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Abstract: One of the Big four agenda is Universal health. This study focused on maternal health. The main aim of maternal 

health is usually to reduce maternal deaths. One way in aiding to reduce maternal deaths is to forecast maternal deaths using 

various statistical smoothing techniques. This would enable better future planning for example increase in health facilities. 

Shapiro-Wilk Normality Test confirmed that there was clear observable difference between the normal distribution and the 

data. The study hence focused on non-parametric regression methods which include Kernel and Cubic spline smoothing 

techniques which were applied on maternal health care data. The technique that best dealt with this type of data was identified 

and used to focus maternal deaths. Selecting an appropriate technique was important to achieve a good forecasting 

performance. The performance of the two smoothing technique was compared using MSE, MAE and RMSE and the best 

model identified. In both methods we have smoothing parameters. Selecting smoothing parameter goal is usually to base it on 

the data. According to the results obtained in the study, it is concluded that Cubic spline smoothing technique which has a 

lower MSE, MAE and RMSE is better than Kernel based smoothing technique. The statistical software that was used for the 

analysis was R. The study used maternal health care statistics data for Nakuru County. 
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1. Introduction 

Smoothing is a type of data handling technique. In 

statistics, when data is smoothed, an approximation function 

is created that usually attempt to capture important patterns 

in the data. Typically, data smoothing is done to remove 

noise from a given data set. Data smoothing can be employed 

to enable better prediction. Maternal health includes the 

dimensions of health care in family planning, preconception, 

prenatal and postnatal treatment to reduce maternal morbidity 

and mortality [1]. Some elementary data smoothing 

techniques such as visual inter-polation, averaging and 

mathematical interpolation emerged during the eighteenth 

century [2]. At that time, smoothing techniques consisted of 

simple interpolation of the data and eventually evolved into 

more complex modern methods such as Cubic splines 

smoothing technique. Kernel density estimation has been 

previously discussed utterly, giving details about assumptions 

on the kernel weight, properties of the estimator such as bias 

and variance [3]. Spline smoothing in some sense 

corresponds approximately to bandwidth smoothing by a 

kernel method depending on the local design point density 

[4]. Consideration of kernel smoothing methods shows that 

there are desirable properties in how the effective local 

bandwidth acts in spline smoothing. The smoothing 

parameter's value for a curve fitting can be chosen by 

minimizing the expected prediction error [5]. To address the 

extreme handling of data, smoothing techniques should be 

used to achieve an accurate result in making predictions. Two 

smoothing techniques applied on maternal health data is 

explored and the technique that best deals with this type of 

data is identified. Usually there are many smoothing 

techniques available, and selecting the appropriate technique 

is an important issue to achieve a good forecasting 
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performance. The Kernel based and Cubic splines smoothing 

methods are studied. Some error measures for example, mean 

absolute deviation, root mean squared error, and mean square 

error are calculated for above smoothing techniques to 

identify the best method. 

2. Literature Review 

In Kernel Smoothing Technique, Cross-validation with 

Kullback-Leibler loss function has been employed to the 

choosing of a smoothing parameter in the kernel method of 

density estimation [6]. A framework for this problem is 

constructed and used to derive an alternative method of 

cross-validation, based on integrated squared error, recently 

also proposed [7]. Hall has established the consistency and 

asymptotic optimality of the new method [8]. Kernel density 

plays a very important function in statistics. A wrong choice 

of bandwidth may lead to a bad estimate [9]. Kernel density 

estimation disadvantage is that it is normally unbiased. 

Cross-validation is a very good method when it comes to 

selecting of parameter. For regression function estimation of 

the Epanechnikov kernel which has the property of optional 

kernel and which is commonly used in practice is preferred 

[10]. For the nonparametric estimation of regression 

functions with a one-dimensional design parameter, a new 

kernel estimate is defined [11]. 

Cubic Spline Smoothing Technique; Non-parametric 

regression using cubic splines is an attractive, flexible and 

widely applicable approach to curve estimation, [3]. 

Although the basic idea was formulated many years ago, the 

method is not as widely known or adopted as perhaps it 

should be. To a cubic spline operator for smoothing there is 

normally a given operator of kernel. A Connection between 

Cubic and Kernel smoothing has been established 

theoretically and related approximations to a Green's function 

have also been established [12, 13]. The fundamental ideas 

behind cubic spline is in engineer's tool used to draw smooth 

curves through a number of points. This consists of weights 

attached to flat surface at the points to be connected. A 

flexible strip is then put across each of these weights, 

resulting in a pleasingly smooth curves. The mathematical 

spline is similar in principle [14]. The points in this case are 

numerical data. Stupp introduces a general method for 

proving uniformity in kernel type function estimators 

bandwidth consistency [15]. 

3. Methodology 

3.1. Kernel Smoothing 

In smoothing, the data points of a signal are modified so 

individual points (presumably due to noise) are decreased. A 

Kernel smoothing refers to a general class of techniques for 

nonparametric estimation of functions. Closer points are 

given higher weights. This technique is so useful in the 

visualization of data. The simplicity of kernel estimators 

entails mathematical tractability, so one can delve deeply into 

the properties of these estimators without highly 

sophisticated mathematics. In summary, kernel smoothing 

provides simple, reliable and useful answers to a wide range 

of important problems. The main feature of kernel smoothing 

is data speaks for itself, meaning that data decides which 

function best fits. Kernel smoothing also provides a simple 

way of finding structure in data sets without the imposition of 

a parametric model. Kernel smoothing has a low standard 

error and works well for small or large samples. 

A kernel smoother generally defines a set of weights ���������	
  
for every x and defines 

	�
 ��� = ∑ �����
��	 �� 	                 (1) 

In this general definition, most smoothers can be 

considered kernel smoothers. In action, kernel smoothers 

have a simple approach to describe the sequence of weights ���������	
  
by describing the weight function shape

 ����� 
through a density function with a scale parameter that 

changes the size and the form of the weights that are near x. 

This shape function is usually referred as a kernel K. The 

kernel is a continuous, bounded, and symmetrical real 

function K that integrates into one: 

�� ����� = 1                              (2) 

The weight sequence is therefore defined by; 

��	���� = ������� �
∑ ������� �����

	                  (3) 

For any given scale parameter h we notice 

that	∑ ������ = 1
��	 . The kernel smoother is then defined as 

before for any x by ����� = ∑ �����
��	  � .  Usually, kernel 

smoother defines weights that smoothly decrease as you 

move away from the target point. 

3.1.1. The Bandwidth " 

Bandwidth controls the smoothness or roughness of a 

density estimate. Choosing the bandwidth value h is more 

important than choosing the kernel density function. Popular 

kernels used for smoothing include parabolic 

(Epanechnikov), Tricube and Gaussian kernels. 

Table 1. Popular Kernels. 

Kernel Efficiency 

Epanechnikov 1.0000 

Biweight 0.974 

Triangular 0.986 

Normal 0.951 

Uniform 0.930 

Nadaraya Kernel Watson is usually given by  

 #�$%� = ∑ ��&�'(,'��*�'��+���∑ ��&�'(,'��+���           (4) 

Some particular cases of kernel smoothers are: 

3.1.2. Kernel smoother (Gaussian) 

The Kernel (Gaussian) is usually mostly used and is given 

by;  
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���∗, ��� = exp 0− �2∗32��4
564 7        (5) 

3.1.3. Nearest Neighbor Smoother 

The main idea here is that for each and every points $%,	we 

take 8 nearest of neighbors and then we estimate the given 

value of 	 �$% ). As before 	ℎ:�$%� = ;<$% − $|:|<; , where 

$|:| is the 8>� closest to $% neighbor and  

?�@� = A 	: , B�	|@| ≤ 1
0, E@ℎFGHBIF	              (6) 

3.2. Cubic Spline Smoothing Technique 

Let �$� ,  � : B = 1,… , L� be a set of observations, based on a 

relationship 	 � = 	��$�� + N�  where the N� 	 are independent, 

zero mean random variables (normally taken to have constant 

variance). 

The estimate of the cubic smoothing spline is known as the 

minimizer (over the twice-differentiable function class)  

∑ � � −
��	 ������5 +	⋋ � �PPQ���5 ��	        (7) 

⋋≥ 0 usually regulates trading-off among data fineness and 

roughness of the function estimate. This is often calculated by 

cross-validation or restricted marginal likelihood (REML) which 

takes advantage of the relation between spline smoothing and 

Bayesian estimation. Many methods to select parameters of 

smoothing such as cross validation(CV), generalized maximum 

likelihood (GML), generalized cross-validation (GCV) and 

unbiased risk (UBR) have been established under the 

assumption of observations being independent. 

3.2.1. Derivation of the Cubic Smoothing Spline 

We can fit a smoothing spline in two steps: 

1. Firstly, we derive the values ������: B = 1,… , L 

2. From these values obtained, derive ����� for each and 

every � 

Then, treat the second step first. 

Given the vector 

	8S = �����	�, … , ����
��T		            (8) 

of the values which are fitted, the spline criterion of a sum 

squares is normally fixed. It only remains to 

minimize��PPQ ���5�� . This spline interpolation is a linear 

function given as: 

	����� = ∑ ������
��	 �����               (9) 

where ����� 
are a spline-based function set. The roughness penalty 

therefore has the form 

� �PPQ ���5�� = 8ST8S                       (10) 

Where the A elements are  

� �PP�����PPU��� ��                         (11) 

The basic functions, and therefore the matrix A, depend on 

the predictor variables �� 	 configuration, but not on the  � 
or	8S  responses. Return to the first step. The penalized sum-

of-squares is given as; 

� − 8S�T� − 8S� +⋋8STV8S,	   (12) 

Where  = � 	, … ,  
�T . Minimizing over 8S  by 

differentiating against	8S . This results in: 

−2� − 8S� + 2 ⋋ 	V8S = 0 and 8S = �X +⋋ V�3	  (13) 

Smoothing spline model is given by: 

�� = ��@�� + N� , B = 1, … , L, @�N	[0,1] (14) 

where N = �N	, … , N
�P ∼ \�0, ]5�3	�  and ]5	 is unknown. 

Assume � ∈ �5:, where �5: = ��: ��_� absolutely continuous, v=0,…, m-1， 

	� ���:��@��5�@	
% < ∞�             (15) 

��⋋ the minimizer is 

mine∈f4g�	
 �� − ��P��� − �� +⋋ � 0��:��@�75 �@	
% � (16) 

Where � = ��	, … , �
�P  and � = ���@1�, … , ��@L��P . 

Parameter ⋋  governs the relationship between fitness and 

smoothness of the estimate and is normally called the 

smoothing parameter. 

Given h < @	 < @5 < ⋯ < @
 < j,	an operator k is a cubic 

if: 

1. On one interval �h, @	�, �@	, @5�, … , �@
, j�, k  is a cubic 

polynomial. 

2. The polynomial pieces fit together at points	@�  (called 

knots) such that k	 itself and its first and second 

derivative are continuous at each @�  and hence on the 

whole[h, j]. 
3.2.2. Specification of Cubic Spline 

Cubic spline is specified as below; 

k�@� = ���@ − @��l + m��@ − @��5 + j��@ − @�� + h�	, for @� ≤ @ ≤ @�n	                         (17) 

3.3. Choosing the Smoothing Parameter 

There are two different philosophical approaches: 

Subjective choice; Automatic method - chosen by data -

(Cross-validation; Generalized cross-validation) 

3.3.1. Cross Validation 

Used to select value of ⋋ 

mino pq�r� = 	

∑ s � − kt�3	��@�; r�v5
��	 = 	


∑ �*�3wt�����>��	3x���o� �5
��	  (18) 

if kt is the spline smoother with α 

3.3.2. Generalized Cross-Validation 

mino ypq�r� =�
�∑ �*�3wt�>���4����
[	3
��>zx�o�]4 	
×|}:	~e	|�}���|	~e	���	>��	��|��}��|

���}�_���
>	�e�4  (19) 
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3.4. Comparison of Models Performance 

Three different prediction criteria are used to compare the 

performance of cubic spline and kernel model. These include 

Mean Square Error (MSE), Mean Absolute Deviation (MAD) 

and Root Mean Squared Error (RMSE). These criteria are 

defined as follows: 

��� = 	
T∑ ��> − �t>�5T>�	 	                (20) 

EG	���� = √���	                          (21) 

�V� = 	
T∑ |�> −T>�	 �t>|                     (22) 

4. Data Description and Results 

The study used maternal health care statistics data for 

Nakuru County. The variables for this data included: 

Table 2. Variables of the data. 

Dependent Variable Independent Variable 

Total Maternal 

Deaths 
Total Skilled Delivery New Antenatal Clients 

 Pregnant women completing four antenatal visits. 

4.1. Test for Normality 

Table 3. Testing for normality. 

Shapiro-Wilk Normality Test 

Variables P-value 

Total Maternal Deaths 0.00804 

Total Skilled Delivery 0.006968 

Pregnant women completing four 

antenatal visits 
0.01354 

New Antenatal Clients 0.1722 

The P-value is very low meaning that if the data was 

normally distributed, there would be very little chance of 

seeing the same sample from such a distribution. Clearly the 

P-Values < 0.05 suggesting strong evidence of non-normality 

and so non-parametric test should be used. Shapiro-Wilk 

normality test was used in conjunction with both Q-Q plot 

and Histogram to check normality of the data. 

Normal Q-Q plot 

 

Figure 1. Q-Q plot. 

Q-Q plot is an alternative graphical method of assessing 

normality to the histogram and is easier to use when there are 

small sample sizes. The plot helps us to understand the data 

set's distribution. The scatter normally compares the data to a 

standard normal distribution. The scatter is not as close to the 

line with clear pattern coming off the line. By the heavy tail, 

the data is obviously not normal. The data is therefore not 

assumed to be distributed normally. 

Histogram; 

Plotting the variable of interest histogram provides an 

indication of the distribution shape. The histogram is 

smoothed by a density curve, and is usually added to the 

graph. The histogram shows the data is clearly skewed so no 

parametric test should be carried out using this data. 

 

Figure 2. Plot of Histogram with a density curve. 

4.2. Fitting Cubic Splines to the Data 

A smoothing parameter is required to be chosen in cubic 

splines. Smoothing parameter controls the trade-off between 

data accuracy and portion estimate roughness. In this study, 

cross validation was used to choose the smoothing parameter. 

Table 4. Results from the fitted cubic model. 

Variables Estimate Pr (>|t|) 

TSD -1.24378 0.0329 

NAC -0.08144 0.00958 

PWCV -2.01392 0.0413 

�		Is -1.24378, a unit increase in Total Skilled Delivery 

causes a decrease in Total Maternal Death by 1.24378.  �5 Is 

-0.08144, a unit increase in New Antenatal Clients causes a 

decrease in Total Maternal Death by 0.08144. �l is -2.01392, 

a unit increase in Pregnant women completing four antenatal 

visits causes a decrease in Total Maternal Death by 2.01392. 

The p-value of Pregnant women completing four antenatal 

visits is (0.0413) of Total Skilled Delivery is (0.0329) of New 
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Antenatal Clients is (0.00958) are all < 0.05 hence all the variables in the model are significant. 

4.2.1. Diagnostic Plots 

 

Figure 3. Diagnostic plots. 

4.2.2. Explanation of the Diagnostic Plots 

Plot (a) is relatively shapeless without clear pattern of the 

data, no obvious outliers and it is generally symmetrically 

distributed around the 0 line without particularly large 

residuals. The residuals get larger as we move left to right 

and there are a few potential outliers. Hence the assumption 

whether the relationship between the variables of this study 

being linear is true. Plot (b) shows if residuals are normally 

distributed. We see that these residuals are not lined up well 

on the straight dashed line. Hence since the points do not 

form a line that is roughly straight, the assumption of the 

dependent variable being normally distributed is not true. In 

Plot (c) Scale-Location is also called Spread-Location. In the 

plot, horizontal line with randomly spread points is noticed. 

Hence the assumption of homoscedastic is true. In plot (d) 

outlying values at the upper right corner or at the lower right 

corner are checked if they exist. This plot helps us to find 

influential cases if any. Not all outliers are influential. In our 

case there is no influential case or cases. The red dashed line 

are not so much seen because all cases are well inside the 

red-dashed line. 

4.3. Fitting Kernel Smoothing Technique to the Data 

The kernel-based smoothing technique has been fitted to 

the data given in this section. Data speak for themselves is 

the main feature of kernel smoothing, which means that the 

data determines what function fits best. Kernel smoothing 

also provides a simple way of finding structure in data 

without the imposition of parametric model. Bandwidth or 

the smoothing parameter was chosen by cross validation. In 

this study Gaussian kernel, one of the most commonly used 

kernels was used. 

Table 5. Results from fitted kernel model. 

Bandwidth For Total Skilled Delivery Bandwidth For New Antenatal Clients Bandwidth for pregnant women completing 4 antenatal visits 

1546.99 1189.22 1386.53 

The bandwidths were found to be 1546.99, 1189.22 and 1386.53 respectively. 
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Figure 4. Plot of the fitted kernel model. 

From the first plot, we see that when TSD increased, the 

TMD increased. This is contrary to our expectation. There 

might be another factor contributing to increase in TMD even 

with an increased TSD. From the second plot, we see that 

when NAC were 3000, TMD decreased up to when it was 

4000 but after that the number of TMD increased. This may 

be due to constant number of caregivers. Other people might 

not have been attended to due to large number and hence the 

cause of   increased TMD. From the third plot, we see that as 

the number of PWCV increased, TMD was decreasing. This 

is true since those who were finishing all the four antenatal 

visits were taking into consideration all the precautions 

during pregnancy. 

4.4. Comparing the Performance of Cubic Spline and 

Kernel Smoothing Technique 

Table 6. Results. 

Performance Criteria 
Cubic Spline 

Technique 

Kernel Regression 

Technique 

MSE 2.932502 3.28672 

RMSE 1.712455 1.81293 

MAE 0.2234266 0.2430285 

According to Table six it is shown that performance 

criteria values obtained by cubic spline technique are smaller 

than results of the kernel regression technique. Hence, it can 

be said that cubic spline smoothing technique is better than 

kernel smoothing technique. 

4.5. Forecasting Monthly Maternal Deaths Using the Best 

Smoothing Technique 

Cubic Spline smoothing technique was used to forecast 

monthly maternal deaths. 

4.5.1. Results of forecasting using Cubic Spline Smoothing 

Technique 

Table 7. Forecasting monthly maternal deaths. 

Months Point Forecast Lo 95 Hi 95 

58 2.699412 2.306904 3.091920 

59 2.773840 2.300223 3.247457 

60 2.848269 2.269489 3.427048 

61 2.922697 2.218973 3.626421 

62 2.997125 2.152031 3.842220 

63 3.071554 2.071051 4.072056 

64 3.145982 1.977721 4.314244 

65 3.220411 1.873258 4.567563 

66 3.294839 1.758574 4.831104 

67 3.369267 1.634376 5.104159 

68 3.443696 1.501227 5.386165 

69 1.359591 3.518124 5.676657 

4.5.2. Explanation 

Lo95 and Hi95 are the minimum and maximum 

boundaries of about 95 percent, respectively. That means we 

are 95 percent confident that the true population forecast is 

somewhere between our Lo95 and Hi95. Since we are 

concerned with forecast values, this would in effect be a case 

of an interval of expectation rather than an interval of 

confidence. The interval reflects the set of possible values 

that we plan to find at some future point in time for a 

prediction interval. In the table above, the 95% forecast 

interval informs us that there is a 95% chance that the future 

observation value will fall somewhere between the minimum 

and maximum limits. More precisely, a 95% prediction 

interval informs us that if we calculate 95% prediction 
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intervals across repeated samples, the future observation 

value should fall on about 95% of these samples within the 

minimum and maximum bound. 

From the graph below we see that Total Maternal Deaths 

will be increasing. 

 

Figure 5. Plot of Forecasts from Cubic Smoothing Spline. 

5. Conclusion 

In non-parametric regression methods, detailed results 

can be found between explanatory and response variables. 

In this study, the main objective was to determine the best 

smoothing technique for maternal health care data. The 

specific objectives were; to fit Cubic splines and Kernel 

smoothing techniques to the data; to compare the 

performances of Cubic splines and Kernel smoothing 

technique and lastly to forecast maternal deaths using the 

best smoothing technique. Shapiro-Wilk Normality test 

confirmed that there was clear observable difference 

between the normal distribution and the data. Cubic splines 

model and Kernel model was fitted to the data. Three 

different prediction criteria were employed to enable 

comparison of the performance of these models. These are 

MSE, RMSE and MAE which are chosen as a measure of 

fit since Cubic spline and Kernel based model are estimated 

by using the sum of squared error. In these prediction 

criteria, the smaller the value the better the model. Lower 

values indicates a better fit. Cubic spline model indicated a 

good performance since it had a lower MAE, RMSE and 

MSE as compared to Kernel based model. Cubic spline 

gave a good forecasting performance which would enable 

future planning for example increase of skilled personnel, 

increase of health facilities for the ultimate goal of maternal 

deaths reduction. 
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