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Abstract: Kenya is a country located in Eastern part of Africa with approximate population of 46.5 million, with majority of 

the population constituting youths under the age of 35 years. The country has experienced increased morbidity rate arising 

from Pneumonia disease like other countries all over the world. As per recent studies 2 million children lose lives from 

pneumonia disease [1]. This study applies two models, one is linear model Seasonal autoregressive model (SARIMA) and 

another is a non-linear model called self-Excited Threshold Autoregressive (SETAR) in projection of cases in Kenya. Data for 

usage for purpose of this study was obtained Ministry of Health of Kenya of a period of 20 years from January 1999 to 

December 2018. The data collected is seasonal the number of case from period to period depending on climatic condition. 

Although both models performs well in pneumonia projection, non-linear SETAR models outperforms linear SARIMA. By 

carrying out a comparative analysis by use of Diebold-Mariano test, which revealed that there were no significant difference in 

the forecasting performance of the two models. The best model identified between the two models i.e. SETAR which best fit 

the data, can be applied in predicting pneumonia cases beyond the period under consideration. Other studies can be carried to 

come up with a model for every specific region in the country, to assist in resources allocation to specific parts of the country. 

Keywords: Seasonal Autoregressive Integrated Moving Average, Self-excited Threshold Autoregressive,  

Stationarity and Linearity 

 

1. Introduction 

Pneumonia is characterized by an acute infection of the 

lungs, which results in coughing, fever, chills, muscle aches, 

and difficulty in breathing to its victims. It’s also a leading 

killer in children globally [1]. Between 11 million and 20 

million children with Pneumonia will require hospitalization 

and more than 2 million will die. Pneumonia accounts for 

approximately 1.9 million deaths globally in children under 

five each year. In the year 2011, there were an estimated 120 

million episodes of childhood pneumonia globally of which 

14 million progressed to severe disease with 1.3 million 

deaths [2]. Most of these deaths (81%) occurred in children 

under 2 years of age. The incidence and the severity of 

childhood Pneumonia were higher in Africa and South East 

Asia, which account for 30% and 39% respectively of the 

global burden of severe causes. First infections of Pneumonia 

cannot be traced to a specific period in history, mention of 

the disease found in early Greek Pneumonia infection has 

remained a serious medical concern throughout the global 

community despite a new breakthrough in its treatment and 

management. Millions of people continue to be hospitalized 

and losing lives due to their infections across the world. The 

World Health Organization (WHO) [3] estimated that there 

were more than 150 million cases of pneumonia each year 

and killing 1.6 million which accounts for 19% of all deaths 

worldwide. Developing countries have recorded the highest 

number of deaths caused by Pneumonia, Kenya ranking 

among the top 15 highest affected countries. The primary 

causative agent of Pneumonia is known by its scientific name 

Streptococcus pneumonia, through understanding this 

causative agent and reviewing strategies which have been 

deployed to manage the disease on a global scale will be 

important in reducing deaths caused it. Through this effort, 

the world will achieve easy access and efficiency in its 

treatment and eventually reduce its detrimental effects. Due 
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to the high incidence of Pneumonia death revealed on 

existing literature especially under five which can have a 

consequence on population growth and productivity in the 

future, there is the need for stringent measures to curb the 

trend. The availability of precise estimates and projections is 

crucial in supporting decisions and policymakers in planning 

and in developing programs to facilitate and improve health 

care programs designed to curb the negative impact of the 

disease. Projecting the future prevalence and its impact 

requires a sound methodology for projecting the number of 

future Pneumonia infections and determining the impact of 

those infections on the future pattern of adult and child 

deaths. Institutions need to devote billions of dollars to the 

health sector in order to resolve this problem. Therefore, 

knowing the pattern of this disease could aid world health 

bodies to plan and develop policies that could be used to 

reverse the growing trend of this killer disease. Hence this 

study compares two-time series models in predicting 

pneumonia cases in Kenya. 

2. Methodology 

2.1. Study Area and Data Source 

Kenya is a state located in Eastern part of Africa, divided 

into 47 counties, with a population of 47million people as per 

census done in 2019. The data for this study was obtained 

from the Ministry of Health of Kenya. 

2.2. Identification of Pneumonia Trend 

The trend of a series reflects the long term growth of the 

time series over time. A time-series variable may exhibit 

different types of trend; the linear, linear constant growth, 

quadratic and quadratic constant growth among others. This 

study will evaluate the above different types of trend models 

for the disease under consideration 

2.3. Test of Stationarity 

The unit root test will be applied to test if the data under 

investigation is weakly stationary. A unit root test is 

performed to determine whether a stochastic or a 

deterministic trend is present in the series. When the roots of 

the characteristic equation lie outside the unit circle, then the 

series is considered stationary. We study employs the ADF 

test [4] to determine whether the disease involved contained 

a unit root (non-stationary) or has stationary covariance. The 

test statistic for the ADF test is given by: 

�� = ��
��(��)                                     (1) 

Where SE (δ) is the standard error of the least square 

estimate of 
�  The null hypothesis is rejected if the test 

statistic is greater than the critical value. 

2.4. SARIMA Model 

There are five types of traditional time series models most 

commonly used in epidemic time series forecasting; 

Autoregressive (AR), Moving Average (MA), 

Autoregressive Moving Average (ARMA), Autoregressive 

Integrated Moving Average (ARIMA), and Seasonal 

Autoregressive Integrated Moving Average (SARIMA) 

models. AR models express the current value of the time 

series linearly in terms of its previous values and the current 

residual, whereas MA models express the current value of the 

time series linearly in terms of its current and previous 

residual series. The ARMA model is a combination of two 

models Autoregressive (AR) and Moving Average (MA) 

models forming ARMA ((p, q) model, where p and q are the 

orders of the AR and MA processes respectively [5]. In 

ARMA the current value of the time series is expressed 

linearly in terms of its previous values and in terms of current 

and previous residual series. The ARMA model is given has: 

	
� = Φ�
��� +Φ�
��� +⋯Φ�
��� + �� + ������ +⋯������                                             (2) 

Where p and q are parameters of the autoregressive and 

moving average components respectively, i=1, 2. p and j=1, 2. 

q. 

The ARMA (p, q) process is stationary if the roots of the 

polynomial in the AR component are less than one in 

absolute terms. On the other hand, the process is invertible on 

the condition that the absolute values of the roots of the 

polynomial in the MA component are less than one. 

To incorporate the integrated component to carter for time-

series data that are non- stationary in nature we come up with 

a model called Autoregressive Integrated Moving Average 

(ARIMA) Model. In practice, many time series data show 

non-stationary behavior and such data are made stationary by 

applying finite differencing of the data points. When a time 

series data exhibit seasonal behavior, the ARIMA model is 

usually not able to capture the behavior along the seasonal 

part of the series, hence, the tendency for wrong order 

selection for the non-seasonal component. Identification of 

relevant models and inclusion of suitable seasonal variables 

is therefore necessary when a time series data exhibit 

periodic patterns. The SARIMA model, therefore, has the 

advantage of capturing both seasonal and non-seasonal 

components. The general expression for the order of a 

SARIMA model is: ARMA (p, d, q) (P, D, Q) S and can be 

expressed using the backshift operator as: 

�(�)Φ(��)(1 − �)�(1 − ��)��� = �(�)Θ(��)��      (3) 

�(�) = 1 − ��� − ���� −⋯− ���!              (4) 

Φ(��) = 1 − ���� − ����� −⋯−���!�          (5) 

�(�) = 1 + ��� + ���� +⋯+ �"�"                (6) 

Θ(��) = 1 + Θ��� + Θ���� +⋯+ Θ"�"�          (7) 

Where Yt represents the time series data at period t 

B denotes the backshift operator ��  is a sequence of i. i. d variables with mean zero and 



50 Fredrick Agwata Nyamato et al.:  Comparative Analysis of Sarima and Setar Models in  

Predicting Pneumonia Cases in Kenya 

variance #�, s is the seasonal order Φi and Φj are the non-

seasonal and seasonal AR parameters respectively 

Θi and Θj are respectively non-seasonal and seasonal MA 

parameters. 

P, d and q denote the non-seasonal AR, I and MA orders 

respectively and P, D and Q respectively represent the 

seasonal AR, I and MA orders respectively. 

2.5. SETAR Model 

Self-Excited Threshold Autoregressive (SETAR) model is 

a class of the Threshold Autoregressive (TAR) model 

proposed by Tong [6] and further studied by Tong and Lim 

[7], and later by Tong in his study of threshold model [8] and 

in study non-linear time series [9]. The SETAR model is a set 

of different linear AR models, changing according to the 

value of the threshold variable (s) which is the lagged values 

of the series. The process is linear in each regime, but the 

movement from one regime to the other makes the entire 

process nonlinear. The two regime version of the SETAR 

model of order p is given as by [10]: 


� = $∅&(�) + ∑ ∅((�)
��( + ��(�)	)*	
��� ≤ ,�(�)(-�∅&(�) + ∑ ∅((�)
��( + ��(�)	)*	
��� > ,�(�)(-�
        (8) 

The where ��(  and ��(  are the coefficient in lower and 

higher regime respectively which needs to be estimated; r is 

the threshold value; p
(1)

 and p
(2)

 are the order of the linear AR 

model in low and high regime respectively. In this work, the 

order of the AR model in both regimes are equal yt-d is the 

threshold variable that governs the transition between the two 

regimes with d being the delay parameter which is a positive 

integer (d ˂ p); { ��(�) } and { ��(�) } are sequence of 

independently and identically distributed random variables 

with zero mean and constant variance (i.e. i. i. d (0,#/�)). In 

this study, we consider two regime SETAR model which can 

be written in its simplest form as SETAR (2; p, d). The 

properties of the general SETAR model are hard to obtain 

and little is known about the condition under which the 

SETAR models generate time series that are stationary [11]. 

Such conditions have only been established for the first-order 

SETAR model. For effective model selection, we follow the 

procedure discussed in [11]. The approach of SETAR 

modeling starts with AR (p) model specification and linearity 

against the SETAR model, SETAR model identification, 

estimation and evaluation of the selected model and then 

forecasting which is precisely discussed as follows. 

2.6. Linearity Test 

To apply the SETAR model to an observable time series, 

the series must first be nonlinear. That is the existence of 

nonlinear behavior in the series must first be checked. In 

testing for the linearity in the series, we first have to specify 

an appropriate linear AR (p) model for the series under 

consideration. The choice of the maximum lag order is based 

on the autoregressive lag order that minimize the AIC value, 

[11]. After determining the linear AR (p) model we then test 

for linearity using a well-known linearity test such as Keenan 

Test. Keenan test [12] was is applied to detect nonlinearity in 

an observable time series. The test is considered as a special 

case of the RESET test [13]. The avoidance of multi-

collinearity makes it special. The Keenan test for nonlinearity 

analogous to Turkey’s one degree of freedom for non-

additivity test is motivated by approximating a nonlinear 

stationary time series by a second-order Volterra expansion 

which is given by: 


� = 0 + ∑ �1���1 +∑ ∑ �1231-�3 ���1���232-�331-�3    (9) 

Where	{�5 −∞	˂	5	˂	∞}, is a sequence of independent and 

identically distributed with zero mean random variable. The 

process {	
5} is linear if the double sum of the right-hand side 

the equation does not exist. Thus we can test the linearity of 

the time series by testing whether or not the double sum of 

the equation does not exist. That is, the test requires that one 

distinguish between linearity versus a second-order Voltera 

expansion, by examining �09 = 0 as well as the coefficients 

on higher orders. Keenan‘s test is equivalent to testing if ; = 0  in the multiple regression model [14] (with the 

constant 1 being absorb in to	�&): 


� = �& + ��
��� +⋯+�<
��< + ;
=�� + ��        (10) 

The Keenan’s test statistic for the null hypothesis of 

linearity (>?: ; = 0) is given as 

	�� = AB(C��<��
D���AB                                 (11) 

Where 

m=lag order of the linear autoregressive process 

n=same size considered 

RSS=the residual sum of squares from the AR (m) process 

When the null hypothesis is satisfied, �E is approximately 

F-distributed with 1 and F	– 	2I	– 	2 degree of freedom. The 

null hypothesis of linearity is rejected if the p–value 

associated with is small (J	– 	9KL0M	 <) or when the value of 

F ̂ is greater than the selected critical value of the F-

distribution with 1 and n – 2m – 2 degrees of freedom. 

2.7. The Box-Jenkins Methodology 

Named after George Box and Gwilym Jenkins, it applies 

four steps in developing and application of the model 

developed i.e. model identification, estimation, diagnostic 

checking and model identification that best fits past values 

data [15]. The main steps in setting up the model are as 

follows: 

2.7.1. Model Identification 

For identification of parameters of SARIMA, we use 

sample ACF and PACF, which is obtained from training data 

that should match with the corresponding theoretical or 

actual values [15]. Akaike Information Criterion (AIC) and 

Bayesian Information Criterion (BIC) can also be utilized in 

the identification of parameters [16]. For SARIMA the model 

that we obtain the smallest AIC, BIC and Akaike Information 

Criterion corrected (AICc) is the best mode: 

1. Akaike’s Information Criteria (AIC) is given as 
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AIC=-2 ln (maximum likelihood) + 2k Where k is the 

number of parameters in the model. AIC will be high if the 

number of parameters are high. 

2. Bayesian Information Criteria (BIC) given as 

BIC=- 2 ln (maximum likelihood) + k ln (n) Where n is the 

number of observations in the given stationary time series 

data and, k is the number of parameter. 

3. Akaike Information Criterion corrected (AICc), which 

is given as 

OPQR = OPQ + �S(ST�)
C�U��                             (12) 

An optimal model is one that minimizes AIC and BIC 

criteria. The difference between the BIC and the AIC is the 

greater penalty imposed for the number of parameters by the 

former than the latter. Both criteria are correct depending on 

the goal and set of assumptions. For the best results, both 

criteria are applied. The graphical procedure is mostly 

applied in identifying d which involves plotting the data over 

time and the corresponding (Partial) autocorrelation function. 

For a non- stationary model it is expected the ACF not to 

decrease to zero or to exhibit a very slow decay. A time-

series to be considered stationary it has to have a constant 

mean, variance and covariance statistical characteristics over 

time. The sample autocorrelation function is zero for lags 

beyond q if the model under consideration is an MA (q) 

model. To determine the order of autoregressive models a 

different function is needed since AR (p) does not turn into 

zero after a certain number of lags of ACF since the model 

attenuates instead of a cutoff. A function of such form is 

described as a correlation between Yt and Yt-k, excluding the 

effect of the intervening variables. To determine the order of 

AR (p) model we apply partial autocorrelation function. For 

an AR (p) model, the PACF drops off to zero after the pth lag 

[17]. In practice, identifying p and q using the ACF and 

PACF involves a trial and error approach, with more or less 

subjectivity in interpreting these functions. 

2.7.2. Estimation and Information Criteria 

This is the next step after the order of the model has been 

identified which entails parameter estimation of the models. 

The parameter of the SARIMA model is estimated from the 

observed time series through the use of either linear least 

squares method, Maximum likelihood estimation, and 

Method of moments. 

The method of moments is easy to calculate as compared 

to the maximum likelihood but it is not efficient than 

maximum likelihood method. Unlike other approaches, 

maximum likelihood estimation offers a unified approach for 

parameters estimation of SARIMA. 

Also, it provides a standard way to deal with models of 

stochastic time Processes. Observation in time series are 

interrelated, the likelihood approach through the use of 

probability density function is obtained by: Assuming the 

error follows white noise, i.e. 	�~	W(0; #�)  then the joint 

probability distribution function is given *(��, �� ,….	�C) =*(��)*(��)…… . *(�C) 
Instead of *(�1; 	�2, . . . . . . �F) due to dependency between 

time series observation which will not be written as a 

multiplication of marginal probability density functions. A 

stationary general ARIMA (p, q) process, therefore, can be 

given as [18]: 

��� = \��E��� +	\��E��� +⋯+ \��E��� + �� − ���� − ������ −⋯− �"���"                                  (13) 

Where ��� = �� − ] 

The probability distribution function of errors is given by: 

*(��, ��, … . �C	⃓], \, �, #_�) = 2П#_�) �C� a ���bcBd∑ #��C�-�   (14) 

2.7.3. Diagnostic Checking 

The stage its primary objective is to check the goodness of 

fit of the model identified through the iterative process [14]. 

It’s important if the model can be improved to ensure it 

makes meaningful inferences. Adequacy of the model is 

assessed through checking if it satisfies underlying 

assumptions after the parameters have been estimated. For 

the model to be considered appropriate it should extract all 

relevant information. For example, residuals obtained should 

be small and uncorrelated having zero mean and constant 

variance. Diagnostic checking in the Box-Jenkins 

methodology primarily involves testing the statistical 

properties of the error terms (normality assumption, weak 

white noise assumption) if they are satisfied. 

1. Residual Analysis: Residual is the difference between 

the observed value and the predicted value. Residuals 

obtained should nearly attain white noise properties. If 

the properties are met then the model identified is 

appropriate and parameters under estimation are close 

to true values. If the model doesn’t meet these 

properties then it needs improvement. 

2. Normality and independence: Through the application 

of histograms and quantile-quantile (Q-Q) plot, 

normality assumption can be checked for residuals 

while the run test can be employed to check 

independence. 

3. Ljung-Box Test: The test that is used to determine the 

presence or absence of auto-correlation in a time series 

up to a certain lag. The test statistic is given by [19]: 

e(f) = F(F + 2)∑ �gBC�hU(-�                       (15) 

Where r_j is the j_t residual autocorrelation while n is the 

total number of data points or number of residual and k is the 

total number of lags tested. The decision criteria is that null 

hypothesis is rejected if Q (k) is greater than chi-square table 

value. 

4. Residual autocorrelation and Partial autocorrelation 

Function: The residuals of 

5. ACF and PACF should not be forecastable, that is the 

terms of the residual ACF and residual PACF should all 

approximately lie between the 95% confidence limit. If 

this is not the case, there are elements of residuals 
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which can be forecastable. 

2.7.4. Diagnostic Checking 

Forecasting involves the application of the model identified 

to historical data to predict a variable of interest, the procedure 

requires routine calculations to make use of a large number of 

events [20]. Through forecasting, we are able to achieve our 

main objective in dealing with modeling exercise that is able to 

predict the value of the random variable in the future from the 

currently existed one and get information in advance. The best 

forecast is achieved when we obtain a minimum mean square 

error, whose forecast is given by: 

�E�(L) = ijjjk�E�T�l��,��,……��,m               (16) 

Where �E�is the minimum mean square error forecast and Y1, 

Y2...... Yt is the observed time series data The Choice of the 

model may rely on the goodness of fit of the information 

criteria or the residual mean square error. The decision on the 

criteria to apply will depend on the main objective of the 

model if the objective is forecasting future value using 

current and past values then model selection criteria can be 

based on forecast error. The comparison of the forecast error 

measures help us to know how much we should rely on the 

chosen prediction method is based on the following statistics. 

1. Mean Percentage Error (MPE), which is given by 

noi = p�S∑ _qrstqSu-� v                      (17) 

2. Mean Square Error 

nwi = p�S∑ M(�S(-� v                       (18) 

3. Mean Absolute Error 

nOi = �
S∑ |M(|S(-�                          (19) 

4. Mean Absolute Percentage Error 

p�S∑ y _zrstqyS(-� v                              (20) 

The best model for forecasting is the one that results into 

smallest MPE, MSE, MAE and MAPE. 

2.8. Diebold-Mariano Test 

To compare the forecasting accuracy SETAR and SARIMA 

models, lower values of mean square errors of one forecast in 

comparison to the alternative do not necessarily translate into 

the superiority of this forecast. In order to verify whether there 

is a significant difference in the forecasting accuracy of any 

two competing models, the Diebold and Mariano test [21] of 

equal forecasting accuracy will be used to assess whether the 

differences in the mean square errors of competing forecasts 

are statistically significant. The test statistic follows the 

standard normal distribution and tests the null hypothesis of 

equal forecast accuracy against the alternative. 

{� = [9=(}̅)]�qB��                                (21) 

Where Ƌ is the mean of the coefficient of dt, which is the 

difference between the sets of squared forecast errors from 

two competing models, 

}� = ℓ��� − ℓ��� 	                                (22) 

9=k}̅mis an estimate of the variance of }̅ 

3. Results and Discussion 

3.1. Data Overview 

The maximum and minimum values of the cases for the 

entire study period were 148,272 and 8,632 respectively. 

Moreover, the average pneumonia cases were 66,906.85. The 

coefficients of variation (CV) for the pneumonia cases were 

55.98%. Pneumonia cases recorded for the entire period was 

found to be positively skewed. The nature of trend 

characterizing the pneumonia cases overtime was 

investigated using the linear, quadratic, log-linear and log-

quadratic trend models as shown in Table 1. 

Table 1. Trend analysis of Pneumonia case. 

Model AIC BIC 

Linear 1275.256 1281.75 

Quadratic 1165.406 1175.147 

Log-linear 281.328 287.822 

Log-quadratic 209.793* 219.534* 

*: Means best based on the selection criteria. 

The log quadratic trend model was observed as the best since it 

had the least AIC and BIC. The parameters of the log-

quadratic trend models for the pneumonia cases were 

estimated as shown in Table 2. All the parameters were highly 

significant at the 5% level of significance. It was also shown 

that the estimated log-quadratic model for the cases trends 

downwards and is quadratic in logarithm form. It, therefore, 

indicates that the presence of trend was the major cause of the 

variation in the pneumonia cases. Thus, the estimated log-

quadratic trend model for pneumonia cases is given by; 

ln	JFR = 2.325 + 0.0195 − 0.00055� (24) 

Table 2. Estimated parameters of the Log-quadratic trend. 

Variable Coefficient standard error T- statisti P-value 

Constant 2.3536 0.0917 25.6495 0.000** 

Time 0.0191 0.0022 8.6069 0.000** 

(Time)2 0.0001 0.0001 9.4009 0.000** 

AIC=209.7925. 

BIC=219.5336. 

3.2. Fitting the SARIMA Model 

A visual inspection of the ACF plot of the pneumonia 

cases showed a slow decay in the ACF suggesting non-

stationarity of the series. The PACF plot also revealed very 

dominant significant spikes at lag 1 as shown in Figure 1. 
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Figure 1. ACF and PACF plot of Pneumonia cases. 

To further confirm the non-stationarity of the series, the KPSS and ADF test for unit root was carried out on the original data. 

Using the KPSS test, the results in Table 3: 

Table 3. KPSS test of Pneumonia cases. 

Test Test Statistic Critical value 

KPSS 0.708775 0.464 

The ADF test also confirms the existence of unit root with only a constant term and a constant with the quadratic trend. This 

affirmed the presence of unit root in the series since the p-value was greater than the 0.05 level of significance as illustrated in 

Table 4. 

Table 4. ADF test of Pneumonia cases. 

Test 
Constant Constant+quadratic Trend 

Test statistic P-vale Test statistic P-vale 

ADF -1.4342 0.567 -1.4314 0.852 

The series was transformed logarithmically to stabilize the variance. The transformed series was then differenced and then 

tested for stationarity. The KPSS and ADF tests for the pneumonia cases revealed that the transformed differenced series were 

now stationary since the p-value for the ADF test is less than the 5% significance level and the test statistic being less than the 

critical value in the case of the KPSS test as shown in Tables 5 and 6 respectively. 

Table 5. KPSS test of differenced series. 

Test Test statistic Critical value 

KPSS 0.0341 0.464 

Table 6. ADF test of differenced series. 

Test 
Constant Constant+quadratic Trend 

Test statistic P-vale Test statistic P-vale 

ADF -5.4783 0.000 -5.4829 0.000 

 

After obtaining the order of integration of the Pneumonia 

cases, the order of the Autoregressive and Moving Average 

components was determined based on the ACF and PACF plots 

[15]. The ACF plot in Figure 2 shows significant spikes at lag 1, 

6, 12 and 13. The PACF plot also has significant spikes at lag 1, 

6, 13 and 19. Using the lower significant lags of both the ACF 

and PACF, tentative SARIMA models were developed as 

shown in Table 7. Among these possible models SARIMA (1, 1, 

1) (0, 0, 1) 12 was adjudged the best since it had the least AIC, 

AICc and BIC values as compared to the other models. 
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Figure 2. ACF and PACF plot of differenced series. 

The SARIMA (1, 1, 1) (0, 0, 1) 12 model is the best as per results obtained and can be expressed in terms of backshift 

operator as; 

(1 � 0.755�	�1 � �	 ln JFR � �1 � 0.959�	�1 � 0.169���	��                                           (25) 

From Table 7 that the p-values of the parameters of the 

selected model for the Autoregressive and Moving Average 

components were highly significant at the 5% level of 

significance. The model thus appears to be the best model 

among the suggested models. 

Table 7. Estimates of parameters for SARIMA (1, 1, 1) (0, 0, 1) 12. 

Variable Coefficient Standard error Z-statistic P-value 

θ� -0.859552 0.0327374 -29.3106 0.00001 

Θ� 0.168451 0.0764908 2.2153 0.0267 

ϕ� 0.694616 0.0689403 10.9459 0.00001 

To ensure that the fitted model is adequate, Ljung-Box 

test was performed. It revealed that the model was free 

from serial correlation and conditional heteroscedasticity at 

lag 12, 24, 36 and 48 respectively since the p-values of the 

test statistics were insignificant at the 5% significance level. 

This implies that the residuals of the model were 

uncorrelated, thus have zero mean and constant variance 

over time; hence are white noise series. It can, therefore, be 

concluded that the selected model, SARIMA (1, 1, 1) (0, 0 

1) 12 is the best model since it satisfies all the diagnostic 

conditions. 

Table 8. Residuals diagnostic test for SARIMA (1, 1, 1) (0, 0, 1) 1. 

Lag 
Ljung-Box Test 

Test statistic P-value 

12 20.8664 0.05237 

24 28.2171 0.251 

36 31.3243 0.6905 

48 38.693 0.8288 

3.3. Fitting the SETAR Model 

The 2 regime Self Excited Threshold Autoregressive 

(SETAR) model approach was used to model and forecast the 

pneumonia cases. To model a time series with the SETAR 

model, the series must be non-linear. To test for non- linearity 

in the series we first specify the linear AR (p), model. Using 

AIC, we found the AR (4) model for the series. The choice of 

the AR (4) lag order is based on the Autoregressive lag order 

that gives the minimum AIC value based on the significant 

PACF lag orders. After we determined the linear AR model we 

employ the Keenan1-degree test to test for linearity against the 

alternative of nonlinearity for the Keenan test. This linearity 

test depends on the linear AR model selected. Table 9 below 

summarizes the results from the Keenan1-degree test. From 

the results, in the Keenan1-degree test, we reject the null 
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hypothesis of linearity since the P-value is less than the 5% 

significant level. 

Table 9. Linearity test. 

Test Test statistic P-value Decision 

Keenan1-degree 6.36 0.02 Linearity Rejected 

After checking if data is nonlinear, we proceed to obtain 

the SETAR model that best fits the data. We do this by 

determining the Autoregressive lag order P in each regime 

and the threshold variable where d represents the delay 

parameter. We choose the model with P lag order for both 

regimes and threshold variables with the minimal AIC value 

by performing a grid search on all possible combinations of 

SETAR models that can be fitted to the data. 

After performing a grid search on all possible combinations 

of SETAR models that can be fitted to the data, SETAR (2; 4, 

3) model with a threshold variable 
��� could be appropriate to 

explain the nonlinearity in the data. This model has a 

minimum AIC value which is presented in Table 10. 

Table 10. AIC for the selected SETAR Model. 

Model AIC BIC 

SETAR (2: 4, 3) -165.42 91.07 

After we have found that SETAR (2; 4, 3) model with 

threshold variable
���) as the best model that fits the data 

well since it has the minimum value for AIC. Further 

assessment of the forecast-ability of the model was done. 

The corresponding model for SETAR (2: 4, 3) with a 

threshold variable 
��� that governs the transitions between 

the two regimes with delay parameter 3 and threshold value 

1.255 is given by: 


 � {
0.295 + 0.727
��� + 0.008
��� − 0.142
��� + 0.087
��� )*	
��� ≤ 1.255−0.069 + 0.484
��� + 0.085
��� + 0.300
��� )*	
��� ≥ 1.255                         (26) 

After the parameters of the SETAR model have been 

estimated, we check the residuals of the model for the best fit. 

That is we check for the non-existence of serial 

autocorrelation, zero mean and constant variance of the 

residuals. We used the ARCH-LM test to check for a 

constant variance of the residuals. Ljung-Box test was also 

used to check for serial correlation. From the results, as 

shown in Table 11, we fail to reject the null hypothesis of the 

two tests for the SETAR (2; 4, 3) model since their P-values 

were greater than the 5% significant level. 

Table 11. Residuals diagnostic test for SETAR (2; 4, 3). 

ARCH-LM Ljung Box Test 

lag Test Statistic p-value Test Statistic p-value 

12 17.9482 0.1085 14.6184 0.263 

24 37.9226 0.2782 32.8826 0.1066 

36 38.0165 0.3357 41.1826 0.2542 

48 46.2422 0.6276 50.6098 0.3709 

 

 

Figure 3. Normal Q-Q plot. 

3.4. Comparative Analysis of the Models 

The residuals have been assumed to be normally 

distributed throughout the analysis. Quantile-Quantile plots 

(QQ) plots are an effective tool for assessing the normality of 

residuals. From the plot in Figure 3 it can be easily observed 

that the Q-Q plot is approximately normally distributed. 

If models satisfy all the assumptions, we can conclude that 

the models are adequate and can be used to predict the 

pneumonia cases. Hence, there is the need to compare the 

forecasting accuracy of the SARIMA (1, 1, 1) (0, 0, 1) 12 

model with SETAR (2; 4, 3) model. From Table 12, it can be 

revealed that most accuracy tests support SETAR (2; 4, 3) 

model which has the minimum value of BIC, AIC, MSE, 

RMSE, and MAPE respectively: 

Table 12. Forecast accuracy test of models. 

Model BIC AIC MSE RMSE MAPE 

SARIMA (1, 1, 1) (0, 0, 1) 12 96.08 -233.77 0.0797 0.128 8.735 

SETAR (2; 4, 3) 90.06* -768* 0.000245* 0.01566* 0.09025* 

 

Though the nonlinear SETAR model outperforms the 

linear SARIMA model as suggested by the forecast measures, 

it is interesting to know whether there is a significant 

difference in the forecast from the two models. Using the 

approach of Diebold and Mariano test, we test the null 

hypothesis that there is no difference between the forecast 

-3 -2 -1 0 1 2 3

-1
e
+

0
5

0
e

+
0
0

1
e

+
0
5

Normal Q-Q Plot

Theoretical Quantiles

S
a
m

p
le

 Q
u

a
n

ti
le

s



56 Fredrick Agwata Nyamato et al.:  Comparative Analysis of Sarima and Setar Models in  

Predicting Pneumonia Cases in Kenya 

accuracy from the two models against the alternative 

hypothesis that the selected SETAR provide better forecast 

accuracy as compared to the selected SARIMA model. The 

results from the test as presented in Table 13 fail to reject the 

null hypothesis of equal forecast accuracy at 5% level of 

significance and conclude that the forecast results from both 

models are the same. 

Table 13. Diebold-Mariano test. 

Test statistic P-value 

0.9856 0.3256 

The developed models were cross-validated using the chi-

square goodness of fit test. The results, as shown in Table 14 

revealed that there is no significant difference between the 

observed pneumonia cases and their forecasted values. This 

can be seen from the insignificant chi-square statistic 

obtained for the results of both models. This indicates that 

the fitted models produce values that depict the behavior of 

the pneumonia cases over time even though the values of the 

observed and expected are not exactly the same: 

Table 14. Chi-square Goodness of Fit Test of the Models. 

Model Chi-squared Statistic p-value 

SARIMA 0.9705 0.9142 

SETAR 0.1819 0.9961 

It can, therefore, be concluded that both models are good 

for predicting the pneumonia cases since there is no 

significant difference in their forecasting accuracy. The two 

models were therefore used to predict the cases of pneumonia. 

The predicted values for SARIMA (1, 1, 1) (0, 0, 1) 12 model 

indicates that pneumonia cases are increasing while SETAR 

(2; 4, 3) model gives a constant pattern of the cases over the 

forecast period. The predicted values for the models fall 

within the confidence interval. Hence, we say both models 

are adequate to be used for predicting pneumonia cases. The 

indication that the confidence interval becomes wider as the 

number of forecast increases suggests that the data was 

highly deterministic as evidence from the predicted values 

4. Conclusion and Recommendation 

In this study, the monthly number of patients with 

pneumonia cases, from January 1999 to December 2018 was 

studied. Before fitting the model to the pneumonia cases, the 

monthly characteristics of the series were examined. The 

careful examination of the series revealed that pneumonia 

cases were decreasing at a constant quadratic rate. The two 

models developed for predicting the monthly pneumonia 

cases were both adequate for representing the series as 

evident from all the diagnostics and model comparison 

techniques employed in the study. However, based on the 

forecast assessment from the linear SARIMA and the non-

linear SETAR model, the forecast measures suggest that the 

non-linear SETAR model outperforms the linear SARIMA 

model. Also, the forecast performance of the non-linear 

SETAR models is superior to that of the linear SARIMA 

model in predicting pneumonia cases in Kenya. Predicted 

Pneumonia cases were made beyond the period under 

consideration based on the developed models. The Ministry 

of Health (MOH), and other stakeholders in the health sector 

can also predict pneumonia cases based on the developed 

models. There is, however, the need for continuous 

monitoring of the forecasting more reliable. Based on the 

findings of this research work, the following 

recommendations can be made; 

i. The results revealed that the non-linear SETAR Model 

outperforms the linear SARIMA Model in predicting 

pneumonia cases in the region. It is therefore 

recommended that this study should be carried out in 

other regions to monitor the performance of the two 

models in predicting Pneumonia cases. 

ii. The log-quadratic trend model depicts decreasing levels 

in the number of pneumonia cases for a unit change in 

time. These decreasing levels do not warrant public 

health workers to suggest that pneumonia cases are not 

prevalent in the region. It is rather recommended that 

the MoH should collaborate with health personnel to 

provide intensive education on some of the dangers of 

the disease and the need to seek early treatment in any 

nearby health facility because there can be a reverse 

trend of the cases. 

iii. This study compared the non-linear SETAR model and 

the linear SARIMA model in predicting pneumonia 

cases in Kenya. It is therefore recommended that further 

studies should be carried out by comparing the non-

linear SETAR model with other linear models to see 

which one would outperform the other since the non-

linear SETAR model is the best model in this study. 

iv. It is also recommended that the MoH advise the heads 

of its various institutions in the country to make data on 

pneumonia cases available. This will make it possible 

for researchers to study and predict pneumonia cases 

ahead of time for policy formulation and 

implementation to avert future loss of lives. 
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