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Abstract: Many randomized clinical trials include right censored time to event data, comparing an experimental treatment 

with a standard treatment or placebo control. In this comparison, one tests whether the two treatments have the same survival 

function or equivalently the same hazard function over a given time period in order to evaluate effect of treatment. The 

methodological development of survival analysis for randomized clinical trials with right-censored data that have had the most 

profound impact are the log-rank test for comparing the equality of two or more survival distributions, and the Cox 

proportional hazards model for examining the covariate(s) effects on the hazard function. However, when comparing 

treatments in terms of their time to event distribution, there may be reason to believe that the hazard curves will cross, and in 

such cases standard comparison techniques could lead to misleading results [16]. Hence, in this study, the performance of new 

methods for testing treatment effect on randomized clinical trials when the proportional hazards assumption is not satisfied was 

evaluated based on simulation studies and on two real datasets. New proposed methods are based on combination of early/late 

treatment effects obtained from stopped/left truncated Cox or equivalently from extended Cox and the overall treatment effect 

from Cox proportional hazards model. These methods were compared with Cox proportional hazards model [8], pseudo values 

regression approach based on mean restricted survival time [1, 13] and extended Cox for the time dependent treatment effect 

[20]. Type I error rate and power of the proposed tests were illustrated based on simulated data under five possible treatment 

effect. The results of simulations and real data examples on cancer clinical trials showed that the new proposed methods 

performed reasonably well in case of crossing survival curves compared to Cox proportional hazards model and pseudo values 

regression approach based on restricted mean survival time. However, they performed about the same compared to extended 

Cox model. Furthermore, they performed about the same compared to Cox proportional hazards model and extended Cox 

under the late treatment effect. Using the proposed methods under proportional hazards alternative did not generally yield 

dramatic decrease in power compared to the Cox model and they allow adjusting for covariate(s). 

Keywords: Simulation, Stopped Cox, Kaplan-Meier Method, Cox Proportional Hazards, Pseudo Values,  

Regression Approach, Extended COX Model 

 

1. Introduction 

1.1. Background 

Survival analysis has become one of the most widely used 

statistical tools for analyzing clinical research data. It is 

specifically concerned with time to event data and is of 

particular value because of its intrinsic ability to handle 

censored observations. In the literature, many randomized 

clinical trials includes right censored time to event data, 

comparing an experimental treatment with a standard 

treatment or placebo control in order to evaluate treatment 

effect [5, 14]. In this comparison, one tests whether the two 

treatments have the same survival function or equivalently 

the same hazard function over a given follow up time [28]. 

The log-rank test is commonly used test statistic for the 

comparison. Often in these trials, characteristics of the 

patient and of the tumours that are known before treatment 

are also recorded. Hence, to study the effect of treatment, 

Cox proportional hazards model is the most popular choice 

with advantages of adjusting for baseline and prognostic 

covariate(s) [16]. 
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One of the assumptions underlying the Cox model is the 

assumption of proportional hazards, meaning that the ratio of 

the hazards for treatment versus control is constant over time 

[8]. Then, the hazards ratio can be expressed as a single 

number; the hazards ratio of treatment over control. Although 

not as implicitly assumed as in the Cox regression model, the 

validity of the log-rank test is also sensitive to the assumption 

that the hazard ratios for treatment versus control do not 

change appreciably over time [20]. When studying survival 

data over a short period of time, the proportional hazards 

assumption is often a reasonable one. However, in cancer 

clinical trials with long-term follow-up, it often happens that 

the hazard ratio changes over time. In the beginning of the 

study for instance, the experimental treatment may yield 

better survival, but this effect may be reversed after some 

time or vice versa [16]. In such a case, the log-rank test for 

the difference in survival ratios between the treatments will 

most likely not be significant, because of the contrasting 

early and late effects of the treatments. If the proportional 

hazards assumption fails to hold for the treatment or for one 

or more of the covariates, the results of a Cox model will be 

misleading. In addition, it is not easy to interpret the hazards 

ratio resulting from the Cox proportional hazards model 

because it is a weighted average hazards ratio over the 

observed follow-up time [19, 21, 22]. 

In the literature, to deal with the issues of non-proportional 

hazards, the Cox regression model with time-dependent 

treatment effects was proposed [20]. Klein proposed to 

compare survival curves at one fixed time point [13]. It was 

proposed to compare restricted mean survival time at a pre-

specified fixed time point [21]. Chen and Tsiatis studied 

methods for comparing covariate-adjusted restricted mean 

survival times between two treatment groups [7]. It was also 

proposed for testing treatment effect by combining weighted 

log-rank tests and using empirical likelihood [26]. Logan 

proposed to test two sub hypotheses: the hypothesis of 

equality of Kaplan-Meier survival difference at a pre-

specified time point (��) and the hypothesis of no difference 

in the hazards after �� [16]. The new methods was proposed 

for testing treatment effect based on the combination of early 

(late) and overall treatment effects [6]. 

1.2. Statement of the Problem 

As many studies indicated, the Cox proportional hazards 

model is the standard for evaluation of treatment effects on 

clinical trial data, but when hazards are not proportional, the 

Cox may not be powerful. Consequently, different 

approaches have been proposed as alternative to the Cox 

model in the case of non-proportional hazards. Therefore, 

this study has attempted to answer the following scientific 

questions: 

a) What are the alternative methods to test the effect of 

treatment in randomized clinical trial when proportional 

hazards assumption is not satisfied? 

b) How is the performance of new methods [6] compared 

to Cox proportional hazards model, pseudo values 

regression approach based on restricted mean survival 

time and extended Cox in the situation where 

proportional hazards assumption is not satisfied? 

1.3. Objectives of the Study 

A comprehensive review of the existing methods for 

dealing with the problem of non-proportional hazards is 

provided. It is stressed in the literature that the log-rank or 

Cox test has optimal power to detect differences in the hazard 

rates, when the hazard rates are proportional [14]. When 

these tests are applied to samples from populations where the 

hazard rate crosses, they lack power. Therefore, the main 

objective of this study was to evaluate the performance of 

newly proposed methods (i.e. methods based on the 

combination of treatment effects) [6] compared to tests 

obtained from Cox proportional hazards model, pseudo 

values regression approach based on restricted mean survival 

time [1, 21] and extended Cox model [20] in order to test 

treatment effect in randomized clinical trials with possible 

non-proportional hazards with and without including 

covariate(s) in the models. This was studied by simulations 

and two popular real datasets from randomized cancer 

clinical trials. 

1.4. Significance of the Study 

This study evaluates the performance of newly proposed 

methods and offers a breakthrough in the new methods of 

testing treatment effects in the situations where proportional 

hazards assumption is not satisfied. Therefore, this will 

increase the bank of knowledge in the field of survival 

analysis. 

2. Methodology 

2.1. Description of the Data 

2.1.1. Dataset on Gastric Cancer Trial 

In addition to simulations, to illustrate efficiency of newly 

proposed methods two popular real datasets were considered. 

Both datasets are taken from the R package survival. The 

first dataset was on gastric cancer [25] which comes from a 

controlled clinical trial in patients with advanced non-

resectable gastric carcinoma. It was analyzed to exemplify 

crossing hazards scenario [14, 17]. In this dataset there are 

two treatment arms: chemotherapy plus radiation and 

chemotherapy without radiation. There are a total of 90 

patients involved in the study and 79 of them are observed 

events resulting to 12% censoring. The outcome of interest 

was overall survival time and the objective of the trial was to 

test if chemotherapy plus radiation is better than 

chemotherapy without radiation. This dataset was used to 

exemplify crossing survival curves. 

2.1.2. Dataset on Bladder Cancer Trial 

The second dataset that was considered to illustrate new 

proposed methods was coming from a study by Byar [3] and 

included patients with superficial bladder tumors removed by 

transurethral resection. Many patients had multiple tumor 



 International Journal of Clinical Oncology and Cancer Research 2017; 2(6): 129-140 131 

 

recurrences (up to a maximum of 9) during the study, and 

new tumors were removed at each visit. However, in this 

study data from 85 individuals in the placebo and thiotepa 

treatment groups with only the first recurrence was 

considered and 45% of them are censored. The covariates 

that were considered are the initial number of tumours and 

the size (cm) of largest initial tumour. This dataset was used 

to exemplify the late treatment effect. 

2.1.3. Simulation Design 

A simulation study was designed to compare the 

performance of the new proposed methods in terms of their 

type I error rate and power. Callegaro conducted a simulation 

study to examine the statistical power of their proposed test 

statistics under a variety of possible situations [6]. They 

claimed that their proposed test statistics can be used in 

testing treatment effect, whether or not the underlying 

proportional hazards assumption was met. Therefore, in this 

study, a similar simulation setting was carried out to evaluate 

the power of their proposed test statistics under different 

possible scenarios and they were compared with some of the 

existing methods such as pseudo values regression approach 

based on restricted mean survival time and extended Cox 

model for time dependent treatment effect. In the simulation 

design, survival times for treatment groups were generated 

independently for samples of size 200 subjects per treatment 

group with 30% of administrative censoring (censoring due 

to termination of study) using true survival functions 

presented in Figure 1. This was done under five different 

scenarios such as: in scenario 1) survival curves are assumed 

to be identical (i.e., no treatment effect under the null 

hypothesis), 2) survival curves are assumed to have 

proportional hazards, 3) survival curves are assumed 

identical at the beginning, then separate as time goes on (late 

treatment effect), 4) the two survival curves are separate at 

beginning, but identical as time goes on (early treatment 

effect) leading to crossing hazards, and 5) survival curves are 

assumed to cross. In all scenarios survival times are 

simulated conditioning on the binary covariate which was 

generated from Bernoulli distribution considering the follow 

up period of five years and independent of the censoring 

times. For each scenario, the data are replicated 1000 times 

which is the most common choices [4]. The type I error rate 

and empirical power of the tests are calculated as the 

proportion of 1000 repeated random samples in which the 

null hypothesis is rejected at the nominal alpha of 5% with 

one-sided test statistics under identical survival curves and 

four different alternative scenarios, respectively with and 

without including the covariate in the models. Simulations 

and analyses were done using R software version of R3.1.0. 

2.2. Method of Statistical Analysis 

2.2.1. Testing for the Treatment Effect Based on  

Pseudo-Values Regression Approach 

In survival analysis, regression models are often specified 

using the hazard function and relationships are expressed 

using hazards ratio. However, in cases when the proportional 

hazards assumption is in question, it would be useful to be 

able to express the effect of covariates on a restricted mean 

survival time, in a manner similar to classical regression 

analysis which is focused on the mean of an outcome 

variable. Pseudo-values allow for this by replacing censored 

observations and event times with “leave-one-out” estimates 

at a given time [2]. Later, Andersen described the use of 

pseudo values as a route to assessing the effects of 

covariate(s) on restricted mean survival time [1]. It was also 

provided a convincing argument for the use of a restricted 

mean when the proportional hazards assumption is not 

satisfied [21]. A restricted mean can be used where either the 

last observation is treated as an event or the investigator can 

assign an interval which is assumed to be the longest possible 

survival time for that study. Another version of the restricted 

mean is to assume the last event time as the last observed 

time regardless of later censored observations [23]. In 

general, the choice of this point appears to be arbitrary and in 

all of the literature researched for this work, very little 

guidance is given or attention is paid to the choice of time 

point �. Andersen performed simulation study for the choice 

of time point � at 75
th

 and 95
th

 percentile of event time and 

reported that the biases are quite small for one of the choices 

[1]. Therefore, to test the treatment effect with the presence 

of additional covariate(s), pseudo values regression approach 

based restricted mean survival time at 80th percentile of 

event time point was considered as an alternative and 

compared with new methods [6]. 

The restricted mean survival time �� of a random variable � is the mean of min��, �
; it is the area under the survival 

curve ���
 up to time � and is given by: 

�� = ��min��, �
� 
= � ���
�

�
�� 

and can be estimated by:  

��� = � ����
�
�

�� 
where ���. 
 is the Kaplan Meier [12] estimator and when � is 

the time to death, �� might be interpreted as the � year life 

expectancy [21]. For a given restricted mean survival time 

point �, let �����
 be pooled sample Kaplan–Meier estimator, 

based on all observations and �����
��
 be the Kaplan–Meier 

estimator based on the ��� observation removed. Then the ��� 

pseudo values restricted at time � is defined by: 

��� = ��� + � 
 ! �����
��
���
� − ��� + � −

1
 ! 	�����
��
���
� , �=1,2,...,n. 

where Kaplan–Meier [12] estimator of survival in the %�� 

treatment group at event time �� can be given as: 

��&��
 ='(1 − �&�)&�*�+,�
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and its variance estimated by Greenwood's formula [11] has 

the form: 

-./0 1��&��
2 = 1��&��
23 	4 ( �&�)&� − �&�*�+,�
 

where �5 < �3 < ⋯ < �8 are distinct event times, �&� denote 

the number of events, and )&�  denote the number of subjects 

at risk in the %�� treatment group at event time �� and �&  is 

the number of subjects in the %��  treatment group for % =1	for experimental (E) treatment and 0 for control (C) group. 

Once pseudo values are computed, then they can be used to 

model the effect of covariate(s) on the outcome [1, 13, 16]. 

The model based on these pseudo values restricted at time � 

has the form: 

9����� = :� + :;< + =>:?, for � =1,2,...,� 

where <  is treatment indicator (1 for experimental (E) 

treatment or 0 for control (C) group), X is vector of 

covariate(s) and 9�. 
 is the identity link function. Then, the 

null hypothesis of equality survival for patients in the 

treatment and control group is equivalent to testing @�: :; =0  against one-sided alternative that experimental treatment 

increases survival time i.e.	@C: :; > 0. Inference on :; was 

performed using generalized estimating equations [15] and 

the estimating equation to be solved has the form: 

4E F
F�:
 9G5�:� + :;< + =>:?
H

> -�G5�:

�

���� − �����
=4I��:


�
= I�:
 = 0 

where -��:
 is a independence working covariance matrix, 

	���� is the model based predicted values of ���. Let :�  be the 

solutions to this equation then according Liang and Zeger 

under standard regularity conditions, √��:� 	− :�  is 

asymptotically multivariate normal with zero mean vector 

and covariance that can be estimated consistently by a 

"sandwich" estimator [15]. Then the null hypothesis of no 

difference in survival times between treatment groups i.e. 	@�: :; = 0  against one-sided alternative that experimental 

treatment increases survival time i.e. @C: :; > 0  can be 

tested by: 

K�LMLNO = :�;
PQ./R �:�;


 

Under the null hypothesis, K�LMLNO  statistic assumed to 

follow a standard normal distribution for a large sample. 

2.2.2. Testing for the Treatment Effect Based on Extended 

Cox Model 

Under the proportional hazards assumption, crossing of the 

survival curves is impossible. Thus, in a study where the 

patient groups do not differ between the treatments, crossing 

of the survival curves implies a violation of the proportional 

hazards assumption. If the proportional hazards assumption 

fails to hold for the treatment or for one or more of the 

covariates, the results of a Cox proportional hazards model 

will be misleading. In this situation a way of studying the 

effect of treatment changes over time by adding a time 

dependent treatment effects in a Cox proportional hazards 

model [20]. The most straightforward way to model a time 

dependent treatment effect is by adding interaction terms of 

the treatment group with S��
 as :;<��
 = :;<S��
, where S��
 is the function of time t with its popular choice can be � 
or log	��
 or heaviside function that take value 1 for all time 

point greater than or equal to pre-specified time ��  or zero 

otherwise. In this study, for the practicality and comparability 

of results, heaviside function which is conceptually related 

with stopped Cox and defined on the median of observed 

events (��) was adopted. In the literature it is stated that, if 

there is no information about crossing point for hazards the 

recommended choice is the time point where half of the 

expected number of event are observed [29]. Gillen and 

Emerson also suggested the use of equally spaced 

information time with the goal of balancing loss of statistical 

power against the potential for early stopping in the situation 

where there is no prior knowledge of a time varying 

treatment effect [10]. These are considered as motivations for 

the choice of time point �� in this study. The general form of 

the extended Cox model with time dependent treatment effect 

can be written as: ℎ��
 = ℎ���
exp	�: < ∗ �1 − f�t

 + :^< ∗ f�t
 + =>:?
 , 

where 

S��
 = _1, � ≥ ��0, � < ��  is called heaviside (step) function, <  is 

treatment groups (1 for treated and 0 for control), =  are 

additional baseline covariate(s), : ,	:^ and :? are parameters 

to be estimated representing early, late treatment effects and 

baseline covariate(s) effects, respectively. The parameters of 

the model were estimated by maximizing logarithm of partial 

likelihood via Newton-Raphson iterative procedure [14]. 

Let’s denote aQ.bcdefghi  and aQ.bcdhf�e  as one-sided p-

value to test for the early and late treatment effect with 

hypothesis @je: : = 0  versus @5e: : < 0  and @jh: :^ = 0 

versus @5h: :^ < 0 , respectively. Since early and late 

treatment effects are independent, the null hypothesis of @jeh: @je ∩ @jh  can be tested by combining two sub 

hypothesis [9]. Then, combining method has the form: KO8 =	−2�lnaQ.bcdefghi + lnaQ.bcdhf�e
  which is 

distributed chi-square with 4 degrees of freedom for two 

independent tests. The KO8 tests if there is an early or a late 

treatment effect. 

2.2.3. Testing for the Treatment Effect Based on 

Combination of Treatment Effects from Stopped/Left 

Truncated Cox and Cox Proportional Hazards 

Models 

In this section, the newly proposed methods to test for 

treatment effect based on Cox model, but stopped at different 

administratively censored time is described [6]. It is well 

known that the proportional hazards model operates under 

the proportional hazards assumption, that the hazard for an 
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individual in one treatment group at a given time is 

proportional to the hazard of a similar individual in the 

control group, and this proportion remains constant over time 

[8]. Suppose that there is a total sample of n individuals with 

the survival time t and let <  be treatment groups (1 for 

treated and 0 for control). Let = be set of additional baseline 

covariate(s), putting all of these elements together, the 

general form of the Cox proportional hazards model can be 

written as: 

ℎ��
 = ℎ���
exp	�:;< + =>:?
 
where ℎ���
 denote the hazard function for an individual on 

the control with covariate values all equal to zero, which is 

also known as the baseline hazard function. The parameters 

of the model were estimated by maximizing the logarithm of 

partial likelihood via Newton-Raphson iterative procedure 

[14]. From Cox proportional hazards model, the null 

hypothesis of no difference between treatments (i.e., @�: :; = 0) versus one-sided alternative that the treatment is 

better (i.e., @�: :; < 0) can be tested using: 

Kmjn = :�;
PQ./R �:�;


 

Under the null hypothesis, this statistic follows a standard 

normal distribution for a large samples. In the frame of Cox 

proportional hazards model, a Cox model stopped at �� is a 

Cox model fitted on the data with additional administrative 

censoring at time ��  in order to study short term treatment 

effect. Van Houwelingen and Putter (2011) showed that the 

predictions based on the stopped Cox model are very 

accurate at the beginning of the follow-up and later in 2014 

they concluded that stopped Cox works well for follow-up 

which is not too long. Furthermore, left truncated Cox model 

is also in the frame of Cox proportional hazards model fitted 

on the data left truncated at time ��. To develop test statistics 

based on early effect or late effect and overall treatment 

effect, let :�  denote the treatment effect estimated by the 

stopped Cox model (early treatment effect), or :�^ denote the 

treatment effect estimated by left truncated Cox (late 

treatment effect) or equivalently estimated from extended 

Cox model by using heaviside function and :�;  represent 

overall treatment effect. The effect of treatment can be tested 

by the sum of early (late) treatment effects and overall 

treatment effect [6] and the test statistics has the form: 

Kopq r = :� + :�;
PQ./R �:� 
 + 3Q./R �:�;


 

or 

Kopq^r = :�^ + :�;
PQ./R �:�^
 + 3Q./R �:�;


 

Under the null hypothesis, Kopq r  and Kopq^r  statistics 

follow a standard normal distribution for large samples. 

Kopq r  tests whether there is an overall or early treatment 

effects and Kopq ^  tests whether there is an overall or late 

treatment effects. They combine the two log hazards ratio by 

taking into account the dependence of the tests through 

covariance. It was also suggested to use the covariance 

between :� �:�^
  and :�;  as the variance of :�;  and its 

theoretical derivation is related with theory of log-rank test 

[18]. In general, to compute Kopq r or Kopq^r statistics, first 

the early, late and the overall treatment effects should be 

estimated in a way that the early and late treatment effect can 

be estimated by fitting the Cox model on data 

administratively censored at �� (the median of the observed 

event times) and left truncated Cox proportional hazards 

model after time ��, respectively. Equivalently early and late 

treatment effects can be estimated from extended Cox model 

by using heaviside function. In this way, half of the events 

are used to estimate the early and late treatment effects. In 

general, the way to compute �� must be pre-specified in the 

protocol. The overall treatment effect can be estimated from 

Cox proportional hazards model. Another alternative is to 

combine two test statistics from early or late and the overall 

treatment effects using a group sequential like methodology. 

The global null hypothesis, that there is no treatment effect in 

the overall population (i.e., @�5: :; = 0) nor in the subgroup 

(i.e., @�3: : = 0  or :^ = 0  ) is given by: @�:	@�5 	∩ @�3 . 

The test statistics for group sequential like method have the 

form: 

=;N r = td�du�	@�	vS	�aQ.bcdjwegfhh <x5	y/	aQ.bcdefghi < x3
 or 

=;N^r = td�du�	@�	vS�aQ.bcdjwegfhh < x5	y/	aQ.bcdhf�e < x3
 
where aQ.bcdjwegfhh , aQ.bcdefghi  and aQ.bcdhf�e  are p-

values from overall, early and late treatment effects, 

respectively. The significance levels are denoted by x5 and x3. To control the family wise error rate below a value x for 

a pre-specified significance level x5, x3 is defined in such a 

way that prob �K > Kz{	y/	K���
 > Kz||@�� = x. Spiessens 

and Debois showed that x3 can be determined by solving the 

equation [24]: 

� Φ(Kz| − √�	K
√1 − � *

��{

G�
Φ�K
�� = 1 − x 

where �  is the information fraction in the subgroup and is 

given by: �̂ = wfgR����

wfgR �������

 . The level of significance x5  was 

used in group sequential method under overall treatment 

effect from Cox proportional hazards model and x3 was used 

for early or late treatment effects. For administratively 

censored time point �� for which about half of the observed 

events are censored v. d. , �̂ = 0.5  and for fixed x5 = 0.03 

significance level, x3 was calculated to be 0.017 which was 

computed by using standard package for group sequential 

design in R. In general, test statistics from group sequential 

like method i.e., =;N r  or =;N^r  combines the two p-values 

from early and overall treatment effects or late and overall 

treatment effects, respectively. This method takes 
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dependence of the tests into account by group-sequential like 

approach i.e., by splitting significance level. 

Finally, another proposed test statistic was to choose the 

time point ��  which maximizes the treatment effect of the 

extended Cox model and has the form: 

Kqfn = �.����KO8���
�= �.����−2�lnaQ.bcdefghi���
+ lnaQ.bcdhf�e���

� 

where Kqfn  is test statistic in which the maximum of the 

treatment effect is observed. The treatment effect is estimated 

by fitting the extended Cox model with heaviside function at 

the event time �& , for %= 1,..., � . The Kqfn  statistic is the 

maximum of the K estimated treatment effects and its 

distribution under the null hypothesis is not known. In this 

case a permutation test, where the treatment label is permuted 

was used to derive the p-value. In order to perform the 

permutation test, compute test statistic for the actual data 

(Kqfn
 from event time �&, for %= 1,..., � and calculate the 

values of the same statistic for each of the possible 

assignments of the treatment labels of the total � 

observations by permuting treatment label. Finally, the 

proportion of these values that are equal to or greater than the 

value of the statistic for the actual data is the desired p-value. 

In this study, due to computational intensive nature of the 

test, 300 random possible arrangements of the treatment label 

were adopted. 

3. Results 

3.1. Simulation Results 

In order to evaluate the performance of newly proposed 

methods for testing the effect of treatment in randomized 

clinical trial when proportional hazards assumption is in 

doubt, survival data was simulated from a population 

exhibiting different possible treatment effects as displayed in 

Figure 1. 

 

Figure 1. True survival curves used to simulate the data under different scenarios. 

Figure 1 displays true survival curves that were used to 

simulate sample data under five possible treatment effects 

such as: a) no treatment effect (under the null), b) constant 

beneficial effect (proportional hazards alternative), c) no 

initial effect but a gradually increasing beneficial effect, d) an 

initial beneficial effect that diminishes long-term and e) an 

initial harmful and late beneficial effect of treatment. The 

sample data was replicated 1000 times under different 

scenarios containing a total of 400 subjects with one to one 

randomization and 30% administrative censoring. 
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Table 1. Estimated type I error rate and Power of the tests based on the simulations under different scenarios for different methods without including covariate 

in the models. 

 Methods  

Under ������ ������ ����� ����� ���� ���� ������  � ¡ 

Null Hypothesis 0.059 0.055 0.059 0.055 0.050 0.054 0.057 0.058 @C of PH Assumption 0.724 0.514 0.701 0.658 0.753 0.743 0.679 0.714 @C of Late Treatment 0.670 0.943 0.831 0.922 0.979 0.892 0.405 0.909 @C of Early Treatment 0.872 0.005 0.954 0.207 0.948 0.266 0.933 0.896 @C of Crossing Survivals 0.236 0.779 0.444 0.741 0.939 0.540 0.030 0.675 

Kmjn represents test statistic from Cox proportional hazards model, Kopq r (Kopq^r) is test based on sum of early and overall treatment effects (sum of late and 

overall treatment effects), =;N r (=;N^r) is from group sequential method based on test statistics from early and overall treatment effects (late treatment and 

overall treatment effects), Kqfn is maximum of test statistics from all distinct event time points by permutation, K�LMLNO is from pseudo values regression 

approach based on restricted mean survival time and KO8 is from extended Cox model. 

Table 1 displays simulation results of the estimated type I 

error rate and power of newly proposed tests, test from Cox 

proportional hazards, pseudo values regression approach 

based on restricted mean survival time and extended Cox 

without including the covariate in the models. From Table 1, 

it can be observed that under the null hypothesis all methods 

controlled a type I error rate stabilizing around the targeted 

0.05 level of significance and this was expected in order for 

the test method to be efficient. The power of the various 

procedures is expected to depend heavily on the scenarios, 

for instance, the test from Cox proportional hazards model is 

expected to perform well in case of proportional hazards 

alternative. However, it can be seen that the newly proposed 

tests as well as test from extended Cox model performed 

about the same as compared to the test from Cox proportional 

hazards model. Under proportional hazards alternative, the 

test from pseudo values regression approach based on 

restricted mean survival time had less power compared to test 

from Cox proportional hazards model. It was also seen that in 

the case of late treatment effect, the test from Cox 

proportional hazards model, test statistics based on the sum 

of late and overall treatment effects, group sequential like 

method based on late and overall treatment effects, 

permutation test based on maximum treatment effect and test 

from extended Cox model performed reasonably well under 

this scenario. As was expected, in the situation where two 

survival curves are separate at the beginning and then close 

as time goes on (i.e., early treatment effect) and crossing 

survival curves, the tests for treatment effect from Cox 

proportional hazards model had less power and this might be 

due to the contrasting early and late effects of the treatments. 

From newly proposed methods, test statistics based on the 

sum of early and overall treatment effects, group sequential 

like method based on early and overall treatment effects, 

permutation test based on maximum treatment effect had 

better performance under early treatment effect in which 

hazards are expected to cross. They performed about the 

same compared to pseudo values regression approach based 

on restricted mean survival time and extended Cox model 

under this scenario. On the other hand, test statistics based on 

the sum of late and overall treatment effects, group sequential 

like method based on late and overall treatment effects, 

permutation test based on maximum treatment effect had 

better performance under the crossing survival curves. They 

performed about the same compared to test from extended 

Cox model and better compared to pseudo values regression 

approach based on restricted mean survival time. Overall, 

from new methods, permutation test statistic showed better 

performance under all alternative scenarios although it is 

computational intensive. 

Table 2. Estimated type I error rate and power of the tests based on the simulations under different scenarios for different methods with including covariate in 

the models. 

 Methods  

Under ������ ������ ����� ����� ���� ���� ������  � ¡ 

Null Hypothesis 0.058 0.050 0.055 0.051 0.050 0.059 0.058 0.057 @C of PH Assumption 0.728 0.721 0.757 0.747 0.739 0.800 0.646 0.771 @C of Late Treatment 0.306 0.948 0.757 0.942 0.982 0.830 0.103 0.915 @C of Early Treatment 0.977 0.013 0.997 0.402 0.983 0.495 0.994 0.985 @C of Crossing Survivals 0.006 0.885 0.224 0.970 0.964 0.311 0.001 0.937 

Kmjn represents test statistic from Cox proportional hazards model, Kopq r (Kopq^r) is test based on sum of early and overall treatment effects (sum of late and 

overall treatment effects), =;N r (=;N^r) is from group sequential method based on test statistics from early and overall treatment effects (late treatment and 

overall treatment effects), Kqfn is maximum of test statistics from all distinct event time points by permutation, K�LMLNO is from pseudo values regression 

approach based on restricted mean survival time and KO8 is from extended Cox model. 

Table 2 displays simulation results of the estimated type I 

error rate and power of newly proposed tests, test from Cox 

proportional hazards model, pseudo values regression 

approach based on restricted mean survival time and 

extended Cox with the presence of covariate in the models. 

In general, when covariate is introduced into the models the 

pattern of results in terms of maintaining type I error and the 

power of the tests was similar to the results obtained without 

covariate in the models (Table 1). However, there was a gain 

in power for most of methods when covariate is included in 

the models. Specifically, in contrast to the Cox proportional 

hazards model, test statistics based on sum of early and 
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overall treatment effect, group sequential like method based 

on early and overall and permutation test in which the effect 

of treatment maximized were powerful in the case of early 

treatment effect where hazards are expected to cross. They 

also perform similarly compared to pseudo values regression 

approach based on restricted mean survival time and 

extended Cox model under this scenario. 

On the other hand, test statistics based on the sum of late 

and overall treatment effects, group sequential like method 

based on late and overall treatment effect and permutation 

test were powerful in the case of crossing survival curves 

whereby there is an initial harmful and late beneficial effects 

of the experimental treatment. Furthermore, in case of 

proportional hazards alternative, using the newly proposed 

methods did not yield dramatic decrease in statistical power 

compared to the Cox proportional hazards model. 

3.2. Implementation of the Methods on the Real Datasets 

To evaluate the performance of newly proposed methods, 

two dataset on crossing survival curves and late treatment 

effects were analyzed and results are displayed in the 

subsequent sections. The detail description about dataset is 

given in section 2.1. Kaplan Meier survival curves were used 

as an exploratory tool in order to describe the data. 

3.2.1. Gastric Cancer Dataset 

Figure 2 displays Kaplan Meier plots of overall survival 

curves by treatment group. Clearly from Figure 2, it can be 

seen that the treatment effect (chemotherapy plus radiation) 

was initially unfavorable and later became advantageous over 

control (chemotherapy without radiation). The two curves of 

the treatment group crossed after about 2.5 years. From log-

log survival plot in Figure 3, it can be seen that two survival 

curves are not parallel. The crossing survival curves and lack 

of parallelism on log-log plot are a clear sign of non-

proportionality in which Cox proportional hazards model 

might not work well. The dashed vertical lines on the plot 

represent the medians of the observed event time point 

(�� = 1.04). 

 

Figure 2. Kaplan-Meier estimated survival curves for the gastric cancer 

data-set by treatment groups. 

 

Figure 3. Log-log survival plot for gastric cancer dataset by treatment 

groups. 

Table 3. P-values from one-sided test statistics to test treatment effect under crossing survival curves. 

  Methods 

 ������ ������ ����� ����� ���� ���� ������  � ¡ 

P-values 0.976 0.204 0.993/0.733 0.049/0.733 0.197 0.733 0.995 0.197 

Kmjn represents test statistic from Cox proportional hazards model, Kopq r (Kopq^r) is test based on sum of early and overall treatment effects (sum of late and 

overall treatment effects), Kqfn is maximum of test statistics from all distinct event time points by permutation, K�LMLNO is from pseudo values regression 

approach based on restricted mean survival time, KO8 is from extended Cox model. and P-values reported for =;N r and =;N^r are from early/overall and 
late/overall treatment effects, from group sequential like method, respectively. 

Table 3 shows one-sided p-values of the test statistics from 

new proposed methods, Cox proportional hazards model, 

pseudo values regression approach based on restricted mean 

survival time and extended Cox model to test for the effect of 

treatment. From the results, newly proposed test statistics 

based on sum of late and overall treatment effects and 

permutation test performed about the same compared to 

extended Cox, but better than test from Cox proportional 

hazards model and pseudo values regression approach based 

on restricted mean survival time. Moreover, there was late 

beneficial treatment effect as p-value from the test statistic 

from group sequential like method at late treatment was 

small as compared to test statistic based on early treatment 

effect although it was statistically insignificant at 2% level of 

significance from group sequential like method to test for 

early (late) treatment effects (i.e., 0.049 >0.02). This was also 

reflected through one-sided p-values from test statistic based 

on the sum of late and overall treatment effects. These results 
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are consistent with the findings of the simulation studies 

under crossing survival curves. 

3.2.2. Bladder Cancer Dataset 

In order to describe survival distribution of treatment 

groups for bladder cancer dataset, Kaplan Meier survival 

curves were used as presented in Figure 4. 

 

Figure 4. Kaplan-Meier survival curves for the bladder cancer dataset by 

treatment groups. 

Figure 4 displays the plots of Kaplan Meier estimated 
survival probabilities by treatment groups. From the figure, 

it can be seen that there was delay in the effect of the 

treatment as Kaplan Meier survival curves are start to diverge 

after half of the observed event time point. The dashed 

vertical lines on the plot represent the medians of the 

observed event time point (�� = 0.41) and clearly the data 

exemplify the late treatment effect. 

Table 4. Parameter estimates (standard errors) obtained from Cox 

proportional hazards model and stopped Cox at 0.41 years under late 

treatment effect. 

 Cox PH Model Stopped Cox Model 

Effects Coeff. (se. coeff) P-values 
Coeff. (se. 

coeff) 
P-values 

Treatment -0.5260 (0.3158) 0.0479* -0.2351 (0.465) 0.3067 

Initial number 

of tumors 
0.2382 (0.0759) 0.0017* 0.2403 (0.104) 0.0210* 

Size of tumors 0.0696 (0.1016) 0.4900 0.0441 (0.155) 0.780 

* Statistically significant at 5% level of significance, Coeff. represent 

estimated parameters, se. coeff is standard errors of estimated parameters. 

Table 4 displays the parameter estimates (standard errors) 

and their corresponding p-values from Cox proportional 

hazards and stopped Cox models. From the Table 4, the 

initial number of tumors was significantly associated with 

death among bladder cancer patients. The effect of treatment 

was statistically not significant in stopped Cox (one-sided p-

value=0.3067), but borderline significant in Cox proportional 

hazards model (one-sided p-value=0.0479). The treatment 

effect stopped at 0.41 years was lower than the overall 

treatment effect from Cox proportional hazards model with 

higher standard error. As was expected from the simulation 

results under late treatment effect, the p-value of the classical 

Cox model is smaller than the p-value of the stopped Cox 

model. 

Table 5. Parameter estimates (standard errors) obtained from regression 

approach based on restricted mean survival time at 80% of observed event 

time under late treatment effect. 

Effects Coeff. SE.coeff. P-values 

Intercept 1.1516 0.1572 <0.0001* 

Treatment 0.1348 0.1169 0.1244 

Initial number of tumors -0.0890 0.0392 0.0130* 

Size of tumor -0.0236 0.0473 0.5950 

* Statistically significant at 5% level of significance, Coeff. represent 

estimated parameters, se. coeff. is standard errors of estimated parameters. 

Table 5 shows estimated parameters and their standard 

errors from pseudo values regression approach based on 

mean restricted survival time on the 80% event observed 

time point. From the results, it was seen that survival time of 

patients significantly related with the initial number of 

tumors. So, for a unit increase in initial number of tumors, 

the mean restricted survival time of the patients decrease by 

0.089 years. Comparing results from stopped Cox and pseudo 

values regression approach based on the restricted mean 

survival time with Cox proportional hazards model, they 

produced higher one-sided p-values for the treatment effect. 

This was not surprising as it was evident from simulation 

results that the Cox proportional hazards model works 

reasonable well under late treatment effect. 

Table 6. Parameter estimates (standard errors) obtained from extended Cox 

model under late treatment effect. 

Effects Coeff. SE.coeff. P-values 

Early Treatment -0.2696 0.4269 0.2638 

Late Treatment -0.7966 0.4513 0.0388* 

Initial number of tumors 0.2351 0.0760 0.0020* 

Size of tumor 0.0735 0.1014 0.4682 

* Statistically significant at 5% level of significance, Coeff. represent 

estimated parameters, se. coeff. is standard errors of estimated parameters. 

Table 6 displays the parameter estimates (standard errors) 

obtained from extended Cox model. By combining one sided 

p-values of early and late treatment effect, the p-value from 

extended Cox model was found to be 0.057 which is 

borderline significant. However, the risk of dying was 

significantly lower for patients in the treatment group 

compared to control group after the median of observed 

event time point (one-sided p-value=0.038). As before, the 

initial number of tumors had statistically significant effect on 

the risk of dying. Moreover, to illustrate the performance of 

newly proposed methods compared to Cox proportional 

hazards model, pseudo values regression approach based on 

restricted mean survival time and extended Cox model, one 

sided p-values of the test statistics are given in Table 7. 
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Table 7. P-values from one-sided test statistics to test for treatment effect with and without including the covariates in the models under late treatment effect. 

Without including the covariates in the models 

 ������ ������ ����� ����� ���� ���� ������  � ¡ 

P-values 0.246 0.064 0.415/0.110 0.065/0.110 0.116 0.110 0.193 0.124 

With including the covariates in the models 

P-values 0.126 0.0310* 0.264/0.048 0.039/0.048 0.053 0.048 0.124 0.057* 

Kmjn represents test statistic from Cox proportional hazards model, Kopq r (Kopq^r) is test based on sum of early and overall treatment effects (sum of late and 

overall treatment effects), Kqfn is maximum of test statistics from all distinct event time points by permutation, K�LMLNO is from pseudo values regression 

approach based on restricted mean survival time, KO8 is from extended Cox model. and P-values reported for =;N r and =;N^r are from early/overall and 

late/overall treatment effects from group sequential like method, respectively. 

Table 7 displays one-sided p-values from newly proposed 

methods, Cox proportional hazards model, pseudo values 

regression approach based on restricted mean survival time 

and extended Cox with and without including covariates in 

the models. From the Table 7, in the presence of covariates in 

the models, the effect of treatment was borderline significant 

in the Cox proportional hazards model, extended Cox and 

permutation test. As was expected, from new proposed 

methods, test statistic based on sum of late and overall 

treatment effects and permutation test performed about the 

same compared to the test from Cox proportional hazards and 

extended Cox models, but perform better compared to 

pseudo values regression approach based on restricted mean 

survival time. However, test statistics based on sum of early 

and overall treatment effects had less power compared to Cox 

proportional hazards and extended Cox models. These results 

are consistent with the findings of the simulation study under 

late treatment effect. 

4. Discussion and Conclusions 

The Cox proportional hazards model is the standard 

approach to evaluate the treatment effect on clinical trial 

data. When a non-proportional hazard is present Cox model 

may not be powerful, especially in the case of crossing 

hazards. In such a case, the test for the difference in hazard 

rates between the treatments will most likely not be 

significant, because of the contrasting early and late effects 

of the treatments. Different approaches have been proposed 

as alternative to the Cox proportional hazards model in the 

case of non-proportional hazards. Therefore, the main 

purpose of this study was to evaluate the performance of one 

sided newly proposed methods [6] for testing the treatment 

effect in randomized clinical trials when proportional hazards 

assumption is not satisfied. They were compared with Cox 

proportional hazards model, pseudo values regression 

approach based on restricted mean survival time and 

extended Cox model. This was done based on simulations 

and two popular real datasets exhibiting crossing survivals 

curves and late treatment effect. Performance of new 

proposed methods was evaluated in terms of maintaining 

nominal level of significance and empirical power. From 

simulation results, it was seen that all methods controlled the 

type I error rate accurately in a sense that empirical type I 

errors were close to the targeted 0.05 level of significance 

with and without including covariates in the models. Hence, 

the normal distribution seems an adequate approximation for 

the sample sizes investigated. As was expected, the 

performance of the Cox proportional hazards model for 

testing treatment effect generally lacks power in situations 

where there is early treatment effect and two survival curve 

cross. Simulation results showed that the newly proposed 

methods of testing treatment effect; test statistics based on 

sum of early and overall treatment effects, group sequential 

tests based on early and overall, and permutation test based 

on maximum treatment effect performed reasonably well 

compared to Cox proportional hazards model under early 

treatment effect where hazards are expected to cross. They 

also performed about the same compared to pseudo values 

regression approach based on restricted mean survival time at 

80% of the observed event time and extended Cox model in 

the case of early treatment effect. It was seen that 

permutation test had better results under four alternative 

scenarios compared to the power of other newly proposed 

test statistics. These results are similar to the finding by 

Callegaro et al (2014). 

In general, using the newly proposed methods under 

proportional hazards alternative did not yield decreases in 

statistical power compared to the Cox proportional hazards 

model, pseudo values regression approach based on restricted 

mean survival time and extended Cox model. It should be 

noted that the performance of test statistics based on sum of 

early (late) and overall treatment effects, group sequential 

like method based on early (late) and overall treatment 

effects, pseudo values regression approach based on 

restricted mean survival time and extended Cox depends on 

choice of time points. Hence, the way to compute time point �� must be pre-specified in the protocol. The advantage of the 

test statistic based on maximum treatment evaluated at all 

event times with respect to the other test statistics is that its 

results do not depend on a pre-specified time point �� . 

However, its drawback is that the distribution of the test 

statistic is unknown. Hence, a permutation test was used to 

compute the p-value which is computational intensive. As 

indicated in the simulation studies, new methods [6] reject 

the null hypothesis if a beneficial treatment effect is observed 

at a certain time point, irrespective of possible harmful 

treatment effects observed at other time points. In conclusion, 

new proposed methods are straightforward to implement in 

most statistical packages and allow adjusting for covariates 
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as they performed reasonable well with the presence of 

covariate(s) in the models. They are useful for testing the 

treatment effect in randomized clinical trials when the 

proportional hazards assumption is not satisfied. The 

proposed methods can be particularly useful in cancer clinical 

trials with long-term follow-up as they are powerful in case of 

crossing survival curves whereby there is an initial harmful 

and late beneficial effects of the experimental treatment. 

There were a few limitations to this simulation studies. This 

include: the study considered simulation setting for a sample of 

200 subjects per treatment group with 30% administrative 

censoring, in the future work, one can investigate the different 

censoring rates and sample size effects to see how that would 

directly affect the results of the power and type I error rate of 

the newly proposed test statistics. 
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