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Abstract: The coherence function provides a measure of spectral similarity of two signals, but measurement noise decreases 

the values of measured coherence. When the two signals are the input and output of a linear system, any system noise also 

decreases the measured coherence values. In digital computations, useful coherence values require some degree of averaging to 

increase the degrees of freedom to more than two. These fundamental issues are presented with application to system 

input-output coherence and two random signals with a common component. Finally, estimated coherence of the two random 

signals, with varying degrees of freedom, are shown with empirical adjustments that can improve the estimate of coherence. 

Coherence has a wide range of biomedical applications, but this article focuses on the fundamental properties of the coherence 

function. 

Keywords: Coherence, Noise, Similarity, Degrees of Freedom, Linear System 

 

1. Introduction 

The coherence function is a frequency domain measure of 

the "likeness" of two functions or signals. Qualitatively, it is a 

correlation coefficient vs. frequency, although the analogy 

should not be pursued in any strict sense. The correlation 

coefficient is a normalized covariance, while the coherence 

function is a normalized cross-power spectrum. The 

correlation coefficient is a scalar measure of the similarity of 

the overall shapes of two functions; the coherence function is a 

vector measure of the similarity in frequency content of two 

signals. For two identical signals, the correlation coefficient is 

unity and the coherence function is unity. Two random 

uncorrelated signals yield a correlation coefficient and 

coherence function of zero. However, unlike the coherence 

function, the correlation coefficient is sensitive to phase. Two 

sinusoids at the same frequency have a correlation coefficient 

that varies from -1 to +1 as the relative phase of the sinusoids 

varies from zero to π. As illustrated later, the coherence 

function is insensitive to phase. 

Coherence is a normalized cross-power spectrum that can 

be used as a measure of the spectral similarity of two signals, 

or as a measure of the degree to which two signals have a 

common source. Coherence has been used in modeling linear 

systems [1-2], estimating system time delay [3-6], and 

estimating system nonlinearities [7-11]. Its computation 

[12-19] is based on the standard Fourier Transform and 

correlation methods, with some additional considerations for 

discrete computation and various biases in the estimated 

values [20-25]. When frequency resolution in the estimate is 

limited in time-varying or transient cases, coherence can still 

be useful with certain nonstationary processes [26]. 

Coherence is insensitive to phase, and it is amplitude 

normalized, but the coherence is sensitive to uncorrelated 

noise and system nonlinearities because both introduce 

disparities between the two signal spectra. Within a frequency 

band, coherence is reduced by additive noise that is 

uncorrelated in the two signals, and thus it can be a useful 

vector measure of signal-to-noise ratio. For example, the 

coherence of input and output of a linear system can show the 

frequency bands where signal-to-noise ratio is sufficiently 

high for useful calculations in system identification. 

The coherence function of two signals x(t) and y(t) is 

defined by 
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where Sxy(f) is the cross-power spectrum of x(t) and y(t), Sxx(f) 

is the auto-power spectrum of x(t), and Syy(f) is the 

auto-power spectrum of y(t). The cross-power spectrum and 

the auto-power spectra can be computed from the Fourier 
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Transform of signals x and y. 

This tutorial focuses on the basic properties of the 

coherence of two signals in the presence of noise, and the 

computation of coherence in continuous and discrete systems. 

The coherence function is applied to the input and output of a 

system, to examine the effects of measurement noise and 

system noise. Generally, the coherence function is reduced by 

noise that is not common to both input and output of the 

system. 

The digital computation of the coherence function will be 

considered along with the pitfalls and approximations in the 

discrete coherence function computation. Two methods for 

digital computation will be discussed. One method involves 

segmenting the time domain function into several 

subsegments, computing the transform of each subsegment, 

and then combining the separate results in the frequency 

domain. The second method transforms the entire time 

domain signal, and then averages over frequency bands. 

Finally, two Gaussian white noise functions are used to 

demonstrate the effect of the number of degrees of freedom on 

estimates of the coherence function. The quality of the 

coherence estimate can be assessed in two ways. Measured 

coherence values can be adjusted using an empirical 

expression. The other quality measure is based on confidence 

intervals as defined in [27, 28]. 

A separate paper addresses the effects of system 

nonlinearity on the input-output coherence. 

2. Coherence in Linear Noise-Free 

System 

For a linear time-invariant system, the input x(t) and the 

output y(t) are related by 

y(t) = x(t) * h(t)                (2) 

and 

Y(f) = X(f) H(f)                (3) 

where h(t) is the system impulse response, H(f) is the system 

transfer function, and * denotes convolution. The auto-power 

spectra of x(t) and y(t) are 

Sxx(f) = X(f) X*(f)              (4) 

and 

Syy(f) = Y(f) Y*(f)              (5) 

where the superscript * denotes the complex conjugate. The 

cross-power spectrum of x(t) and y(t) is 

Sxy(f) = X*(f) Y(f)             (6) 

Using Equations (4), (5), and (6), the coherence function 

can be computed by 
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The coherence function can also be expressed in terms of 

the system transfer function. In general, the transfer function 

is 
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Multiplying numerator and denominator by the complex 

conjugate of X(f), Equation (8) becomes 
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The squared magnitude of the transfer function is 
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Multiplying numerator and denominator by Syyf), 
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But the factor in brackets is the coherence function, as in 

Equation (1). Thus, 
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Solving for the coherence function 
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From Equations (4) and (5), 
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Substituting Equation (14) into Equation (13) 
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The unity coherence value can be rationalized by the 

following. In a linear noise-free system, the frequency content 

of the output is the same as the frequency content of the input; 

only the magnitudes and phases of the frequency components 

are altered by the system. Since the coherence function is an 
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amplitude-normalized phase-insensitive measure of the 

common components, the coherence function for the input and 

output of a linear noise-free system is unity, indicating 

maximum or complete coherence. 

3. Coherence in Linear System

Noise 

When random noise is introduced, due to measurement 

error, circuit thermal noise, etc, the input and output of the 

linear system will have frequency components 

common to both. The coherence function will be reduced by 

the noise as illustrated by the following. 

The linear system with impulse response h(t) and i

has an output v(t). Suppose that our measurements of u(t) and 

v(t) introduce noise, resulting in the observed x(t) and y(t) as 

the input and output, where 

x(t) = u(t) + n1(t)

and 

y(t) = v(t) + n2(t)

as illustrated in Figure 1. 

Figure 1. System with additive noise in measurement of input and output.

Assuming the noise is uncorrelated with the input and 

output, the power spectra of the observed signals are

Sxx(f) = Suu(f) + N1(f) 

and 

Syy(f) = Svv(f) + N2(f) 

where N1(f) and N2(f) are the power spectra of the noise at the 

input and output, respectively. If the two noise functions are 

random and uncorrelated, the cross-power spectrum is not 

affected by the noise, so that 

Sxy(f) = Suv(f)     

and the coherence function is 
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Expanding the denominator, and dividing numerator and 

denominator by Suu(f) Svv(f), 
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insensitive measure of the 

n components, the coherence function for the input and 

free system is unity, indicating 

Linear System with 

When random noise is introduced, due to measurement 

the input and output of the 

linear system will have frequency components that are not 

The coherence function will be reduced by 

The linear system with impulse response h(t) and input u(t), 

Suppose that our measurements of u(t) and 

v(t) introduce noise, resulting in the observed x(t) and y(t) as 

(t)           (16) 

(t)           (17) 

 

System with additive noise in measurement of input and output. 

Assuming the noise is uncorrelated with the input and 

output, the power spectra of the observed signals are 

            (18) 

            (19) 

(f) are the power spectra of the noise at the 

If the two noise functions are 

power spectrum is not 
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Expanding the denominator, and dividing numerator and 
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When the noise spectra are both zero, the denominator in 

Equation (22) goes to unity, indicating that the measured

coherence is the actual coherence of the input and output

However, when either noise source is non

denominator is greater than one, and the measured coherence 

is less that the actual coherence of u and v. 

presence of random uncorrelated noise, the measured 

coherence is 

  
γ
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Equality holds when the noise is zero, and noise in either 

input or output will reduce the measured coherence.

4. Digital Computation

The coherence function computed digitally (on 

data) using Equation (1) is unity at all frequencies for any two 

functions x(t) and y(t). At a given discrete frequency f

signals have the form 

  
x(t) = a cos 2πf

k(

  
y(t) = c  cos 2πf

k(
where t = nT, and T is the sampling interval. In the discrete 

transform, the coefficient at each discrete frequency f

form 

  
X(f

k
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k

where A=sa, B=sb, C=sc, D=sd, and s is a software

scaling constant that is typically 

The coherence is 
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Notice that the coherence is unity for all frequencies, for 

any signals x and y, and for noiseless or noisy

scaling one or both signals has no effect, because the scaling 

factors in numerator are cancelled by the factors in the 

denominator. In other words, the result is not useful.

When B=C=0, Equation (26) gives the coherence of a sine 
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When the noise spectra are both zero, the denominator in 

) goes to unity, indicating that the measured 

coherence is the actual coherence of the input and output. 

However, when either noise source is non-zero, the 

denominator is greater than one, and the measured coherence 

erence of u and v. Therefore, in the 

correlated noise, the measured 

) ≤ γ
uv

2
(f )              (23) 

Equality holds when the noise is zero, and noise in either 

input or output will reduce the measured coherence. 

Computation of Coherence 

The coherence function computed digitally (on sampled 

data) using Equation (1) is unity at all frequencies for any two 

At a given discrete frequency fk, the 

k
t) +  b sin 2πf

k
t( )      (24a) 

t) +  d sin 2πf
k
t( )      (24b) 

where t = nT, and T is the sampling interval. In the discrete 

he coefficient at each discrete frequency fk has the 

k
) = A − jB             (25a) 

) = C − jD             (25b) 

where A=sa, B=sb, C=sc, D=sd, and s is a software-dependent 

typically 0.5. 

A − jB( ) C + jD( ) 2

A
2

+ B
2( ) C

2
+ D

2( )     (26a) 

D)2

+ AD − BC( )2

D
2 + B

2
C

2 + B
2
D

2
= 1    (26b) 

coherence is unity for all frequencies, for 

als x and y, and for noiseless or noisy signals. Also, 

scaling one or both signals has no effect, because the scaling 

factors in numerator are cancelled by the factors in the 

the result is not useful. 

) gives the coherence of a sine 
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and cosine, which is unity. Note than this result differs from a 

computed correlation coefficient which would be zero. Both 

the scalar correlation coefficient and vector coherence are 

measures of the similarity of two signals. However, the 

correlation coefficient is sensitive to phase (as in sine vs 

cosine), but coherence is insensitive to phase. 

When computed digitally, the coherence function must be 

defined as 
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where the bar represents averaging over M elementary 

bandwidths, ie, over M discrete frequencies for which there 

are coefficients in the transform in the neighborhood of fo. 

In the analog case a coherence value would represent an 

average over an infinite number of frequencies within a band. 

The digital case must approximate the analog case by 

averaging over a finite number of the discrete frequencies in 

the band. With no such averaging, ie, with two degrees of 

freedom (from squaring the real part and the imaginary part), 

the digitally computed coherence is always unity, as 

demonstrated above. How much averaging should be done, ie, 

what 2M degrees of freedom are required to get a good 

measure of coherence, will be discussed later. Notice that the 

division by M in each individual average is not necessary for 

the calculation of coherence using Equation (27), because the 

division in the numerator cancels the division in the 

denominator. Therefore, the average can be implemented as a 

simple summation. 

Equation (27) shows that the coherence computed at a 

single frequency is always unity. While the problem is 

described for discrete computation, single-frequency 

(monochromatic) coherence occurs whenever the 

time-domain signal is periodic over all time. The signal could 

be discrete (as in fft-type computation) or it could be analog 

(as in a Fourier Series computation). In these cases, the 

computation of coherence at a single frequency is not 

influenced by energy at any other frequency. However, when 

an analog time-domain signal has finite duration, the spectral 

window introduces an averaging among neighboring 

frequency components. 

In the continuous case, with signals of finite duration, a 

finite range on frequency will contain an infinite number of 

components, and the coherence function may be less than 

unity. In discrete computations, the spectral window plays the 

same role, except for the case where a rectangular window 

contains exactly an integer number of cycles of all frequency 

components in the signal. The smoothing (averaging) over M 

elementary bandwidths introduced in Equation (27) expands 

the number of frequency components in a finite frequency 

region, and the coherence may also be less than unity. 

4.1. Coherence of Two Sampled Signals 

In the following example, the coherence function will be 

computed assuming that P seconds of both functions are 

sampled, and that the FFT is used to transform the entire P 

seconds segment of data. As an example, let 

x(t) = A1 cos[2π3fot]+A2 sin[2π3fot]+A3 cos[2π4fot]  (28a) 

and 

y(t)=B1 cos[2π3fot]+B2 sin[2π3fot] + B3 cos[2π4fot]  (28b) 

With no averaging (ie, with 2 degrees of freedom), the 

coherence function at f = 3fo and f = 4fo would be unity. 

However, using Equation (27), we can compute the coherence 

function by averaging over two elementary bands to get 2M = 

4 degrees of freedom. Therefore, the function at f = f1 = [3fo + 

4fo] / 2 is computed as follows. 
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If Ai = Bi = 1 for i = 1, 2, 3, the two signals are identical and 

the coherence function is 

  
γ

xy

2
(3.5f

o
) =  1            (34) 

Similarly, if Ai = Bi = any constant, the coherence is unity. 

More generally, if Ai = Ki Bi, the coherence is unity only 

when the constants Ki are all equal. In that special case, the 

spectra of x and y have the same shape - only the relative 

amplitude scaling is changed. In contrast, the two spectra have 

different shapes when the constants are different, and different 

shapes result in coherence values less than unity. For example, 

let Bi = 1, and 

A1 = 2 B1                (35a) 

A2 = 3 B2                (35b) 

A3 = 5 B3                (35c) 

Then the coherence in Equation (33) has a value of 0.886. 

To further illustrate the relation between spectral shape 

differences and the coherence function, let all the Ai = 1, for 

all i, and Bi = 1 for all except one i. If we vary any of the Bi 
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values, the resulting coherence is shown in Figure (2).

Figure (2) represents the coherence when B

the same results are obtained by varying B2 

frequency domain, B1 represents the real part at a frequency 

3fo and B2 represents the imaginary part at the same frequency. 

Since coherence is insensitive to phase, varying either the real 

part or the imaginary part has the same effect. Notice that for 

large absolute values of B1 or B2, the coherence value 

approaches 0.667. Overall, the coherence values vary between 

0.5 and 1.0. 

A second example is illustrated in Figure (3), by varying B

with different values of the coefficients in Equation (28). 

Notice that the coherence varies between zero and unity, 

coherence approaches 0.5 for large values of B

4.2. Coherence by Segmentation 

Instead for transforming the entire length of the functions 

x(t) and y(t), consider subdividing the data and transforming 

each segment separately. Then, the coherence is computed by 

averaging over the transformed segments. This segmentation

method will now be examined and compared with the 

coherence obtained in the previous section.

The two methods in question may be described as follows. 

In Method A, used in the previous section, the procedure i

follows. 

Method A. Smooth in Frequency 

1. transform P seconds of x(t) and y(t) using the FFT,

2. using the transformed data from step 1, calculate S

Syy(f), and Sxy(f), 

3. smooth the three spectra from step 2, where the 

smoothing is over M elementary bandwidths to obtain the 

coherence with 2M degrees of freedom. 

Figure 2. Coherence from Equation (33) when all As and Bs are unity except 

for B1. The coherence varies from 0.5 to 1.0, and converges to 0.667 at large 

values of B1. 
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Figure 3. Coherence from Equation (3

instead of unity. The resulting coherence varies from 0 to 1.0, and converges 

to 0.5 at large values of B1. 

Method B, Segmentation in Time

1. transform each of the M segments of x(t) and y(t), wh

each segment is P/M seconds, 

2. using the transformed data from step 1, compute S

Syy(f), Sxy(f) for each of the M segments,

3. average the corresponding spectra from the M segments, 

to obtain the coherence with 2M degrees of freedom.

In Method A, 2M degrees of freedom are achieved by 

averaging over M elementary bandwidths, while in Method B, 

averaging M segments also achieves the same 2M degrees of 

freedom. 

In a global sense, the two methods give the same results for 

signals like random noise. Th

sinusoid (even with frequency modulation), where the 

segmentation method could result in segments containing only 

a fraction of a cycle of the sinusoid. Other deterministic 

components could also be affected by the segmentation, b

most cases, the two methods should produce comparable 

results. 

The two methods have subtle differences, so that the 

coherence results of the two methods are not exactly 

equivalent. Consider a P-seconds signal, and M=3. In 

Methods A, the frequencies before averaging are at intervals 

of 

f
0

=

After averaging (with M=3), the frequencies are at
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Coherence from Equation (33) as in Figure 2, but A2 = B2 = 0 

instead of unity. The resulting coherence varies from 0 to 1.0, and converges 

B, Segmentation in Time 

transform each of the M segments of x(t) and y(t), where 

 

using the transformed data from step 1, compute Sxx(f), 

(f) for each of the M segments, 

3. average the corresponding spectra from the M segments, 

to obtain the coherence with 2M degrees of freedom. 

, 2M degrees of freedom are achieved by 

averaging over M elementary bandwidths, while in Method B, 

averaging M segments also achieves the same 2M degrees of 

In a global sense, the two methods give the same results for 

signals like random noise. The other extreme would be a 

sinusoid (even with frequency modulation), where the 

segmentation method could result in segments containing only 

a fraction of a cycle of the sinusoid. Other deterministic 

components could also be affected by the segmentation, but in 

most cases, the two methods should produce comparable 

The two methods have subtle differences, so that the 

coherence results of the two methods are not exactly 

seconds signal, and M=3. In 

efore averaging are at intervals 

1

P
                   (36) 

After averaging (with M=3), the frequencies are at 
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f0 =
M

P
                  

The first frequency (after f=0) is at the average of f

and 3fo. The center frequency is 2fo which becomes the 

location of the first coherence value. Then, the frequencies 

(after averaging) are 

Notice that the first frequency is at 2f0, then the spacing is at 

intervals of 3fo. 

In Method B, the segments have durations of P/M seconds, 

so the fundamental frequency and the frequency spacing are 

given by 

f0 =
M

P
               

Then, the frequencies (after averaging over segments) are at

 
f
B

 = [0 3f
0

 6f
0

 9f
0

 12f
0

 15f
0

Notice that the first frequency and the frequency spacing 

are both equal to 3fo. 

Comparing the frequencies in Equations (

frequency spacing is the same for both methods. However, the 

first frequency (lowest above f=0) is different in the two 

methods because of the way that the averaging is 

accomplished. In most cases, this difference is trivial, but it is 

a subtle difference in the two methods. 

The more significant difference can be caused by 

segmentation. For example, if three cycles of the cosine 

split into three segments, each segment is still a cosine at a 

single frequency. However, if the number of segments were 

increased, each segment would be a fraction of a cycle, and 

leakage would dominate the computed spectrum for each 

segment and in the final result. Therefore, for deterministic 

functions, the segmentation method is limited by the length of 

signal available and the frequency content of that signal. An 

excessive number of segments will degrade

estimate by decreasing the frequency resolution

One solution is to use overlapping segments as advocated 

[13]. The recommended overlap is 50%. The

the advantage of increasing both the time duration of each 

segment and the number of samples per segment. However, 

overlap of more than about 50% leads to highly correlated 

coherence estimates and additional computation. 

argument holds for deterministic signals where 

segments can lead to better frequency resolution and less 

leakage at low frequencies. 

5. Coherence of Two Random Signal

In previous sections, the coherence function was computed 

for sinusoidal signals. Now consider the signals
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                 (37) 

The first frequency (after f=0) is at the average of f0, 2f0, 

which becomes the 

location of the first coherence value. Then, the frequencies 

       (38) 

, then the spacing is at 

In Method B, the segments have durations of P/M seconds, 

so the fundamental frequency and the frequency spacing are 

              (39) 

Then, the frequencies (after averaging over segments) are at 

f
0

…]         (40) 

Notice that the first frequency and the frequency spacing 

he frequencies in Equations (38) and (40), the 

frequency spacing is the same for both methods. However, the 

first frequency (lowest above f=0) is different in the two 

methods because of the way that the averaging is 

ence is trivial, but it is 

The more significant difference can be caused by 

For example, if three cycles of the cosine are 

segments, each segment is still a cosine at a 

However, if the number of segments were 

increased, each segment would be a fraction of a cycle, and 

leakage would dominate the computed spectrum for each 

Therefore, for deterministic 

limited by the length of 

signal available and the frequency content of that signal. An 

ade the coherence 

estimate by decreasing the frequency resolution. 

One solution is to use overlapping segments as advocated in 

he overlapping has 

the advantage of increasing both the time duration of each 

segment and the number of samples per segment. However, 

overlap of more than about 50% leads to highly correlated 

coherence estimates and additional computation. The same 

deterministic signals where overlapping 

lead to better frequency resolution and less 

Two Random Signals 

In previous sections, the coherence function was computed 

consider the signals 

x(t) = z(t) + 

and 

y(t) = z(t) + 

where z(t), n1(t), and n2(t) are Gaussian noise functions with 

unity variance and zero mean. If we consider z(t) to be the 

input to a unity gain noiseless system, 

the input measurement, and β
output measurement, the coherence function can be calculated 

by Equation (22). Then for this random case,
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The variance of z is unity, Szz(f) = 1, and the noise variance 

is unity, so Equation (42) reduces to
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2
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= (
Figure 4 shows the coherence when

zero, and when both noise components have equal amplitude.

Figure 4. Expected values of coherence for 

Equation (43). 

6. Coherence & Degre

The expected values of the coherence function, as given by 

Equation (43) and Figure 4, do not include the effect of the 

degrees of freedom in the digital calculation. 

earlier that for two degrees of freedom, computed coherence 

was always unity regardless of the true coher

of notation, the digitally computed coherence will be called 

the "sample coherence" to distinguish it from the expected 

coherence given by Equation (43

  

x(t) = z(t) + α n1(t)          (41a) 

y(t) = z(t) + β n2(t)          (41b) 

(t) are Gaussian noise functions with 

unity variance and zero mean. If we consider z(t) to be the 

ystem, α n1(t) to be the noise in 

β n2(t) to be the noise in the 

measurement, the coherence function can be calculated 

). Then for this random case, 

γ
zz

2
(f )

β
2
N

2
(f )

S
zz

(f )
+

α
2
β

2
N

1
(f )N

2
(f )

S
zz

(f ) S
zz

(f )










 (42) 

Szz(f) = 1, and the noise variance 

) reduces to 

1

1+ α2( ) 1+ β2( )          (43) 

rence when one noise amplitude is 

zero, and when both noise components have equal amplitude. 

 

Expected values of coherence for different noise levels, from 

Degrees of Freedom 

The expected values of the coherence function, as given by 

, do not include the effect of the 

om in the digital calculation. It was shown 

earlier that for two degrees of freedom, computed coherence 

was always unity regardless of the true coherence. As a matter 

of notation, the digitally computed coherence will be called 

the "sample coherence" to distinguish it from the expected 

43). 
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To illustrate the relationship between the sample coherence 

and the degrees of freedom, the functions in Equa

are simulated using Gaussian white noise in z(t), n

where the three signals are mutually uncorrelated, and each 

has zero mean and unity variance. Then the signals x(t) and y(t) 

have a common component, namely z(t). They have additive 

uncorrelated noise whose variances are determined by 

As in Figure (4), consider two cases, one with 

other with α= β. 

Using 4096 samples of x(t) and y(t), the sample coherence 

was computed for different degrees of freedom, and plotted in 

Figure (5) for α The horizontal dotted lines show the expected 

coherence from Equation (46). Figure (6) show the results 

when α β 

In both Figure (5) and Figure (6), the coherence is shown 

for degrees of freedom (dof) starting at 4. For 2 degrees of 

freedom, all curves go to a coherence of 1.0. Notice that the 

sample coherence and the expected coherence differ 

significantly for lower dof. At higher values of dof, the curves 

approach the expected values, and the convergence is slower 

at larger values of noise (ie, values of α and

sense because higher noise levels require more averaging or 

smoothing, and in this case, more degrees of freedom equates 

to more averaging. 

The coherence values are higher in Figure 5 (than in Figure 

6). This is also intuitive, because x(t) has no noise. Thus, x(t) 

and y(t) are more similar, since they have the common 

component z(t) and only one noise component to decease their 

similarity. When the noise in x(t) is non-zero, ie, when 

nonzero, the coherence values are lower, as see

Figure 5. Sample coherence (solid curves) and expected coherence (dotted 

lines) for a range of degrees of freedom, and with noise only in y(t), ie, with 

α = 0.  
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the relationship between the sample coherence 

and the degrees of freedom, the functions in Equations (41) 

are simulated using Gaussian white noise in z(t), n1(t), and n2(t) 

where the three signals are mutually uncorrelated, and each 

has zero mean and unity variance. Then the signals x(t) and y(t) 

have a common component, namely z(t). They have additive 

uncorrelated noise whose variances are determined by α and β. 

), consider two cases, one with α= 0, and the 

Using 4096 samples of x(t) and y(t), the sample coherence 

was computed for different degrees of freedom, and plotted in 

The horizontal dotted lines show the expected 

) show the results 

), the coherence is shown 

for degrees of freedom (dof) starting at 4. For 2 degrees of 

to a coherence of 1.0. Notice that the 

sample coherence and the expected coherence differ 

significantly for lower dof. At higher values of dof, the curves 

approach the expected values, and the convergence is slower 

and β). This makes 

sense because higher noise levels require more averaging or 

smoothing, and in this case, more degrees of freedom equates 

The coherence values are higher in Figure 5 (than in Figure 

e x(t) has no noise. Thus, x(t) 

and y(t) are more similar, since they have the common 

component z(t) and only one noise component to decease their 

zero, ie, when α is 

nonzero, the coherence values are lower, as seen in Figure 6. 

 

Sample coherence (solid curves) and expected coherence (dotted 

noise only in y(t), ie, with 

Figure 6. Sample coherence (solid curves) and expected coherence (dotted 

lines) for different levels of noise and for a range of degrees of freedom. In this 

case, the noise level in x(t) and y(t) are the same, ie, 

7. Estimating Expected Cohere

Figure 7. Coherence after applying the empirical correction in Equation (

to the data in Figure (6). 

The relationship between the sample coherence and the 

expected value of coherence can be expressed by the empirical 

equation where the subscript E indicates expected value, and 

the subscript s indicates sample values. Let's apply
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Sample coherence (solid curves) and expected coherence (dotted 

s) for different levels of noise and for a range of degrees of freedom. In this 

case, the noise level in x(t) and y(t) are the same, ie, α = β 

Expected Coherence 

 

Coherence after applying the empirical correction in Equation (44) 

The relationship between the sample coherence and the 

expected value of coherence can be expressed by the empirical 

where the subscript E indicates expected value, and 

the subscript s indicates sample values. Let's apply the 
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correction to the earlier example in Equations (41) with 

computed sample coherence in Figures (6). The results are 

shown in Figures (7). 

                

The empirical equation in Equation (44) over

for lower values of degrees of freedom. Compare Figures 6 

and 7. The uncorrected coherence values are actually better for 

high coherence values (and low dof). However, the corrected 

values are significantly better at lower coherence values, 

especially at low dof. 

The approximation in Equation (44) is crude and can be 

improved by 

  
γ

E

2
(f ) =  

M γ
s

2 − 0.91

M− 1

Figure 8. Corrected coherence values from applying Equation (45) to the 

sample coherence in Figure (6). 

Applying this modified correction to the sample coherence 

in Figure (6), the resulting coherence is shown in figure (

Comparing the corrected values in Figure (

the modified correction formula in Equation (

have some advantage. 

It should be noted that the coherence values, corrected and 

uncorrected, represent averaged data. In a single computation 

of sample coherence, the actual coherence is affected by noise 

and degrees of freedom. The curves in the figures can be used 

as guides, or even calibration curves, but in any single case, 

the sample coherence should be considered as an estimate of 

the actual coherence. In many applications, the relative 

coherence may be the desired measure, and the uncorrected 

  
γ

E

2
(f ) =  

M γ
s

2 − 1

M− 1
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correction to the earlier example in Equations (41) with 

computed sample coherence in Figures (6). The results are 

                 (44) 

The empirical equation in Equation (44) over-compensates 

edom. Compare Figures 6 

and 7. The uncorrected coherence values are actually better for 

high coherence values (and low dof). However, the corrected 

values are significantly better at lower coherence values, 

) is crude and can be 

91
           (45) 

 

Corrected coherence values from applying Equation (45) to the 

Applying this modified correction to the sample coherence 

coherence is shown in figure (8). 

Comparing the corrected values in Figure (7) and Figure (8), 

the modified correction formula in Equation (45) appears to 

should be noted that the coherence values, corrected and 

nt averaged data. In a single computation 

of sample coherence, the actual coherence is affected by noise 

and degrees of freedom. The curves in the figures can be used 

as guides, or even calibration curves, but in any single case, 

d be considered as an estimate of 

the actual coherence. In many applications, the relative 

coherence may be the desired measure, and the uncorrected 

sample coherence is sufficient. 

The last example illustrates, as expected, that coherence is 

deceased by noise in either signal. 

coherence and expected coherence differ by an amount that 

varies with the coherence values and the degrees of freedom. 

The sample coherence can be cor

are closer to the expected coherence.

More generally, the last example migh

measurements x and y that originate from a common source. 

For example, suppose the signal z(t) is a source of normal or 

abnormal activity in neural tissue. Then, x(t) and y(t) might be 

signals from two different electrodes at two locations that are 

remote from the center of the activity z(t). Each of the two 

measurements are degraded by noise, and a higher level of 

noise in either recording, leads to lower values of sample 

coherence. 

We assume that both x(t) and y(t) are l

In linear cases, the amplitude scaling does not affect the 

sample coherence. In the absence of noise, the sample 

coherence values would be unity. 

between z(t) and x(t) is a different linear function than for the 

tissue path from z(t) to y(t), the two linear functions would 

introduce only scaling factors to x(t) and y(t), and probably 

some phase shifts. However, the sample coh

insensitivity to both the scaling factors and the phase shifts. 

Thus, the coherence in these linear cases is degraded by noise.

8. Conclusion 

The properties of the coherence function have been 

presented with emphasis on its application to the

output of a linear system. Since t

normalized measure of the spec

the coherence of the input and output of a linear noise

system is unity. However, additive 

of either the input or the output of a linear system will reduce 

the coherence function. In general, any noise component not 

common to both input and output will reduce the coherence.

For random signals such as Gaussian noise, the coherence 

function may be computed by either of two methods: (A) 

transform the entire length of data and smooth over M 

elementary bandwidths to get 2M degrees of freedom, or (B) 

divide the data into segments which are transformed 

individually, then combine the transformed results to ge

degrees of freedom. These two methods yield equivalent 

results, but the coherence values are at 

discrete frequencies. For deterministic signals, the 

segmentation in Method B increases the leakage, but 

overlapping segments can partially compensate

about 50% may be useful. 

The sample coherence approaches the expected coherence 

as the number of degrees of freedom is increased. 

degrees of freedom, the coherence estimate can be improved 

by a correction expression using the sample coherence and the 

degrees of freedom. 

 

  

 

illustrates, as expected, that coherence is 

deceased by noise in either signal. Additionally, the sample 

coherence and expected coherence differ by an amount that 

varies with the coherence values and the degrees of freedom. 

The sample coherence can be corrected to obtain values that 

are closer to the expected coherence. 

More generally, the last example might represent two 

y that originate from a common source. 

For example, suppose the signal z(t) is a source of normal or 

y in neural tissue. Then, x(t) and y(t) might be 

signals from two different electrodes at two locations that are 

remote from the center of the activity z(t). Each of the two 

measurements are degraded by noise, and a higher level of 

g, leads to lower values of sample 

We assume that both x(t) and y(t) are linearly related to z(t). 

linear cases, the amplitude scaling does not affect the 

sample coherence. In the absence of noise, the sample 

coherence values would be unity. Even if the tissue path 

between z(t) and x(t) is a different linear function than for the 

tissue path from z(t) to y(t), the two linear functions would 

introduce only scaling factors to x(t) and y(t), and probably 

some phase shifts. However, the sample coherence is 

insensitivity to both the scaling factors and the phase shifts. 

Thus, the coherence in these linear cases is degraded by noise. 

The properties of the coherence function have been 

presented with emphasis on its application to the input and 

Since the coherence function is a 

normalized measure of the spectral similarity of two signals, 

coherence of the input and output of a linear noise-free 

However, additive noise in the measurement 

ther the input or the output of a linear system will reduce 

In general, any noise component not 

common to both input and output will reduce the coherence. 

For random signals such as Gaussian noise, the coherence 

uted by either of two methods: (A) 

transform the entire length of data and smooth over M 

elementary bandwidths to get 2M degrees of freedom, or (B) 

divide the data into segments which are transformed 

individually, then combine the transformed results to get 2M 

These two methods yield equivalent 

results, but the coherence values are at slightly different 

For deterministic signals, the 

segmentation in Method B increases the leakage, but 

partially compensate. An overlap of 

The sample coherence approaches the expected coherence 

number of degrees of freedom is increased. At lower 

degrees of freedom, the coherence estimate can be improved 

sion using the sample coherence and the 
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