and 1.05 p.u. for all 

the PQ buses and the reference bus.  

Table 1. Voltage Stability under Contingency State 

Sl.No Contigency ORPD Setting Vscrpd Setting 

1 28-27 0.1400 0.1422 

2 4-12 0.1658 0.1662 

3 1-3 0.1784 0.1754 

4 2-4 0.2012 0.2032 

Table 2. Limit Violation Checking Of State Variables 

State variables 
limits 

ORPD VSCRPD 
Lower upper 

Q1 -20 152 1.3422 -1.3269 

Q2 -20 61 8.9900 9.8232 

Q5 -15 49.92 25.920 26.001 

Q8 -10 63.52 38.8200 40.802 

Q11 -15 42 2.9300 5.002 

Q13 -15 48 8.1025 6.033 

V3 0.95 1.05 1.0372 1.0392 

V4 0.95 1.05 1.0307 1.0328 

V6 0.95 1.05 1.0282 1.0298 

V7 0.95 1.05 1.0101 1.0152 

V9 0.95 1.05 1.0462 1.0412 

V10 0.95 1.05 1.0482 1.0498 

V12 0.95 1.05 1.0400 1.0466 

V14 0.95 1.05 1.0474 1.0443 

V15 0.95 1.05 1.0457 1.0413 

V16 0.95 1.05 1.0426 1.0405 

V17 0.95 1.05 1.0382 1.0396 

V18 0.95 1.05 1.0392 1.0400 

V19 0.95 1.05 1.0381 1.0394 

V20 0.95 1.05 1.0112 1.0194 

V21 0.95 1.05 1.0435 1.0243 

V22 0.95 1.05 1.0448 1.0396 

V23 0.95 1.05 1.0472 1.0372 

V24 0.95 1.05 1.0484 1.0372 
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State variables 
limits 

ORPD VSCRPD 
Lower upper 

V25 0.95 1.05 1.0142 1.0192 

V26 0.95 1.05 1.0494 1.0422 

V27 0.95 1.05 1.0472 1.0452 

V28 0.95 1.05 1.0243 1.0283 

V29 0.95 1.05 1.0439 1.0419 

V30 0.95 1.05 1.0418 1.0397 

Table 3. Comparison of Real Power Loss 

Method Minimum loss 

Evolutionary programming[14] 5.0159 

Genetic algorithm[15] 4.665 

Real coded GA with Lindex as SVSM[16] 4.568 

Real coded genetic algorithm[17] 4.5015 

Proposed ABF-PSO  method 4.1368 

8. Conclusion 

In this paper a novel approach ABF-PSO algorithm used 

to solve optimal reactive power dispatch problem, 

considering various generator constraints, has been 

successfully applied.The performance of the proposed 

algorithm demonstrated through its voltage stability 

assessment by modal analysis is effective at various 

instants following system contingencies. Also this method 

has a good performance for voltage stability Enhancement 

of large, complex power system networks. The 

effectiveness of the proposed method is demonstrated on 

IEEE 30-bus system. 
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