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Abstract: Mathematical modeling of disease has been an indispensable tool in accounting for disease transmission dynamics 

as well as disease spread. Epidemiological disease models have been used to explain the dynamics of HIV/AIDS in the 

population from the early 1900s. The models developed however faced considerable challenges ranging from inaccurate 

representation of natural data for deterministic models, to methods of forecasting such as statistical extrapolation which 

assumes that current conditions will prevail which is not always the case. Despite the spread of HIV/AIDS having been 

explored widely, not much literature is available on the Gillespie Algorithm based SIR model. This algorithm is able to give a 

statistically correct of the course of a disease with initial conditions to begin with and propensity functions to update the 

system. The purpose of this paper is to build on the concept of Gillespie's Algorithm based SIR models by developing a 

stochastic SIR model to simulate disease evolution in the population setting. The values produced through simulation by the 

model developed in this paper using a tau value as the time step of the model were compared to HIV/AIDS data from 1985 to 

2018, given by NACC. We conclude that the simulated model reflects reality. 

Keywords: Stochastic, Simulation, Deterministic, SIR Model, Continuous-Time Markov Chain,  
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1. Introduction 

On June 5, 1981 a mysterious disease was recognized 

among MSM in the USA. In 1982 the CDC identified the 

same disease among IVDU, hemophiliacs and Haitian 

residents. In the same year, it was identified that it attacks the 

immune system of the host, incapacitating them to heal 

subsequently leading to death. It was characterized by its 

etiological agent HIV in 1983, [1]. These researchers from 

France, Francoise Barre-Sinoussi and Jean-Claude Chermann 

together with Luc Montagnier, speculate that this virus could 

be what latter develops to AIDS. A serological test, was then 

made available. In 1984, Robert Gallo discovered that HIV 

was responsible for AIDS. 

This virus, being highly transmittable is analyzed and 

capturing how it is transmitted is crucial in attempting to 

model the disease. There are several channels in which the 

virus can be transmitted such as inter-species transmission, 

vector transmission, direct transmission or environmental 

transmission. HIV is transferred from one individual in three 

modes: through blood, sexual intercourse and mother-to-

child. However, this is not always the case as there exist 

individual differences in the ability to transmit and acquire 

HIV that remain unexplained [2]. In 1984, several HIV and 

AIDS cases were documented in Kenya. The following year, 

26 new cases of HIV were recorded from sex workers and the 

NAC was established. The NACC was established under 

Section 3 of the State Corporations Act Cap 446 through the 

National AIDS Control Council Order, 1999 published vide 

Legal Notice No. 170 of 1999. Among other countries in the 

world, Kenya is among the twenty two that account for 90% 

of expectant women living with HIV. This accounts for 4% of 

new pediatric infections worldwide. Among the expectant 

women there are 13,000 new HIV infections among children. 

The number of those that died account for 7% of the global 
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total. Sex workers have the highest percentage of HIV 

prevalence at 29.3% according to the Kenya HIV estimates 

report- National Aids Control Council. 

2. Literature Review 

Mathematical modeling of HIV is the use of statistical 

tools and procedures to recognize the general pattern in the 

transmission of HIV and to translate a problem into a 

statistical form for subsequent analysis. There are various 

questions still left unanswered to date on the HIV epidemic. 

These questions are encompassed in the modeling of the HIV 

immunology, the HIV dynamics as well as the AIDS 

dynamics such as the dynamic distribution of the disease in 

the population and its likely magnitude. This study employs 

mathematical modeling tools in the transmission probability 

of HIV and analyses done on how the cumulative number of 

infected individuals responds as well as the AIDS death 

probability and how the cumulative cases of removed 

individuals responds to this probability. 

The following reviews consider models developed for 

HIV/AIDS data that either differed too greatly with other 

model estimates or still fail even with developments on the 

model. In 2010 several authors came up with a model to 

predict HIV transmission in China in 2002 [3]. They applied 

these dynamic models to forecast the transmission of HIV for 

the Chinese population. In this model, there were no forms of 

intervention. The average number of partners was different at 

different ages in the HIV to AIDS cycle. The transmission 

parameter was held constant for all stages of HIV. The 

formulated model was used to forecast the number of 

PLWHA. This model approximated that there would be 

6000000 cases of HIV and 400000 cases of AIDS in China if 

there were no forms of interventions implemented. In 2007 

the government of China alongside UNAIDS made an 

estimate of 700000 cases of HIV and 85000 cases of AIDS in 

China at the time, which is much lower that the estimates 

made by Liu [4]. The number of HIV infections in 2010 was 

predicted to approximately 1000000. The group most 

affected would be the 31-40 years group. The group 

comprising of the largest individuals predicted to be living 

with HIV/AIDS was approximately 650000. 

There is need now more than ever to develop the SIR 

model since its application is going beyond epidemiological 

application such as how cues influence behaviour in a social 

setting and the spread of ideas [5]. 

There are several challenges facing models used for HIV 

estimates developed by UNIADS. In several concentrated 

epidemics, HIV prevalence estimates do not match reported 

cases and mortality estimates do not match reported deaths, 

even after adjusting. There are issues estimating prevalence 

in high risk groups and the size of high risk groups. 

Furthermore, it provides inaccurate estimates where an 

epidemic has not gone beyond its peak [6]. Even with the 

2013 updates of Spectrum where adjustments were made in 

the parameter values empirically to improve the fit to 

program data, the estimates given by Spectrum still differed 

with data available. More adjustments are needed as they 

desire to make the process where Spectrum selects the 

incidence curve for the data an automatic process [7]. 

A stochastic differential equation SI model with 

demographic stochasticity has already been developed [8]. 

They considered and analyzed a two stage SI model that 

allowed for random variation in the demographic structure of 

the population with the population size changing at different 

times which had an exponentially distributed rate of 

infection. The parameter �  depended on the varying 

population size N. This meant that both the population size 

varied as well as the transmission/contact rate. They used the 

Milstein method to simulate for analysis. 

Despite the fact that a lot of research has been done on 

modeling disease trajectory, not much literature is available 

on the use of Gillespie based SIR models to simulate the 

trajectory of a disease in the population. The Gillespie's 

algorithm based SIR model concept considered the Gillespie 

algorithm, Euler alongside other CME based exact methods 

which showed that Gillespie's algorithm had the least 

execution time [9]. This makes it a prime candidate for the 

tau step vantage point. Events are selected stochastically in 

the tau time step such that in the least possible computed 

time step, one or several events are selected to occur 

randomly. 

Other authors have made contributions to mathematical 

epidemiology by performing simulations that explain the 

process of disease spread. In their works they build a disease 

spread prediction model based on the SIR model and applied 

parameter values to a stochastic model based on Gillespie's 

algorithm. This is applied to data and the conclusion was that 

the model well explains the process of the spread of the 

disease in the population [10]. 

3. Rationale of the Study 

Mathematical models generated as deterministic have been 

used in the past and they offer a lot to be studied and 

concluded from statistically. According to Koopman, 

deterministic differential equation models cannot capture the 

real-life representation because no matter how finely they 

divide populations into geographic and social space, the 

infectious population is spread out to cover the entire space. 

The inability of differential equation models to capture 

stochastic effects therefore has been demonstrated by studies 

done by Koopman [11]. 

Infection-transmission deterministic models are based on 

the characteristics of population growth, disease occurrence, 

and spread within a population. There is need to come up 

with a stochastic mathematical model that better expresses 

the changing number of HIV/AIDS cases. This study seeks to 

incorporate a stochastic aspect in the deterministic SIR 

epidemiological model. A stochastic process, also called a 

random process is one in which the outcomes are uncertain. 

By contrast, in a deterministic process, there is no 

randomness [12]. This will allow us to derive new insight 

from the analysis of the simulation of this SIR model. 
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In spite having a lot of work done on mathematical 

modeling, there isn't adequate literature on the modeling the 

evolution of disease in the population through simulation. 

Several execution options have been suggested for the SIR 

model such as Gillespie's algorithm and agent-based models 

but they have not been extensively explored in literature. 

This paper will contribute and build on to the existing 

literature on modeling disease dynamics in the population 

with the model tested on HIV/AIDS data 1985-2018 to 

investigate if the simulated values would reflect results that 

are close to reality. 

This paper will help bridge the gap between conceptual 

epidemiological models and its simulated version by 

providing a developed version of an SIR model that solves 

one inherent problem that deterministic models do not reflect 

the natural data. 

In some instances, these deterministic models do not capture 

some model characteristics and this could lead to biases. 

4. Methodology 

4.1. The Stochastic SIR Model 

The Classic SIR model 

The Kermack-McKendrick theory illustrates individuals 

grouped as susceptible and removeds only [13]. The 

transmission and infection rates were considered to be 

variant. The initial conditions changed over time and 

demographics not being included such that change over time 

was described as; 
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The Kermack-McKendrick theory was later developed to a 

version where they tackled the problem of endemics [14], 

[15]. They set the transmission and infection rates as 

invariant for all ages and this allowed the inclusion of an 

infectives class. This transformed the theory to the basic SIR 

model such that when demographics were included becomes 
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where 

N denotes the total host population. 

� denotes the birth rate and death rate 

� denotes the infection rate 

�	denotes the recovery rate 

t denotes time point 

Model development 

The Gillespie algorithm was used to simulate a statistically 

correct trajectory given initial SIR conditions. The model 

explored how altering transmission dynamics affected the 

model as a whole. The death rates were distinguished such 

that one death event led an individual out of the model while 

the other death event led an individual into a different 

classes. The SIR model explained how the epidemic 

manifests in all the compartments. The reliability of the 

simulated values would set the precedent for the valued to be 

predicted based on the model is also explored. All these 

aspects determine the quality of the inference drawn. The 

graphical representation of the developed stochastic model is 

shown; 

 

Figure 1. The stochastic SIR model. 
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�	denotes the rate of birth 

� denotes the rate of non-AIDS death 

� denotes the rate of infection 

� denotes AIDS death rate 

� denotes model's time step 

Gillespie's procedure 

The Gillespie simulation procedure was developed to 

produce a statistically correct course for finite well-mixed 

populations [16, 17]. The assumption is that the population is 

finite and is sub-divided into categories of finite discrete 

compartments. The interaction between states is made 

possible by events outlined in this model as birth, infection, 

non-AIDS death an AIDS death. The compartments consist 

of initial state values S(t0), I(t0) and R(t0) are contained in a 

vector and described at initial time t0. 

�	
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���                      (10) 

This Gillespie's algorithm based stochastic SIR model 

generates a statistically correct trajectory from the initial 

vector as 
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��                        (11) 

where i=s, i, r 

S+I+R=N 

i denotes the population size of the state at time t 
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�� denotes a function characterized by two quantities as a 

state change vector and a propensity function. 

�� , the state change vector defined as 

�� � 	��� , ��� , ����                                (12) 

where ��  is the change in state i caused by one ���  event. 

Assuming that � � ��	
�  the resulting state is � � ��� . A 

propensity function  �	�� is the probability of one ��� event 

occurring in the time interval !
, 
 � �". 

Continuous-time Markov chains are the basic tool for 

building discrete population epidemic models. The Markov 

property lets us specify a model by giving the transition 

probabilities-defined as rates-on a small interval between the 

compartments. Considering the fact that the propensity 

functions require to be in probability form, we explore this 

assumption further by defining and interpreting it. 

A Markov chain model is one where the probability of the 

next event depends on the probability of the present state. 

This implies the probabilities are individual therefore 

discrete. Discrete evolution is modelled in discrete time. A 

Markov chain is interpreted here then, as a stochastic 

discrete-valued model with the Markov property that future 

states of a process depend on the current state. Continuous-

time Markov chains are the basic tool for building discrete 

population epidemic models. The Markov property lets us 

specify a model by giving the transition probabilities-defined 

as rates-on a small interval between the compartments. The 

transition probabilities assigned are defined on an open 

interval (t, t + � ), such that the probability an individual 

moves from the susceptible compartment to the infectives 

compartment is [��
	
 � 	1�]. The SIR Markov chain model 

transition probabilities for a closed population are; 
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where 

��
 	 denotes the rate of flow of individuals from 

susceptibles to infectives 

�
� 	denotes the rate of flow of individuals from infectives 

to removeds. 

The wait times between events can either assume an 

exponentially distributed wait time or the rate of flow 

between compartments can assume any of the following 

distributions depending on the results. 

4.1.1. Exponential Increments Between &'( Events 

The wait times between one event and the next can assume 

an exponential distribution 

∆��
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4.1.2. Poisson Increments in &'( Events 

The counting process for the flows in the compartments 

has a Poisson model with evolution in time 
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4.1.3. Binomial Increments with Linear Probability in &'( 

Events 

The counting process for the flows in the compartments 

has a binomial model with linear probability in the evolution 

of time. 

∆��
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4.1.4. Binomial Increments with Exponential Decaying 

Probability in &'( Events 

The counting process for the flows in the compartments 

has a binomial model with exponentially decaying 

probability in the evolution of time. 
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4.2. Goodness-of-fit of the Stochastic Model to HIV/AIDS 

Cases 

In order to assess how the simulated data performs against 

natural data, a modified chi-square test was used. The data 

was obtained from NACC for HIV/AIDS cases. The means 

and variances of the simulated and natural data were 

computed. Considering the hypotheses, 

4� = If the mean and variance of the simulated and natural 

data are equal, the simulated mean does not fit the data. 

45 = If the mean and variance of the simulated and natural 

data are not equal, the simulated data fits the natural data. 

A modified chi-square test for simulation models was used 

to see how well the simulated data fit the natural data [18]. 

5. Results and Discussion 

5.1. The Simulated Stochastic SIR Model 

A stochastic SIR model was simulated with a mean step size 

of 0.006336446. 537 tau steps were made in the model. 

Variables in the model were S = 3507162, I = 45820, R = 4597, 

parameters in the model are crude birth rate of 0.06, non-AIDS 

death rate of 0.025, transition rate of 0.1 and AIDS death rate 

of 0.48. Curves produced are illustrated below. 
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Figure 2. Simulated HIV/AIDS cases alongside natural data HIV/AIDS 

cases. 

 

 

Figure 3. Simulated AIDS death cases alongside natural data AIDS death 

cases. 

5.2. Goodness-of-fit for the Stochastic Model 

In order to have confidence in the predicted value, we 

apply a test to check the simulated values against the natural 

data values by employing hypotheses. 

 

Table 1. Means and variances of simulated and natural data. 

Data type Mean Variance 

Natural data infecteds 388766.7 2726320.2 

Simulated data infecteds 789411.8 9501142 

Natural data removeds 251260.4 3734534.4 

Simulated data removeds 460882.4 4766099 

An upper tailed test was done-since chi-square test is an 

asymmetrical distribution-at 33 degrees of freedom and 

6 � 0.05. The results produced show non-equal means and 

variances. This prompted the use of a modified chi-square 

test [3]. To begin with, the Pearson's goodness-of-fit test is 

:; �	∑
	=�,>��;

>�

?
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where 

Oi- the observed values 

Ei- the expected values 

In this study, the means and variances found were non 

equal. Waller proposed a generalized :; as 

B; �	∑
	=�,>��;
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?
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where 

C� represents the variance of D�  

The calculated value found was 64.958. The critical value 

was 47.4. Since the calculated value is greater than the 

critical value, the decision rule is to reject the null 

hypothesis. Therefore, the conclusion is that the simulated 

data model fits the natural data model. 

6. Conclusion and Recommendation 

Mathematical modeling of disease trajectory using 

Gillespie based algorithms is yet to be explored extensively 

in literature. In this study, a simulation was carried out on 

the SIR model to explain the trajectory of the disease by 

employing a stochastic element using Gillespie’s simulation 

algorithm. After simulating, values were produced by the 

algorithm for each time step. The simulated curves were 

compared to HIV/AIDS data. The simulated curves were 

found to resemble the data available in reality. Therefore, 

the implementation of a stochastic factor to an 

epidemiological model is a useful contribution to 

mathematical modeling. 

Mathematical modeling is an area that requires more 

research. Recommendation for research would be to explore 

other variations of the SIR model such as SI, SEIR under 

Gillespie's algorithm. 

Furthermore, making parameter values time-varying under 

the Gillespie algorithm and comparing it with the version 

where parameters are invariant to see which performs better 

is another recommendation. 

The SIR model as well as Gillespie algorithm could 

continue to be applied other areas such as viral marketing 

and behavioural science as has already been done 

successfully. 
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