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Abstract: The classical formula of certainty equivalent is reconsidered. Based on a modified proof of the original formula 

several alternative methods are derived with different orders of magnitude of their errors. This new method is then compared with 

the classical formula in a computer study showing the advantage of the new approach. Practical applications are also outlined to 

illustrate the methodology. 
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1. Introduction 

Decision making under uncertainty is one of the most 

important research areas of operations research and it provides 

important applications in all fields of quantitative sciences. A 

large class of models includes random variables, so the 

decisions are made without knowing their actual values, but 

all possible values and their probabilistic nature are taken into 

account. There are several alternative techniques to find 

optimal decisions. Stochastic programming (Kall and Wallace, 

1994; Prekopa, 1995) is the most common approach. 

Multiobjective optimization (Szidarovszky et al., 1986; 

Molnár and Szidarovszky, 2011) is an alternative method in 

which optimizing the expected objective function value and 

minimizing its variance are considered as the objectives. 

Reduction of variance can also be achieved with various data 

analytical techniques (Kovács et al., 2014). 

Bayesian decision making (DeGroot, 1970) is based on the 

repeated updating of the probability distribution when new 

sample elements are available. Uncertainties can also be 

modeled by fuzzy sets (Bellman and Zadeh, 1970), when the 

uncertain parameters and quantities are fuzzified and the level 

of uncertainty of each quantity is represented by an 

appropriate membership function. 

In the economic literature certainty equivalents are defined 

and they replace the uncertain objectives and constraints. This 

approach can be considered as the application of the weighting 

method when the expectations and variances of the stochastic 

variables are the objective functions (Sargent, 1979). Another 

possible application concerns extractability of natural 

resources (Csábrági et al., 2011) and hydrological research 

concerning groundwater data (Hatvani et al., 2014). A 

possible direction can be in the application of emission 

allowance prices over various non-market intervention 

schemes (Molnár, 2014) 

In this paper we will reconsider the classical formula of the 

certainty equivalent by analyzing the most common proof of 

this formula. We will show that by the slight modification of 

this well-known proof more accurate representations can be 

obtained, which will be compared with the classical formula. 

Three applications will illustrate the methodology. 

2. Mathematical Models 

Let x~  be a random variable and u  a utility function. Let 

)(~xx E=  and )~(2 xVar=σ . If x  is any realized value 

of x~ , then )(xu  shows the value of goodness of outcome 

x  for the decision maker. In the economic literature the 

certainty equivalent of the random outcome is computed as  

2
x x ασ∗ = −                   (1) 

where α  is a constant showing the risk acceptance of the 

decision maker. Since the certainty equivalent is the fixed 

outcome that the decision maker would accept instead of the 

gamble, it has to be the solution of equation  
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( ) ( ( )) ( ) ( )u x E u x u x f x dx
+∞∗

−∞
= = ∫ɶ        (2) 

where f  is the probability density function of x~ . If u  is 

strictly monotonic, then  

1
( ) ( )x u u x f x dx

+∞∗ −

−∞

 =  
 ∫           (3) 

It is very difficult to use this formula in practical cases, 

since the density function is not known in most cases, and 

even if it is known, the presence of the integral makes the use 

of this formula very difficult. Numerical integration or 

simulation can be used to find the value of ∗x  . In the 

economic literature formula (1) is shown to be a fairly good 

approximation of (3), and even in certain special cases they 

are equivalent to each other. The usual derivation of the 

approximation (1) is based on the Taylor polynomial 

approximation  

2
3

( )
( ) ( ) ( )( ) ( ) ( )

2

u x
u x u x u x x x x x R x

′′′= + − + − +   (4) 

where )(3 xR  is a third order error term. Similarly,  

2( ) ( ) ( )( ) ( )u x u x u x x x R x∗ ∗ ∗′= + − +      (5) 

where )(2

∗xR  is a second order error term. Notice that the 

certainty equivalent should satisfy equation (2), so by omitting 

the error terms, we have  

2( )
( ) ( )( ) ( ) ( ) ( )

2

u x
u x u x x x u x u x E x x σ∗ ′′′ ′+ − = + − +ɶ   (6) 

therefore after simplification and by assuming that 0)( ≠′ xu , 

2( )

2 ( )

u x
x x

u x
σ∗ ′′

= +
′  

If we introduce the notation 
( )

2 ( )

′′
′= − u x

u x
α , then this 

relation reduces to the well known rule (1). 

There is however a problem with this derivation. In (5) the 

neglected error term is quadratic, which is the order of the last 

kept term of (4) so the use of this last term is very problematic. 

In order to avoid this problem we can use quadratic 

polynomial approximations in both cases. Then (5) is 

modified as  

2
3

( )
( ) ( ) ( )( ) ( ) ( )

2

u x
u x u x u x x x x x R x∗ ∗ ∗ ∗′′′= + − + − +   (7) 

where the error term )(3
∗xR  is also of third order. Now 

equation (6) becomes  

2 2( ) ( )
( ) ( )( ) ( ) ( ) ( ) ( )

2 2

u x u x
u x u x x x x x u x u x E x x σ∗ ∗′′ ′′′ ′+ − + − = + − +ɶ  

which provides a quadratic equation for xx −=∆ ∗ ,  

2 2( ) ( )
( ) 0

2 2

u x u x
u x σ

′′ ′′′∆ + ∆ − =         (8) 

By assuming that 0)( ≠′ xu , it can be rewritten as  

2 2 0α ασ∆ − ∆ − =  

If 0=α , then 0=∆ , so xx =∗ . Otherwise  

2 21 1 4

2

± +∆ = α σ
α

 

If 02 =σ  , then there is no uncertainty, so xx =∗  and 

0=∆ . Therefore the solution with negative sign is taken:  

2 21 1 4

2
x x

α σ
α

∗ − +− = ∆ =  

that is, the certainty equivalent has the form  

2 21 1 4

2
x x

α σ
α

∗ − += +               (9) 

Formula (9) can be generalized in the following way. Let 

))~((
k

k xxEM −=  be the th
k  central moment of x~ . By 

using thm  order Taylor polynomial approximations, 

equations (4) and (7) are modified as  

( )

1

2

( )
( ) ( ) ( )( ) ( ) ( )

!

m i
i

m

i

u x
u x u x u x x x x x R x

i
+

=

′= + − + − +∑  (10) 

and  

( )

1

2

( )
( ) ( ) ( )( ) ( ) ( )

!

m l
l

m

l

u x
u x u x u x x x x x R x

l

∗ ∗ ∗ ∗
+

=

′= + − + − +∑  (11) 

By expectation and omitting the error terms  

( ) ( )

2 1

( ) ( )
( ( )) ( ) ( ) ( ) ( )

! !

m mi l
l

i

i l

u x u x
E u x u x M u x x x u x

i l

∗ ∗

= =

= + = + − =∑ ∑ɶ  

which gives an thm  degree polynomial equation for ∆ : 

( ) ( )

1 2

( ) ( )
0

! !

m ml i
l

i

l i

u x u x
M

l i= =

∆ − =∑ ∑      (12) 

Notice that in the case of 2=m this equation reduces to 

(8), since 2
2 σ=M . If the constant term is zero, then (12) can 

be factored as  

( )
1

2

( )
( ( )) 0

!

m l
l

l

u x
u x

l

−

=

′∆ ∆ + =∑  
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and since 0,0)( =∆≠′ xu  is a single root. 

If we consider the root loci of equation  

( )

1

( )
0

!

m l
l

l

u x
K

l=

∆ − =∑             (13) 

then only one locus passes through the origin, and the value of 

this locus at  

i

im

i

M
i

xu
K

!

)()(

2

∑
=

=            (14) 

gives the value of xx −=∆ ∗ , from which the certainty 

equivalent can be determined as ∆+=∗ xx . 

3. Comparisons 

A simulation study was performed in comparing equation (1) 

and equation (9). Four density functions were selected in 

interval ]1,1[− , 2
1

1 )( =xf , )1()(
2
1

2 += xxf , 

)1()(
2
1

3 xxf −=  and )()( 2

4
3

4 1 xxf −= , and four utility 

functions were chosen,  

21
1 4
( ) ( 1)u x x= + , 

21
2 4
( ) 1 ( 1)u x x= − − . 

)( 3

2
1

3 1 xu +=  and )()( 12
2
1

4 tan xxu −+= π . 

Table 1 shows the simulation results, where ∗x  is the true 

certainty equivalent, 
∗
1x  is approximation by formula (1) and 

∗
2x  is approximation by formula (9). If 0)( =

′
xu , then 

neither approximation can be computed, which is indicated by 

the sign AN /  in the table. Notice that 
1f  is constant, 

2f  

increases, 3f  decreases, and 
4f  is mound-shaped, 

furthermore 
1u  is convex, 

2u  is concave, 3u is concave for 

0<x  and convex for 0>x  , and 
4u  is convex for 

0<x  and concave for 0>x . So a large variety of function 

shapes was considered. 

Table 1. Simulation Results. 

)(xf
 

)(xu
 

∗
x  

∗
1x

 
∗∗ − 1xx

 
∗
2x

 
∗∗ − 2xx

 

2
1

1 =f  

2

4
1

1 )1()( += xxu  0.1547 0.1667 -0.0120 0.1547 0 

2

4
1

2 )1(1)( −−= xxu  -0.1547 -0.1667 0.0120 -0.1547 0 

)1()(
3

2
1

3 xxu +=  0 N/A N/A N/A N/A 

)()( 2
2
1

4 xxu arctanπ+=  0 0 0 0 0 

)1(
2
1

2 += xf  

2

4
1

1 )1()( += xxu  0.4142 0.4146 -0.0004 0.4142 0 

2

4
1

2 )1(1)( −−= xxu  0.1835 0.1667 0.0168 0.1835 0 

)1()(
3

2
1

3 xxu +=  0.5848 1.000 -0.4152 0.6667 -0.0819 

)()( 2
2
1

4 xxu arctanπ+=  0.2943 0.2667 0.0267 0.2679 0.0255 

)1(
2
1

3 xf −=  

2

4
1

1 )1()( += xxu  -0.1835 -0.1667 -0.0168 -0.1835 0 

2

4
1

2 )1(1)( −−= xxu  -0.4142 -0.4167 0.0025 -0.4142 0 

)1()(
3

2
1

3 xxu +=  -0.5848 -1.000 0.4152 -0.6667 0.0819 

)()( 2
2
1

4 xxu arctanπ+=  -0.2943 -0.2667 -0.0267 -0.2679 -0.0255 

)1(
2

4
3

4 xf −=  

2

4
1

1 )1()( += xxu  0.0954 0.1000 -0.9046 0.0954 0 

2

4
1

2 )1(1)( −−= xxu  -0.0954 0.1000 0.0046 -0.0954 0 

)1()(
3

2
1

3 xxu +=  0 N/A N/A N/A N/A 

)()( 2
2
1

4 xxu arctanπ+=  0 0 0 0 0 

 
Among the 16 combined cases 10 times the corrected 

formula (9) gave the exact value computed by using equations 

(2), and there was no case when (9) was worse than (1). 
4. Applications 

A. Assume that there are two investment opportunities with 

uncertain profits. However the investing agent has 
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estimates of the expected values and variances of the 

profits when they are considered random 

variables: 21, µµ  and 2
2

2
1 ,σσ . Let )(xu  denote the 

utility value if the actual profit is x , and define 

( ))(2/)( iii uu µµα ′′′−=  for 2,1=i . The certainty 

equivalents of the two random profits are  

2 2
1 1 4

2

i i
i i

i

x
α σ

µ
α

∗ − +
= +  

and the agent will select the investment option with the 

higher 
∗
ix  value. In the special case of 21 µµ = , 

necessarily 21 αα = , so investment with smaller 

variance is chosen. 

B. Assume an agent has an investment budget B, which is 

divided between two types of investment with unit 

profits 1Π  and 2Π . However 1Π  and 2Π  are 

uncertain with known expectations 21,µµ  with 

21 µµ ≥  and known variances 
2

1σ  and 
2

2σ . If the 

agent invests x  and xB −  in the two investment types, 

then its overall profit is  

( )1 2 1 2 2( )P x B x x B= Π + Π − = Π − Π + Π  

Clearly 

1 2 2( ) ( )P E P x Bµ µ µ= = − +  

and  

2 2 2 2
1 2Var( ) ( )P x B xσ σ= + −  

By assume that the utility function is 2)( PPu = , then  

( )1 2 2

1

2 ( )x B
α

µ µ µ
= −

− +  

and from (9) we have  

( )

2 2 2 2
1 2

2

1 2 2

1 2 2

1 2 2

( )
1 1

( )
( )

1

( )

x B x

x B
x x B

x B

σ σ
µ µ µ

µ µ µ

µ µ µ

∗

+ −− +
− +

= − + −

− +

 

( )( ) ( )2 22 2 2
1 2 2 1 2x B x B xµ µ µ σ σ= − + + + −  

There is a convex parabola under the square root, so has its 

maximum either at 0=x  or at Bx = . At 0=x ,  

2

2

2

2 σµ +=∗ Bx  

and at ,Bx =  

2 2
1 1x B µ σ∗ = +  

Therefore 0=x , is chosen, that is the entire budget is 

invested in the second investment type if 2
1

2
1

2
2

2
2 σµσµ +>+ , 

that is, when the second moment of 
2Π  is larger than that of 

1Π . Similarly Bx =  is chosen if the second moment of 
1Π  

is larger than that of 
2Π . In this case the entire budget is 

invested in the first investment type. 

C. Assume next that a firm wants to maximize its profit by 

finding optimal production level when the price function 

is uncertain. Assume the uncertain price function is 

ς+−= BxAxp )( , where A , 0>B  and ς  is a white 

noise with 
2)( σς =Var . If the cost function of the firm 

is baxxC +=)(  with a , 0>b , then its profit is given 

as  

)()( baxBxAx +−+−= ςπ          (15) 

with expectation and variance  

)()()( baxBxAxE +−−=π  

and  

.)(
22σπ xVar =  

Therefore by assuming constants value of α  which is the 

case with exponential utility function, equation (9) becomes  

2 2 21 1 4
( ) ( )

2

x
x A Bx ax b

α σπ
α

∗ − += − − + +      (16) 

By differentiation,  

2

2 2

2 2 2 2 21

2 2
2 2

1 4 4
x

x
A Bx a A Bx a

x x

π ασ ασ

α σ α σ

∗∂ = − − − = − − −
∂ + +      (17) 

which strictly decreases in x , so ∗π  is strictly concave 

and the first order condition is sufficient for optimality. 

At 0=x , aA
x

−=∂
∂ ∗π  and as ∞→x , 

x
π∗∂
∂  

converges to ∞−  implying that there is a unique 

optimal solution. If aA ≤ , then 0=optx , otherwise it 

is the unique solution of the monotonic equation  

0
41

2
2

222

2

=
+

−−−
σα

ασ
x

x
aBxA    (18) 

which leads to a polynomial equation of degree 4. Standard 

methods are available for solving the equation (Szidarovszky 

and Yakowitz, 1978). 

5. Conclusions 

In this paper the certainty equivalent known from the 

economic literature was reconsidered. A slightly modified 

proof of the classical formula did provide alternative rules, 
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which are more accurate than the classical formula which was 

illustrated with a computer study. Simple applications 

illustrated the methodology. 
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