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Abstract: The goal of the current paper is to describe an in-depth study of a numerical implementation of the modified 

equation of fluid motion for incompressible flow. The applications of the developed solver are discussed for both laminar 

and turbulent flow problems. The results are evaluated by comparing them with those obtained by other methods, including 

the numerical results obtained by the Navier–Stokes solver measurement data. Then, the computational effort and accuracy 

of the solver are emphasized. The comparisons indicate that the developed solver, which is based on the modified equation 

of fluid motion, requires less computation time than the Navier–Stokes solver, and it produces physically reasonable results 

validated by measurement data. 
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1. Introduction 

During the past several decades, there has been steady 

progress in the field of computational fluid dynamics (CFD) 

methodologies. This progress has allowed engineers and 

designers in the turbomachinery industry to gain deeper 

insights into the effects of fluid dynamics on design 

processes used in the field of turbomachinery. The funda-

mental governing equations for solving most CFD prob-

lems are the Navier–Stokes equations. The primitive varia-

ble formulations of these equations result in the derivation 

of a large system of non-linear algebraic equations after 

finite volume method (FVM) discretization is carried out. 

However, these equations impede the development of nu-

merical solutions for the Navier–Stokes equations. Hence, 

it is assumed that engineers would be interested in another 

equation that does not have non-linear properties. 

On the basis of the scale-invariant theory of statistical 

mechanics, Sohrab [1, 2] introduced a linear equation 

termed the “scale-invariant form of the equation of fluid 

motion” or the “modified equation of fluid motion”. Pre-

liminary investigations have shown that this modified equ-

ation can be extended to solve incompressible flow prob-

lems. Several basic flow models were analytically devel-

oped using this equation. Consequently, satisfactory corre-

lation between the estimated and experimental data was 

achieved. This result then stimulated further applications of 

this modified equation in the development of CFD codes to 

obtain more numerical solutions of turbomachinery prob-

lems. 

The use of the physical linear characteristic of the 

aforementioned modified equation of fluid motion helped 

us develop a novel numerical solver to solve CFD prob-

lems. The detailed methodology of the developed solver 

has been discussed by Wan et al [3]. The improved algo-

rithms simplify the velocity iteration procedure and reduce 

numerical oscillation during solver execution. By simulat-

ing a fundamental laminar flow problem, the developed 

solver, which is named as the Sohrab solver, delivers phys-

ically reasonable results and consumes less computational 

resources than that consumed by the solver that uses the 

Naiver–Stokes equations. 

In our study, the Sohrab solver is further examined in 

case of both laminar and turbulent flow problems for mod-

els including the flat plate, airfoil, and the three–
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dimensional (3D) curved duct models. The results obtained 

by the Sohrab solver were evaluated by comparing them 

with the numerical solutions obtained by the Navier–

Stokes solver and valid experimental data. 

2. Modified Equation of Fluid Motion 

and Modified Turbulence Theory 

Recently, Sohrab [2] introduced the derivation of the 

modified equation of fluid motion for incompressible flow 

using a scale-invariant definition of the convective velocity 
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Comparing Eq. (1) with the Navier–Stokes equations for 

incompressible flow, we get 
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It is obvious that convective velocity wβ can replace the 

local velocity Uβ in the second term on the left–hand side 

of the equation. This important feature of the modified eq-

uation of fluid motion eliminates its non–linearity. 

As discussed by Sohrab in [4], the potential energy of a 

fluid can be expressed in term of peculiar velocity as fol-

lows: 

2

β β βε ρ ′= v                  (3) 

This energy is responsible for the stability of clusters or 

particles in a fluid. Under a particular condition, the local 

velocity at the β+1 scale Uβ+1 can be increased to equal 

that at β scale Uβ. In other words, 

1 1β β β+ += =U U u             (4) 

Thus, peculiar velocity can be eliminated as 

1 1 1
0β β β+ + +′ = − =v u U           (5) 

Further, potential energy at the corresponding scale can 

be subsequently eliminated as 

2
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Such elimination of the peculiar velocity and potential 

energy on the laminar scale will result in the instability of 

fluid elements and the transition of the entire fluid field to 

a fully turbulent field consisting of eddy dynamics on a low 

scale. 

Consequently, in the following solutions, convective ve-

locity at the turbulence scale is derived from the local ve-

locity at the laminar scale as 

turbulence laminar=w U          (7) 

3. Applications of the Sohrab Solver 

The developed solver based on the modified equation of 

fluid motion is named as the Sohrab solver. Following the 

methodology of this novel solver [3], the simulations of 

several flow models are discussed to explain the applica-

tions of the solver in this section. First, an airfoil model 

will be discussed for both the laminar and turbulent flow 

environments to describe the procedure for deriving con-

vective velocity. Second, the simulation of turbulent flow 

over a flat plate, which can be considered as an extension 

of the calculation model in [3], will be discussed. Finally, 

under different geometric conditions, the calculation of 

turbulent flow in a 3D curved duct will be discussed to 

confirm the ability of the Sohrab solver to calculate turbu-

lent flow for a 3D case as well. 

3.1. Airfoil Simulation 

An airfoil model was chosen as the model for carrying 

out numerical simulations under both the laminar and tur-

bulent flow environments using the Sohrab solver to con-

firm its application to calculate turbulent flow. The ob-

tained results are validated by comparing them with those 

obtained by the classical Navier–Stokes solver and valid 

measurement data. 

3.1.1. Model 

The model used for the simulation was obtained from 

the experiments of A. Thom and P. Swart [5]. The geome-

tric profile of the model used in this study is a modified 

version of the classical two-dimensional (2D) Royal Air 

Force (RAF) 6a airfoil, which has square ends on both the 

sides because of poor manufacturing techniques practiced 

in 1940, when this airfoil was first constructed. 

The grids of the entire calculation region and detailed 

structure around the airfoil are shown in Fig. 1. The total 

grid number is about 58,000, and four mesh models that 

correspond to different angles of attack are developed for 

the numerical simulations discussed further. 

 

Complete grid region for the airfoil at α = 0°. 

 

α = 0°                 α = 5°    

 

α = 10°                 α = 15° 

Fig. 1. Grids of different angles of attack. 

3.1.2. Laminar Flow 

Considering the analysis carried out in [3], the velocity 

in the potential flow field is taken as convective velocity in 
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the laminar flow field: 

laminar potential=w U            (8) 

Consequently, the convective velocity field can be con-

structed by executing potentialFOAM, which is a special 

solver available with the OpenFOAM application for solv-

ing only Euler equation. 

As shown in Fig. 2, the calculated velocity field simply 

follows the airfoil profile, and any viscous effect is ignored. 

The variation in the velocity magnitude is caused by the 

effect of the continuity equation. 

 

Fig. 2. Potential flow around airfoil. 

The drag coefficient is defined as 
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Using this definition, the calculated drag coefficients 

versus different Reynolds numbers at an angle of attack α = 

0° obtained using both the Navier–Stokes and the Sohrab 

solvers are compared with the experimental data, as shown 

in Fig. 3. The numerical results of the drag coefficient ob-

tained by the Sohrab solver simply coincide with that ob-

tained by the classical Navier–Stokes solver, and exhibit 

the same trend as that exhibited by the results obtained by 

the Navier–Stokes solver: the Reynolds number increases 

with a reduction in the drag coefficient. A large difference 

is found between the experimental data and the estimated 

numerical results, and this difference decreases as the Rey-

nolds number increases. The phenomenon observed here 

has remained unsolved in the case of numerous numerical 

CFD codes. For a low Reynolds number, the numerical 

results of the drag coefficient are always higher than the 

experimental results. 

 

Fig. 3. Drag coefficients for different Reynolds numbers under a laminar 

flow. 

Similarly, Fig. 4 illustrates the variations in the drag 

coefficient versus different angles of attack. The simulation 

results shown in this figure are obtained for several Rey-

nolds numbers, because each angle in the experiment coin-

cided with a particular Reynolds number. Fig. 3 and Fig. 4 

clearly show that the results calculated by the Sohrab solv-

er are in good agreement with those calculated by the clas-

sical Navier–Stokes solver and experiment results. Howev-

er, the experimental data greatly differs from the numerical 

results at very low Reynolds numbers and large angles of 

attack. This difference can be attributed to the aforemen-

tioned numerical reasons and the measurement error intro-

duced into the experiment owing to poor manufacturing 

techniques practiced in 1940. 

 

Fig. 4. Drag coefficients for different angles of attack under a laminar 

flow ( ≤Re 15 ). 

3.1.3. Turbulent Flow 

In section 2, a transition from the laminar to the turbu-

lence scale was discussed to derive the convective velocity 

relation in Eq. (7). This transition allows us to use the So-

hrab solver to solve the turbulent flow problem. By using 

the velocity field constructed using the laminar flow as 

convective velocity, the Sohrab solver is applied for the 

airfoil model under turbulence boundary conditions. Be-

cause no experimental data is available, we can compare 

the results of the drag coefficient calculated by only the 

Sohrab and Navier–Stokes solvers. The Reynolds number 

is set to Re = 100,000, and water at 25℃ is used as the 

media for carrying out the simulation. Various angles of 

attack are calculated to compare different results obtained 

using the two numerical solvers. 

The drag coefficients calculated for different angles of 

attack by the two solvers are compared. As shown in Fig. 5, 

below α = 10°, the curves of the results obtained by the two 

solvers correspond well with each other; however, above α 

= 10°, the difference increases with increasing angle, and 

the difference reaches a maximum of 8% at α = 15°. The 

potential reason for this difference can be the flow separa-

tion on the airfoil surface and vortex downstream. As 

shown in Fig. 6 and Fig. 7, for solutions obtained using 

both the solvers at α = 15°, a vortex can be observed in the 

flow field. However, the solution obtained by the Navier–

Stokes solver shows an additional trailing vortex that is 

possibly formed due to numerical oscillation. 



40 Bo Wan et al.: A novel numerical scheme for a scale-invariant form of equation of motion: development  

of solver and application to engineering flow problems 

 

Fig. 5. Drag coefficients for different angles of attack under a turbulent 

flow. 

 

Fig. 6. Velocity field constructed using the Navier–Stokes solver. 

 

Fig. 7. Velocity field constructed using the Sohrab solver. 

As discussed in [3], an unstable Peclet number leads to 

velocity oscillation during the iteration process in the ex-

ecution of the Navier–Stokes solver. In certain cases, this 

oscillation may be not totally damped during numerical 

iteration, thus affecting the flow field. In physics, a vortex 

induced by numerical oscillation contains considerable 

amount of kinetic energy and decays rapidly through the 

action of fluid viscosity. According to [6], the presence of a 

trailing vortex further affects the airfoil, and this effect 

would result in the increase in drag force and the conse-

quent reduction in lift force. Hence, as shown in Fig. 5, at α 

= 15°, the drag coefficient calculated by the Sohrab solver 

is less than that calculated by the Navier–Stokes solver. 

Fig. 8 shows the pressure around the airfoil. The figure 

clearly shows that the pressure difference calculated by the 

Sohrab solver is smaller than that calculated by the Navier–

Stokes solver, particularly at the trailing edge of the airfoil. 

This result corresponds to the induction of the vortices 

shown in Fig. 6 and Fig. 7, thus further explaining the drag 

coefficient differences observed in Fig. 5. Further, the ve-

locity gradients inside the boundary layer for Points 1 and 

2 on the airfoil upper surface, which are illustrated in Fig. 8, 

are compared. Fig. 9 shows that at point 1, which is close 

to the leading edge, the velocities calculated by both the 

solvers coincide well with each other. However, at Point 2, 

which is close to the trailing edge, the effects of the trailing 

vortex result in a considerable difference in the velocity 

distribution. Therefore, at small angles of attack when no 

vortex is present in the flow field, the Sohrab solver can 

deliver results similar to those delivered by the Navier–

Stokes solver, whereas as the angle of attack increases, the 

vortex begins to strongly affect both the pressure and ve-

locity fields, leading to a large difference between the solu-

tions obtained by both the solvers. 

 

Fig. 8. Pressure around the airfoil. 

 

Fig. 9. Velocity gradients in the boundary layer. 

Following the calculation procedure of the Sohrab solver 

in the case of the airfoil model, we recognized the need to 

calculate the corresponding convective velocity in order to 

perform turbulence simulations. In detail, numerical simu-

lation initiates by obtaining the potential flow solution and 

continues with the calculation of the laminar flow. This 

procedure can be considered as the initial condition of the 

turbulence calculation that would follow the calculation of 

laminar flow. On the other hand, in the case of the Navier–

Stokes solver, the same procedure is assumed to initiate 

turbulence calculation with a smooth initial condition in 

OpenFOAM [7]. Therefore, in order to compare the calcu-

lation time taken by the two solvers, the aforementioned 

initial process can be ignored and only the turbulence cal-

culation process should be carried out. 

3.2. Turbulent Flow over a Flat Plate 

By using the results of the laminar calculation in [3], this 

section discusses the application of the Sohrab solver to the 

calculation of turbulent flow over a flat plate. Using the 

physical boundary condition described in the Schultz–

Grunow experiment [8], both the Navier–Stokes and So-

hrab solvers are applied to calculate the turbulent flow. 

Using the same mesh and turbulence model as those 

constructed for the airfoil model, the flow field is calcu-

lated and the resultant velocity profiles within the turbulent 
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boundary layer are compared with the experimental data in 

Fig. 10. 

 

Fig. 10. Comparison of measurements and numerical results for turbulent 

flow over flat plate. 

As shown in Fig. 10, the complete velocity profile shape 

constructed using the Sohrab solver is slightly higher than 

that constructed using the Navier–Stokes solver, and the 

entire shape of the former exactly coincides with the latter. 

In terms of the measurement data points, the Sohrab solver 

results are confirmed to be closer to the data points than the 

Navier–Stokes solver results. Thus, this result confirms the 

accuracy of the Sohrab solver in calculating turbulent flow. 

Furthermore, it offers a numerical explanation for the re-

sults obtained in section 2. 

3.3. Curved Duct 

In the previous sections, two classical flow models were 

simulated by using the Sohrab solver, and the results were 

found to be in good agreement with those obtained by the 

Naiver–Stokes solver. Such encouraging results further 

stimulated us to carry out numerical investigations into the 

Sohrab solver for its application in engineering flow mod-

els. 

Thus far, the Sohrab solver was only validated in terms 

of 2D flow. However, the code of the solver was developed 

in a 3D FVM discretization environment. In order to assess 

the ability of the Sohrab solver to perform 3D calculations, 

secondary flow effects are considered, and consequently, a 

90° curved duct is simulated with the corresponding results 

presented in this section. 

As illustrated in Fig. 11, the curved duct considered for 

the current calculation has a square cross section and a 

bend radius to duct height ratio of 

 

Fig. 11. Curved duct. 

2.3=R

H
               (10) 

In order to obtain a fully developed parabolic velocity 

distribution before flow enters the bend, the upstream 

length of the duct is set to 20H. On the other hand, the 

downstream length of the duct is set to 26H to ensure a 

satisfied boundary condition at the outlet of the duct for 

carrying out the numerical calculations. With a Reynolds 

number of 40,000, a turbulence boundary condition is con-

sidered in the case of the curved duct. 

A grid–independent study was conducted, and the mesh 

was fixed to 50 × 50 for the square cross section, resulting 

in a total grid number of 433,664. 

 

Fig. 12. Section of the grid of the curved duct. 

By following the aforementioned methods for calculat-

ing convective velocity, both the solvers delivered solu-

tions for the flow field in the curved duct using the stan-

dard k–ε turbulence model. After assessing the velocity 

fluctuation at a pre-defined point (monitor point), which is 

shown in Fig. 11, computational convergence procedures 

for both the solvers were carried out, and the results are 

compared in Fig. 13. 

 

Fig. 13. Velocity oscillation in numerical calculation. 

As shown in Fig. 13, the two velocities experience nu-

merical oscillations and converge in the given time steps. 

In terms of the convergence procedure, a considerable larg-

er velocity oscillation is observed in the Navier–Stokes 

solution as compared to the Sohrab solution. Such oscilla-

tions increase the instability in numerical calculations, 

which in turn tend to fail. Furthermore, the damping of 

such oscillation requires additional time steps, thus increas-

ing computation time. As shown in Fig. 13, the Sohrab 

solver uses less than 500 time steps to achieve convergence 

while the Navier–Stokes solver requires more than 1,000 

time steps, which are twice that required by the Sohrab 
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solver. This can be explained by the numerical stability 

analysis carried out in [3]. A stable Peclet number calcu-

lated by the Sohrab solver dampens the numerical oscilla-

tion and allows the calculation to produce solutions that 

converge at a high speed. However, the two solvers pro-

duce different velocities when convergence of their solu-

tions is achieved. In the following figures, this difference in 

the velocities will be compared to the measurement data. 

Fig. 14 shows a comparison of the computation time 

taken by the two solvers. The Navier–Stokes solver is 

twice slower than the Sohrab solver in completing the si-

mulation. This result coincides with the analysis discussed 

above and shows the linear advantage of the Sohrab solver 

to solve a 3D flow problem. 

 

Fig. 14. Comparison of computation time taken by both solvers. 

In order to study the development of secondary flow mo-

tion, the stream–wise and cross–wise velocities are com-

pared at two locations: inside the bend (at θ = 60°) and 

downstream the bend (at Y = 0.25H), with different Yw 

positions, as shown in Fig. 15. 

 

Fig. 15. Cross section. 

Inside the bend of the duct, the fluid experiences a large 

curvature change and begins to follow a pressure-driven 

secondary flow motion. Therefore, at this location, the sec-

ondary flow effect is marginal even though uniform veloci-

ty distribution can still be observed. 

At θ = 60°, the cross–wise and stream–wise velocities 

calculated by both the solvers are compared with the meas-

ured data points that were reported in [9]. As shown in Fig. 

16, the stream–wise velocity profiles obtained from the 

numerical calculations are in a good agreement with the 

measurements. It is observed that near the wall of the duct, 

the Sohrab solver performs better to deliver results that 

coincide with the measured results. In the case of cross–

wise velocity, secondary flow features can be observed. 

The fluid near the symmetry plane moves away, whereas 

that close to the wall moves in the opposite direction. Both 

numerical solvers reproduce such a phenomenon. In terms 

of stream–wise velocity, the results produced by the Sohrab 

solver agree well with the measured data points except for 

a few points in principle. 
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Fig. 16. Comparison of the cross–wise and stream–wise velocity profiles 

inside the bend at θ = 60°. 

Downstream the bend at Y = 0.25H, the secondary flow 

feature continues to develop and the resultant variation in 

the compared with the measured data [9]. For stream–wise 

velocity profiles, it can be confirmed that both the solvers 

can predict secondary flow development very well. How-

ever, in the cross–wise direction, the Navier–Stokes solver 

shows a very high velocity variation, particularly near the 

wall of the duct. This observation proves that the strength 

of the secondary flow calculated by the Naiver–Stokes 

solver is greater than the measured strength of the second-

ary flow. In the case of the Sohrab solver, the secondary 

flow calculated near the wall sufficiently agrees with the 

measured data, whereas the secondary flow calculated near 

the symmetry plane is observed to be low. Taking all the 

velocity profiles at this location into account, the Sohrab 

solver, as compared the Navier–Stokes solver, produces 

better results for the flow downstream the bend. 

 

 

 

 

 

 

Fig. 17. Comparison of the cross–wise and stream–wise velocity profiles 

downstream the bend at Y = 0.25H. 

Concluding the results in this section, for the 3D flow 

subject to a strong pressure–velocity coupling, the Sohrab 

solver delivers results that are in good agreement with the 

measurement data. Furthermore, in terms of efficiency, the 

Sohrab solver consumes less computation time than that 

consumed by the Navier–Stokes solver. There is an inter-

esting contrast between the current case to the laminar 
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boundary layer case in [3] where in weak pressure–velocity 

coupling is observed; in both the cases, the Sohrab solver 

shows a linear advantage in carrying out the numerical 

calculations and consumes less computation resources. 

4. Conclusions 

In summary, a novel solver developed on the basis of the 

modified equation of fluid motion for incompressible flow 

is examined for different flow models, including models 

for laminar and turbulent flows. The solutions are validated 

by experimental data and numerical results obtained by 

calculating the classical Navier–Stokes equations. All the 

comparisons confirmed that the solutions obtained by the 

Sohrab solver are physically valid. The computational pro-

cedure for the Sohrab solver was compared with that for 

the Navier–Stokes solver, and it was found that the former 

delivers a more efficient solution in terms of the linearity 

of the modified equation of fluid motion. This comparison 

demonstrates the scientific credibility of this novel solver 

for application to engineering flow problems. Further, we 

believe that if it is extended to design processes in the tur-

bomachinery industry, significant improvements in the 

design cycle cost and time can be achieved. 

Because of the encouraging results obtained in the cur-

rent investigation carried out on fluid dynamic problems, 

the novel numerical solver further evidences the use of the 

finite-volume method to solve the modified equations of 

fluid motion. 
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Nomenclature 

Cd 

c 

 

 

Drag coefficient 

Chord 

D*  
Dimensionless distance (distance/boundary  

layer length) 

Fd  Drag force 

H  Duct height 

l  Span 

p*  Dimensionless pressure (p/pmax) 

p  Pressure 

R  Bend radius 

Re  Reynolds number 

t 

U* 
 

Time 

Dimensionless velocity (U/Umax) 

Ue 

U 

uτ 

 

Free stream velocity 

Element velocity, local velocity  

Rate of shearing stress 

u Atom velocity 

v’  Peculiar velocity 

w 

X, Y, Z 

Yw 

 

 

Convective velocity 

Cartesian coordiantes 

Distance from the concave wall 

Greek symbols 

α  Angle of attack 

β  Scale 

δ  Boundary layer thickness 

ε  Potential energy 

θ  Angle 

ν  Kinematic viscosity 

ρ  Density  

 

Abbreviations 

CFD  Computational fluid dynamics 

FVM  Finite volume method 

OpenFOAM  Open field operation and manipulation 
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