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Abstract: The rapid delayed rectifier K
+
 current (Ikr) is critical for repolarization of the cardiac action potential. Previous 

studies have shown activated α1-adrenergic receptor (AR) attenuates β1-adrenergic regulation of Ikr while the mechanisms 

involved are poorly understood. To evalutate how α1-adrenergic receptor affect β1-adrenergic modulation of Ikr, whole-cell 

patch-clamp recordings were peformed in isolated guinea-pig ventricular myocytes. Application of xamoterol, a selective β1-AR 

agonist, induced a negative shift in the activation curve and Ikr current reduction by 40.50±6.66% at the test pulse of +40 mV. 

Forskolin and 8-Br-cAMP also resulted in Ikr reduction by 38.17±1.50% and 24.65±3.37%, respectively. Phenylephrine, a 

selective α1-AR agonist, prevented the activation shift and Ikr current reduction induced by xamoterol and forskolin, but not by 

8-Br-cAMP. The effect of xamoterol or forskolin on Ikr was also prevented by pretreatment with PDBu, a protein kinase C (PKC) 

activator, while the effect of cAMP on Ikr can not, which was similar to pretreatment with phenylephrine. When cells were 

pretreated with chelerythrine, a specific PKC inhibitor, phenylephrine failed to prevent Ikr reduction induced by xamoterol. Our 

data suggests that α1-adrenergic stimulation attenuates β1-adrenergic regulation of Ikr, through PKC-dependent downregulation 

of adenylyl cyclase/cyclic AMP pathway.  
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1. Introduction 

Human ether-a-go-go-related gene (hERG) potassium 

channels are crucial for cardiac action potential repolarization, 

conducting rapid delayed rectifier K
+
 current (Ikr) [1-3]. hERG 

mutations that reduce conductance or expression cause result 

in congenital long QT syndrome (LQTS) and inhibition of 

hERG channels by structurally diverse drugs, either 

antiarrhythmic or non-antiarrhythmic, may cause acquired 

LQTS or other arrhythmias [4-10].  

Increasing evidence has shown that hERG/Ikr channels are 

regulated by a variety of G protein-coupled receptors 

(GPCRs), including adrenergic receptors. Adrenoreceptors 

(AR) are composed of more than nine subtypes, including: 

α1A,B, D, α2A-C and β1-3, of which β1-AR and α1-AR are the two 

principle ARs expressed in cardiomyocytes [11]. Sympathetic 

regulation of cardiac hERG/Ikr current involves 

β-AR-dependent stimulation of adenylyl cyclase (AC) via the 

stimulatory G protein (Gs) and cAMP dependent activation of 

protein kinase A (PKA). Decrease of the hERG/Ikr current in 

response to β-AR is mediated by β1-AR and is the principal 

signaling mechanism contributing to an increase in ventricular 

arrhythmias during stress and exercise. Karle et al found that 

xamoterol, a specific β1-AR agonist, could cause 58% Ikr tail 

current decease and the effect were drastically reduced by 

PKA inhibitor KT5720. Tail current could also reduct by 

cAMP, forskolin and PKA cytalytic subunit, indicated that Ikr 

current is inhibited by β1-AR activation, via 

AC/cAMP/PKA-dependent pathways [12, 13]. Sympathetic 

regulation of cardiac hERG/Ikr current also involves 
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α1-adrenergic receptor (α1-AR), exerting its effects through 

protein kinase C (PKC) [14-16]. 

The adrenergic regulation of hERG is complex, primarily 

due to the reason that endogenous agonist catecholamines are 

non-selective and interact with multiple AR during emotional 

or physical stress. It has been proposed that α1- and 

β1-adrenergic signaling pathways may cross-talk in the 

regulation of hERG [17]. This study aimed to study the effects 

of α1-AR stimulation on β1-AR regulation on Ikr and the 

underlying mechanism. 

2. Material and Methods 

2.1. Reagents 

Na2-ATP, EGTA, creatine phosphate, nifedipine, 

chelerythrine, forskolin, 8-bromoadenosin 3'5'-cyclic 

monophosphate, PDBu, phenylephrine and dofelitide were 

purchased from Sigma, xamoterol-hemifumarate from Santa 

Cruz (Dallas, TX, USA). The rest of reagents were purchased 

from Amresco.  

2.2. Preparation of Guinea Pig Ventricular Myocytes 

The Institutional Animal Care and Use Committee of the 

Nanjing Medical University approved the animal study 

protocols for this study. The procedures for preparing single 

left ventricular myocytes were carried out as described 

previously, using 350-400 g male adult guinea pigs [18].  

2.3. Electrophysiology 

All electrophysiological experiments were performed in a 

patch clamp chamber, with temperature automatically 

controlled at 37±0.5°C by a Warner TC-324B Temperature 

Controller (Warner, Hamden, CT, USA). The whole cell patch 

clamp method was employed for Ikr recordings. The 

microelectrode amplifier used in this study was Axopatch 

200B amplifier in combination with Digidata 1440A digitizer 

(Molecular Devices, Union City, CA). After transferring to the 

chamber, cardiac myocytes were perfused continuously with 

bath solution (140 mM NaCl, 3.5 mM KCl, 1.5 mM CaCl2, 1.4 

mM MgSO4 and 10 mM HEPES, pH 7.4) at 1-2 mL/min. The 

pipette solution for current recordings was 140 mM KCl, 1 

mM CaCl2, 2 mM MgCl2, 10 mM HEPES, 11 mM EGTA, 5 

mM Na2-ATP and 5 mM creatine phosphate (disodium salt) 

(pH 7.4). Chromanol and nifedipine, each at 0.01 mM, were 

applied to the bath solution to eliminate slowly activating 

delayed rectifier potassium currents and calcium currents, 

respectively. When filled with pipette solution, pipette 

resistances were approximately 3 -5 MΩ. 

A two-step voltage stimulation protocol was used to 

determine Ikr as previously described [19]. Briefly, the 

potential was increased stepwise from −40 mV, at 10 mV steps, 

with a 225 ms duration to +40 mV, in order to activate currents 

and depolarize, and then was returned to −40 mV of duration 

775 ms to induce large outward tail currents. The effects on 

peak tail currents of α1- and β1-AR agonists were tested by 

measuring Ikr tail currents at 10 min, following by acute 

administration of drug treatment. K
+
 channel activation curves 

were determined using the single power Boltzmann equation: 

Itail = Itail. max/ [1 + exp (V0.5 − V)/k], where Itail, V, V0.5 

and k represent the tail current, the test pulse potential, the 

half-maximal activation voltage and the slope factor, 

respectively. 

2.4. Statistical Analysis 

SPSS v. 18.0 (SPSS Inc., Chicago, IL, USA) was employed 

for all statistical analyses. Experimental values were 

expressed as MEAN±SEM. The criteria for statistical 

significance was P<0.05. The unpaired Student’s t test and 

one-way analysis of variance ANOVA were utilized to 

compare two samples or multiple samples, respectively.  

3. Results 

3.1. α1-AR Stimulation Attenuates β1-adrenergic Regulation 

on Ikr 

Application of xamoterol (10 µM), a selective β1-AR 

agonist, alone for 10 min induced a negative shift in activation 

curve with half-maximal activation voltage (V0.5) changing 

from -4.91±2.99 to -11.46±4.23 and slope factor (k) changing 

from 14.29±2.26 to 16.24±2.17 (n=5; Figure 1A–B) and Ikr 

current reduction 40.50±6.66% at a test pulse +40 mV (Figure 

1E). Co-application of phenylephrine (1 µM), a selective 

α1-AR agonist, prevented the activation shift, half-maximal 

activation voltage (V0.5) changing from -12.42±1.44 to 

-12.60±2.48 and slope factor (k) changing from 9.98±0.59 to 

11.50±1.10 (Figure 1C-D) and Ikr current reduction induced by 

xamoterol (Figure 1E, n=5, p<0.05). 

3.2. Phenylephrine Acts on Adenylyl Cyclase (AC) in the 

β1-adrenergic Signaling Cascade 

As β1-AR couples to the Gs/AC/cAMP/PKA pathway, we 

tested whether treatment with forskolin (an AC activator) and 

membrane permeable 8-Br-cAMP could mimic the effects of 

β1-AR activation. As shown in Figure 2E, forskolin at 10 µM 

significantly decreased Ikr amplitude 38.17±1.50% at+40 mV 

and caused a negative shift in the activation curve (Figure 

2A-B), which was reversed when cells were pretreated with 

phenylephrine (Figure 2C-D). 
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Figure 1. Effects of β1-adrenergic regulation on Ikr current in guinea pig cardiomyocytes with or without pre-activation of α1-adrenergic receptors. (A) 

Representative Ikr tail currents when potential was returned to -40 mV from +40 mV with or without (basal) treatment with xamoterol. (B) Voltage-dependent 

activation Ikr in controls and after treatment with 10 µM xamoterol. Tail current amplitudes at various potentials were normalized to the respective tail current 

values at +40 mV. (C) Representative Ikr tail currents when the potential was returned to -40 mV from +40 mV with or without (basal) treatment with xamoterol 

when pre-treatment with phenylephrine. (D) Voltage-dependent Ikr activation in control group and in the 10 µM xamoterol group with pre-activation of 

α1-adrenergic receptors. (E) Effects of xamoterol on Ikr at the voltage of +40 mV with or without pre-activation of α1-adrenoceptor agonist phenylephrine. (Xamo: 

xamoterol; PE: phenylephrine; n=5, **p<0.01). 

 

Figure 2. Effects of forskolin on Ikr current in guinea pig cardiomyocytes with or without pre-activation of α1-adrenergic receptors. (A, C) Representative Ikr tail 

currents recorded at return pulse after depolarizing to +40 mV at baseline and after forskolin treatment without (A) or with (C) pre-activation of α1-adrenergic 

receptors. (B, D) Voltage-dependent Ikr activation in control and treated with 10 µM forskolin without (B) or with (D) pre-activation of α1-adrenergic receptors. 

(E) Effects of forskolin on Ikr at the voltage of +40 mV with or without pre-activation of phenylephrine. (Forsk: forskolin; PE: phenylephrine; n=5, **p<0.01). 

Similarly, treatment with 8-Br-cAMP at 500 µM reduced Ikr tail current 24.65±3.37% (Figure 3E) and caused a negative shift 

in the activation curve, with the half-maximal activation voltage (V0.5) changing from -4.89±0.64 to -10.36±1.24 mV (Figure 

3A-B). However, co-treatment with phenylephrine and 8-Br-cAMP caused a reduction in Ikr by 33.97±6.70%, which was not 

significantly different from treatment with 8-Br-cAMP alone (Figure 3C-E). These results indicate that α1-AR exerts its 

inhibitory effects on β1-AR-mediated Ikr current reduction by acting upstream of cAMP elevation.  
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Figure 3. Effects of 8-Br-cAMP on Ikr current in the guinea pig cardiomyocytes with or without pre-activation of α1-adrenergic receptors. (A, C) Typical original 

Ikr tail currents when the potential was returned to -40 mV from +40 mV with or without (basal) treatment of 8-Br-cAMP (500 µM), a membrane-permeable 

analogue of cAMP, without (A) or with (C) pre-activation of α1-adrenergic receptors. (B, D) Voltage-dependent activation of Ikr in controls and in the presence of 

8-Br-cAMP without (B) or with (D) pre-activation of α1-adrenergic receptors. (E) Effects of 8-Br-cAMP on Ikr at the voltage of +40 mV with or without 

pre-activation of phenylephrine. (cAMP: 8-Br-cAMP; PE: phenylephrine; n=5, **p<0.01). 

3.3. Effects of α1-AR on β1-adrenergic Regulation on Ikr are PKC Dependent 

PDBu, a PKC activator, also prevented the effects of xamoterol or forskolin on Ikr, in a similar manner to phenylephrine, but 

not the effects of 8-Br-cAMP (Figure 4A). However, when cells were pretreated with the PKC inhibitor chelerythrine at 1 µM, 

phenylephrine failed to prevent xamoterol-induced reduction in Ikr (Figure 4B). 

 

Figure 4. The role of PKC in the regulation of α1-AR stimulation attenuate β1-adrenergic regulation on Ikr. (A) Effects of xamoterol or forskolin or cAMP on Ikr at 

the voltage of +40 mV with or without pre-activation of PKC activator PDBu (n=5 of each group, * p<0.05, **p<0.01). (B) Effects of PKC inhibitor 

chelerythrine on phenylephrine attenuation of β1-adrenergic regulation on Ikr at the voltage of +40 mV. (n=5, **p<0.01 vs xamoterol group, # p<0.05 vs 

xamoterol (PE) group). 

4. Discussion 

In the presented study, we confirmed that activation of 

β1-ARs reduced Ikr tail current in native cardiac myocytes, 

which could be mimicked by forskolin treatment and a 

membrane permeable cAMP analog, suggesting β1-AR 

regulate Ikr through Gs/AC/cAMP pathway. Furthermore, we 

provided evidence that α1-AR, when activated, attenuates 

β1-AR mediated reduction of Ikr, by PKC dependent 

suppression of AC.  

It is well established that cardiac K
+
 channels are regulated 

by β-AR and α-AR [20-25]. β-AR couples to the classical 

Gs-AC-cAMP-PKA signaling pathway, promoting 

phosphorylation of hERG at multiple serine residues [12, 13]. 

In the presented study, β1-AR stimulated by xamoterol reduced 

the Ikr tail current, as did the AC activator forskolin and a 

membrane permeable cAMP analog (8-bromo-cAMP). In the 

presence of xamoterol, forskolin and 8-bromo-cAMP, there 

was a small shift in V1/2 to a more negative potential. These 

results suggest that the reduction in Ikr induced by β1-adrenergic 

stimulation is due to increases in intracellular cAMP.  

We have previously found that α1- or β1-AR, when 

stimulated separately, reduces Ikr currents in guinea pig 
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cardiomyocytes [19]; however, simultaneous activation of 

α1-AR and β1-AR did not generate significant inhibitory 

effects [26]. These findings suggest activation of α1-AR may 

prevent Ikr reduction mediated by β1-AR stimulation; however, 

the underlying mechanisms remain unknown. In the present 

study, we found that a selective α1-AR agonist could prevent 

forskolin-mediated, but not cAMP-analog-mediated, Ikr 

reduction in left ventricular myocytes, strongly suggesting 

α1-AR affects β1-AR signaling cascades upstream of cAMP 

elevation.  

α1-adrenoceptors predominantly couples with Gq, which 

stimulates phosphatidyl inositol specific phospholipase C 

(PLC), eventually leading to activation of protein kinase C 

(PKC) through diacylglycerol (DAG) and calcium channels in 

the endoplasmic reticulum via 1, 4, 5-inositol-trisphosphate 

(IP3). Besides α1-adrenergic signaling, PKC has been reported 

to be involved in β1-adrenergic pathways and PKC plays an 

important role in adrenergic signaling crosstalk [27-30]. Our 

results show that chelerythrine, a specific PKC inhibitor, may 

prevent the effects of α1 adrenergic on β1-adrenergic 

regulation of Ikr. Furthermore, we showed that the effects of 

α1-adrenergic receptors attenuated β1-adrenergic modulation 

of Ikr is mediated by PKC. We further investigated PDBu, an 

activator of PKC, which led to a significant decrease in the 

sensitivity of Ikr to β1-adrenergic stimulation. Akin to the 

α1-adrenoceptor agonist phenylephrine, PDBu also prevented 

the decrease in Ikr tail current by the AC activator forskolin, 

but had no effect on the 8-Br-cAMP effect on Ikr. These 

findings support the hypothesis that the reduction of 

α1-adrenergic receptor attenuated β1-adrenergic action on Ikr is 

due to PKC dependent inhibition of AC. Importantly, it has 

been reported that PKC phosphorylates and inhibits AC6, 

desensitizing the A2a-adenosine receptor [31]. 

The mechanism underlying α1- and β-adrenergic interaction 

on cardiac muscle has been studied in some detail in the rat 

heart. Boutjdir, Restivo, Wei & El-Sherif showed that, in rat 

ventricular myocytes, α1-adrenoceptor stimulation exerted an 

inhibitory effect on Ca
2+

 current, that was enhanced by 

β-adrenergic stimulation [32]. However, α1-adrenoceptor 

stimulation also suppressed the faciliatory action of forskolin 

on Ca
2+

 current, though it was ineffective on the current that 

was enhanced directly by intracellular dialysis of cyclic AMP. 

These authors suggested that this α1-action was mediated by 

inhibiting adenylate cyclase activity. Barrett S and Karliner JS 

also found that stimulation of α1-adrenoceptors decreased 

cAMP accumulation and adenylyl cyclase activation, 

stimulated by a selective beta-adrenoceptor agonist in 

neonatal rat ventricular myocytes [33]. We showed that α1-AR 

activation attenuated the effects on Ikr of AC activator 

forskolin, but not 8-Br-cAMP, suggesting α1-AR attenuates 

β1-adrenergic regulation on Ikr by suppressing adenylyl 

cyclase activity. 

As already demonstrated, significant delays in 

repolarization due to Ikr downregulation prolong cellular 

action potentials and QT-interval, thereby increasing the risk 

of arrhythmias, such as polymorphic ventricular tachycardia 

(PVT), arising from early afterdepolarizations [34]. The 

inhibition of β1 induced Ikr reduction by α1-AR is likely to 

have pathophysiological and therapeutic significance in heart 

disease. It is widely accepted that beta-blockers are effective 

for the treatment of systolic heart failure. Carvedilol is a 

non-selective blocker drug targeting both β- and 

α1-adrenoreceptors, and is efficacious for treating congestive 

heart failure. Carvedilol, different from β blockers, may 

possess pleiotropic physiological properties. Recently, Rain 

and Rada concluded that patients treated with carvedilol may 

have lower mortality rates than those treated with metoprolol 

or bisoprolol; however, carvedilol is superior to bisoprolol or 

metoprolol in decreasing hospitalization risk [35]. 

5. Conclusion 

Stimulation of α1-AR with phenylephrine attenuates 

β1-adrenergic action on Ikr in guinea pig cardiomyocytes. The 

effect of phenylephrine was blocked by the PKC inhibitor 

chelerythrine. Phenylephrine, and the PKC activator PDBu, 

could reverse the effects of xamoterol and forskolin on Ikr, but 

could not reverse the effects of 8-Br-cAMP on Ikr. These 

results suggest that α1-AR exerts its effects on β1-adrenergic 

modulation of Ikr through PKC-dependent inhibition of AC. 
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