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Abstract: In recorded bioelectric signals, such as the electrocardiogram, sinusoidal interference from power lines or other 

sources causes distortion in the signal and may lead to misdiagnosis. For long or continuous recordings, adaptive filtering can be 

effective in minimizing the interference. For short recording, the options are limited. Subtractive methods have been used, but 

they do not distinguish between the interference and signal components with similar frequency. A new method can distinguish 

between signal and interference, so that the interference can be removed with very small residual error. In clinical recordings, the 

frequency of powerline interference is known, but the adaptive nature of the algorithm allows extension to cases when the 

frequency of interference is not known exactly. 
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1. Introduction 

In many biopotential measurement applications, a recorded 

signal will contain interference or noise components that 

degrade and otherwise alter the signal in an unacceptable way. 

This noise is often due to power line interference (PLI), which 

is typically a noise of known frequency but unknown 

amplitude and phase. The interference may also consist of 

multiple sinusoids that may be harmonically related, as in the 

case of PLI, or non-harmonically related. In [1], a thorough 

model characterizes the sources of noise in recorded signals 

including power line interference and electromagnetic 

interference inherent in electrodes. Canceling this noise is of 

interest for a wide range of biosignal applications [2, 3], but 

this discussion will focus on the ECG. 

The electrocardiogram (ECG) is a diagnostic tool that can 

be valuable in the detection and analysis of arrhythmias, 

structural abnormalities, and metabolic deficits such as 

ischemia [4,5]. The normal ECG also has an easily 

recognizable shape that is ideal for the evaluation of noise 

removal algorithms. Some typical ECG signals are available 

in an MIT-BIH physiological signals database [6]. 

Notch or lowpass filters can be utilized when the frequency 

of interference and its harmonics are at higher frequencies 

than that of the signal. Chebyshev type II and Nyquist filters 

have both a low pass characteristic for conditioning low 

frequency signals and a notch at the frequency of interference 

[7,8]. However, when the interference frequencies occupy the 

same bandwidth as the frequency components of the signal of 

interest, low pass and notch filtering do not produce 

satisfactory results. These filters will distort the amplitude and 

phase of the desired signal components, resulting in 

detrimental effects on the waveform. They will also become 

ineffective if the interference frequency varies even slightly. 

More importantly, the filters have no mechanism for 

distinguishing signal from interference. 

Signal averaging, normally applied to signals corrupted by 

random noise [9], may attenuate a coherent interference, but 

fails to provide satisfactory noise cancelation [10,11]. 

Combining linear filtering with signal averaging noise 

reduction techniques forms a filter residue method [12], which 

defines a residue as the difference between the input signal 

and the corresponding signal average at every point. The 

residue is passed through a low pass filter and the result is 

added back into the signal average. The method appears to 

work better than general low pass filtering or median filtering 

methods; however it requires a relatively large data segment to 

obtain an accurate signal average and timing characteristics of 

the R wave are necessary, making this method less effective 

for short time segments. 

When the frequency of interference is stationary, sinusoidal, 

and has a relatively large amount of energy, spectral 
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interpolation can be used. First, the spike in the frequency 

spectrum corresponding to the noise component is removed, 

and then the missing value is replaced using interpolation. 

While the results can be partially successful, the results are 

often not acceptable in the discrete case due to spectral 

leakage. Alternatively, interference can be estimated in time or 

frequency using interpolation, and then subtracting the 

estimate from the original signal. This method only works 

when discontinuities occur at predictable locations in the 

non-windowed spectrum, and the frequencies of interference 

are significantly far from the frequencies of the signal [13]. 

Many adaptive methods have also been used to remove 

noise from ECG signals. Adaptive notch filtering, whose 

parameters vary based on previous filter outputs, have been 

developed by several groups for tracking, estimating, and 

rejecting noise in a signal. A Kalman filter for ECG signal 

enhancement [14], assumes that the ECG is normally 

distributed, and uses the time evolution of the ECG signal to 

adapt filter parameters to correct the frequency of interference. 

An H∞ filter to denoise an ECG signal [15] has two 

advantages over the Kalman filters: there is no need to make 

assumptions about the statistical properties of the input signal 

and it is more robust. 

An adaptive notch filtering in a dynamic system model [16] 

can determine the amplitude, initial, and total phases of the 

sinusoidal interference. A nonlinear adaptive notch filtering 

scheme [17] extracts the interference without the need for a 

power reference signal. A phase locked loop can also be used 

in power line interference cancelation [18]. While adaptive 

systems are very robust and accurate, a certain settling time 

is required for the filter to stabilize and accurately remove the 

interference. An adaptive sinusoid interference cancelation 

system seeks to minimize settling time [19]. While mid to 

long length data segments may have enough time for a 

system to stabilize, short time segments often do not, making 

the adaptive algorithm methods ineffective. 

Time-frequency analysis, especially using wavelets, has 

also been of interest in ECG noise elimination. Wavelet 

decomposition, which creates sparse representations for 

piecewise regular signals including their transients and 

singularities, has been used in applications such as signal 

acquisition, compression, and denoising applications [20-22]. 

Wavelet techniques include binary wavelet denoising [23, a 

dynamic denoising [24], and nonlinear thresholding [25] to 

denoise the ECG. In general, wavelets provide an excellent 

means of denoising the ECG, but suffer in terms of 

computational complexity. 

Subtraction methods simply determine sinusoidal 

parameters, such as amplitude, frequency, and phase, and 

then subtract the sinusoidal components from the original 

signal. Finding these sinusoidal components, however, is not 

trivial, especially when the source of the noise has unknown 

amplitude and phase, which is usually the case. One method 

of determining sinusoidal parameters in noise components 

uses a weighted finite Fourier integral to determine frequency 

[26]. Once frequency has been determined, the method uses a 

least squares approximation with the derived Fourier 

coefficients to determine amplitude and phase. The 

subtraction procedure can be generalized to remove 

exponential (including sinusoidal) interference [27]. For this 

method, the interference must obey certain orthogonality 

conditions, and good performance requires that the 

interference contain an integer number of cycles. In the worst 

case, the method fails to denoise the signal. In [28], a novel 

method uses Legendre moments to remove noise from a 

signal. The method can be effective when the low and high 

frequencies are uncorrelated. 

In biomedical applications, bioelectric sensing devices 

often send their acquired signals through high gain amplifiers 

with very high common mode rejection ratios (CMMR). 

Electrode impedances, cable mismatch, and stray power line 

coupling introduce common mode voltage that cannot be 

suppressed with high CMRR [1,29]. Several subtraction 

methods have been developed to handle this interference 

situation. One approach is to first isolate the linear sections 

of the ECG [30], and then remove the noise using a 

symmetric moving average linear-phase filter. The 

subtraction of the filtered and non-filtered segments results in 

an interference value. A similar procedure uses an added least 

squares and nonlinear regression routines to estimate 

sinusoidal parameters [31]. Other subtraction procedures 

utilize spline techniques to estimate the ECG signal [32]. 

Kelly and Calvert [33,34] introduced a simple and useful 

algorithm for removing sinusoidal interference from short 

data segments. Internally generated sine and cosine functions 

are essentially correlated with the recorded signal. When the 

frequency of the interference is known, the computed 

correlations, similar to Fourier series coefficients, are used to 

estimate the amplitudes of cosine and sine functions that are 

subtracted from the recorded signal. When the frequency is 

known only approximately, an algorithm can search in the 

neighborhood of the estimated frequency to find the 

minimum error, indicating the exact frequency of 

interference.  

The Kelly-Calvert (K-C) method works well when the 

desired signal has little or no significant energy near the 

frequency of the interference. The method measures the 

combined amplitude of all components at a given frequency, 

and thus cannot distinguish between desired signal 

components and interference. When the interference 

frequency is not an integer number of cycles per data 

segment duration, the signal components at adjacent 

frequencies will be correlated with the reference sinusoids. 

Thus, they also contribute to the error in estimating the 

amplitude and phase of the interference.  

Similar techniques have been applied in the context of a 

real digital system [35], including the use of oscillators to 

reduce memory requirements [36], and then the sinusoidal 

components and parameters are adjusted by the Wiener-Hopt 

equation of the system. This estimate is then followed by 

estimating the cross-correlations of the resulting 

Wiener-Hopt equation. Once the coefficients are found, the 

interference is subtracted [2]. 

This paper presents a new algorithm for calculating the 
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amplitude and phase of the sinusoidal interference. Unlike 

the K-C method, the new algorithm separates the signal from 

the sinusoidal interference. The only additional requirement 

is that the signal spectrum (without interference) be 

continuous at the frequency of the interference. The 

following describes the theoretical basis of the new algorithm 

and results of applying the new method to an ECG with 

various forms of interference. The K-C method in included 

for comparison. 

2. Methods 

Consider an information-carrying noiseless signal x(t) 

which has a Fourier Transform X(ω). The signal x(t) could be 

complex, but for this discussion, x(t) is purely real. The 

recorded signal is represented as 

y(t) = x(t) + n(t)                (1) 

where n(t) is an undesired or noise component. The additive 

noise could be a combination of random and deterministic 

components, but the focus is on a deterministic sinusoidal 

function whose amplitude and phase are unknown but whose 

frequency is known. Specifically, let  

 
n(t) = c cos(ω

o
t) + s sin(ω

o
t)          (2) 

so that the recorded signal is 

 
y(t)= x(t)+ c cos(ω

o
t) + s sin(ω

o
t)       (3) 

The goal is to cancel the last two components of y(t) such 

that y(t) only consists of x(t). To this end, consider C and S, as 

initial amplitude estimates of s and c respectively. We can then 

calculate the desired function z(t) as 

 
z(t)= y(t) − C cos(ω

o
t) − S sin(ω

o
t)        (4) 

where z(t) constitutes an estimation of x(t). This can be 

extended to short discrete signals by simply replacing the 

continuous variable t by nT, where T is the time interval 

between samples. 

The function X(ω) and its derivative are assumed to be 

continuous at ω = ωo, or that the real and imaginary parts of 

X(ω) and their derivatives both be continuous at ω = ωo . 

This assumption is valid for most biomedical signals. In other 

words, Y(ω) is a smooth spectrum near ω = ωo except for an 

additive delta function at ω = ωo. This is a quite realistic 

requirement for most time limited recorded signals. 

If Y(ω) is the Fourier Transform of y(t), the derivative 

property of the Fourier Transform can be defined by the 

time-frequency equivalence 

 

dY(ω)

dω
↔ − j t y(t)                (5) 

Applying Parseval's Theorem to the derivative of Y(ω) in 

Equation 5, 

 

dY(ω)

dω
∫

2

dω = K − j t y(t)
2

∫ dt           (6) 

where the scaling factor K depends on the definition of the 

forward and inverse transform, and K is usually unity for the 

discrete transform. Both integrals can be referred to as mean 

squared values after normalization.  

Given that X(ω) is continuous at ωo, non-zero positive or 

negative values of c or s will increase the left side of 

Equation 6. As a simple discrete-time example, consider a 

function x(nT) whose spectrum is linear, so that its derivative 

at ωo is a constant K. Any non-zero c or s will introduce 

discontinuity K ± δ on either side of ωo. In magnitude 

squared values, the sum of these two discontinuities is 2K
2
 + 

2δ2
 compared with a value of 2K

2
 when s and c are 

identically zero. Therefore, any positive or negative value of 

c or s contributes to an increase in the magnitude-squared 

value, giving rise to an integral that is minimum when c and s 

are both zero. As such, we have a mechanism for 

distinguishing the desired signal x(t) from the sinusoidal 

interference.  

In the frequency domain, the spike at ωo is graphically 

intuitive and the integral of the magnitude-squared value of 

the derivative on the left side of Equation 6 is also easily 

visualized. However, the right side of Equation 6 is 

computationally simpler and more efficient. Removing the 

sinusoidal interference corresponds to minimizing the left 

side of Equation 6, and by Parseval's Theorem, also 

minimizing the right side of Equation 6. Given the 

computational advantages, this method employs the time 

domain minimization. 

Therefore, we can calculate  

 
J = t y(t)∫

2

dt                 (7) 

and find the values of C and S which minimize J. From the 

previous argument, minima will occur when C=c and S=s, 

provided that X( ) is continuous at ωo.  

For short segments of discrete signals, the integral in 

Equation 7 becomes a summation over the time of the entire 

segment. Therefore, the algorithm is relatively 

straightforward: for each data segment, C and S are varied to 

minimize J. In the case where ωo is not known, it can be 

estimated by finding the frequency where J is minimum. A 

more straightforward method would be to make estimates for 

all three parameters, C, S, and ωo and minimize all three 

parameters as described above. 

As a simple, continuous time example, consider the case 

when x(t) = k δ(t) which leads to X(ω) = k. Therefore  

 y(t) = k δ(t)+ c cos(2πft) + s sin(2πft)      (8) 

To illustrate the method, we choose to minimize J, in 

Equation 7. This gives rise to  

 
J = tk δ(t)+ tc cos(2πft) + ts sin(2πft)∫

2

dt      (9) 
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Employing the sifting property, and minimizing the result 

in Equation 9, shows that the minimum value of J occurs 

when the coefficients c = s = 0. 

3. Results & Discussion 

To demonstrate effectiveness of the new methods, a 

sample ECG signal from MIT-BIH physiological signals 

database [6] was loaded into the Matlab programming 

environment. A short segment of the signal was then 

corrupted with sinusoidal interference with amplitudes s = c 

= 0.1, a phase shift of 45 degrees, and varying frequencies. 

Figure 1 shows the original, noiseless cardiac cycle and the 

cardiac signal after being corrupted by 60Hz PLI. It should 

be noted that the algorithm performance is invariant of 

interference amplitude and phase. The amplitude and phase 

invariance of our algorithm is critical in most bioelectric 

signal acquisition applications where the exact amplitude and 

phase characteristics of the noise are not known. 

 

Figure 1. Original ECG signal and corrupted ECG signal 

For each frequency, the Kelly-Calvert subtraction method 

and the new subtraction method are performed. Figure 2 

shows the rms error vs. frequency for both methods. As it can 

be seen, the reconstruction of the corrupted ECG signal with 

the new method has a lower rms error over the entire 

frequency range, especially at the critical frequencies of 50 

and 60Hz for European and American power distribution 

systems respectively.  

A correlation coefficient was then calculated to compare 

both reconstructed signals to the original signal, giving a 

measure of accuracy of reconstruction vs. frequency of 

interference. This is shown in Figure 3. Notice that the new 

method results in higher correlation coefficients over the 

entire frequency range, and shows significant improvement 

over the K-C method at lower frequencies.  

Next, consider the case where the interference frequency is 

also unknown. This scenario will occur when power line 

frequencies drift or in other sinusoidal noise that is not from 

line interference. As discussed earlier, an initial guess is 

made, and a frequency range of the interference is 

determined. Applying the new method over the frequency 

range results in a global minimum in rms error occurring at 

the frequency of interference. Figure 4 demonstrates the 

algorithm finding the correct frequency of interference, in 

this case, 61.25Hz. 

 

Figure 2. Rms error vs. frequency for both the Kelly-Calvert method and the 

new method.  

 

Figure 3. Correlation Coefficients for the Kelly-Calvert and new methods.  

In many cases, the ECG will be corrupted by multiple 

sinusoids of varying amplitude, phase, and frequency. If the 

frequencies of interference are not known, they can be found 

from the local minima in rms error. Consider an ECG signal 

with interference from two sinusoids as shown in Figure 5. 

Two is chosen for convenience, but the method can be 

extended to multiple interference sinusoids as long as the 

interference frequencies do not lie extremely close to each 

other. The plot shown in Figure 6 demonstrates that the two 

sinusoidal interference frequencies occur at local minimums 

of the rms error function. With the interference frequencies 

now known, the original ECG signal can be completely 

reconstructed. 
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Figure 4. The minimum rms error occurs at 61.25Hz, which is the frequency 

of sinusoidal interference. 

 

Figure 5. ECG corrupted with two sinusoids at 45 and 61.25 Hz.  

 

Figure 6. The frequencies of interference correspond to local minimums of the 

rms error of the new method.  

4. Conclusions 

Subtraction methods, due to their high efficiency and zero 

settling time, are ideal in digital applications where short 

digital segments are processed. The new method, based on 

Parseval's theorem and the derivative property of the Fourier 

transform, uses a time domain technique that effectively 

separates signal from interference. While this paper 

demonstrates the algorithms effectiveness on the ECG, the 

new method is applicable to any short data segment with a 

signal spectrum that is continuous at the frequency of the 

interference. The accuracy of this new method is not 

dependent on the relative phase or amplitude of the 

interference. The method does not require an integer number 

of cycles of interference in the data window because the 

time-domain computation avoids the fft artifact known as 

leakage. If the frequency of interference is not known, a local 

minimization procedure applied to the data window will 

produce a minimum at the frequency of interference, 

allowing the algorithm to determine individual interference 

frequencies.  

When applied to the ECG, the new method provides 

excellent noise cancelation, offering near complete signal 

reconstruction. The algorithm is slightly perturbed by random 

noise as noise introduces slight discontinuities in the 

spectrum. However, the integral or sum computation has an 

inherent averaging effect on the noise, thereby limiting the 

error. A quantitative assessment of the noise effects and the 

errors due to uncertainty in ωo are subjects of further study. 

Additionally, this method can form the basis of an adaptive 

filter for use in long data segments, where the time-domain 

equivalent of the mean squared derivative in the frequency 

domain could be integrated into the traditional least squares 

structure. 
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