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Abstract: The Density functional theory (DFT) at B3LYP of 6-31G* basis set was employed to optimize 30 polychlorinated 

Biphenyls (PCBs) involved in this study by using Genetic function appropriation algorithm (GFA) approach to develop 

regression models in order to predict the toxicity of the compounds. The optimum model which has squared correlation 

coefficient (R
2
) = 0.9382, cross validated correlation coefficient (R

2
cv) = 0.9056, adjusted squared correlation coefficient 

(R
2

Adj) = 0.9228 and external prediction (R
2
pred) =0.7238 was selected. The robustness of the model was confirmed by method 

of Y- randomization and the accuracy of the proposed model was also illustrated by using cross-Validation, validation through 

an external test set and applicability domain techniques. This QSTR model proved to be a useful tool in the prediction of 

toxicity of the congeneric compounds and a guide in the identification of structural features that could be responsible for 

toxicity of other polychlorinated aromatic compounds. 
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1. Introduction 

Polychlorinated biphenyls (PCBs) are among the most 

environmentally dangerous chemicals belonging to the class 

of polychlorinated aromatic compounds [1], ubiquitously 

present in every compartment of the environment including 

soils, sediments, plants, animals, and human beings [2]. 

These compounds are of environmental and human health 

concern, because of their wide range of acute and chronic 

health effects on humans such as cancer, endocrine 

disruptors, neurological damage, reproductive disorders and 

immune suppression [3-4]. The physico-chemical properties 

exhibit by these chemicals such as hydrophobicity, low water 

solubility and lipophilicity, make them to accumulate in soil, 

sediments, biota and in humans and food webs and other 

indirect exposure [5-6] posing significant health threats to 

well-being of humans and animals [6]. 

Polychlorinated biphenyls are dioxin-like compounds 

(DLCs) formed and get released to the environment as by –

products of various industrial processes which includes 

incomplete combustion of organic matter in industrial 

operations, medical waste incinerators, power plants, vehicle 

engines, household wood fires and forest fires [7], and are 

commonly regarded as highly toxic chemicals that are 

environmental contaminants and persistent organic pollutants 

(POP) [8].  

Therefore, investigations on toxicity of PCBs are of great 

importance to understand their risk to human health and to 

the environment at large by making use of their toxicity data 

of the compounds to evaluate their risk to organisms and 

further adopt effective measures to reduce the adverse effects 

of this toxic chemical or pollutant in our environment.  

However, because of high cost, time-consuming process, 

limits of detection and lack of adequate standard materials, 

toxicity data are rather scarce for non-genotoxic adverse 

effects of compounds. In order to conquer these problems 

and quickly estimate the environmental behaviors of 
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compounds, quantitative structure–activity/toxicity 

relationship (QSAR/QSTR) models, which correlate and 

predict toxicity data of the compounds (PCBs) from their 

molecular structural descriptors were developed, provide 

valuable approach in research into the toxicity of compounds 

without any experiments widely applied to evaluate and 

predict toxicity of chemicals efficiently [9] was employed in 

this study. Studies have shown that reliable QSAR/QSTR 

models are not only applied to predict toxicity and provide 

basic data to risk assessment, but also used to explain the 

toxicity mechanisms [10]. 

QSAR/QSTR have been widely used in research to explain 

acute toxicity [11], endocrine disrupting activities [12] and 

photo induced toxicity of organic compounds. This approach 

can fill the data gap of organic pollutants, decreases 

experimental expenses and reduces animal testing [13] and it 

can predict the bioactivity such as toxicity, mutagenicity and 

carcinogenicity based on structural parameters of compounds 

and appropriate mathematical models. 

The alternative hypothesis to this study includes: 

The magnitude of the observed toxicity log (1/EC50) of 

Polychlorinated biphenyls (PCBs) are direct function of the 

empirical property (ies) or the theoretical parameter(s) which 

makes the descriptor of the total chemical structure of the 

compounds under investigation. 

The null hypothesis to this research includes; 

The observed toxicity log (1/EC50) of Polychlorinated 

biphenyls (PCBs) is independent of the descriptors of their 

total chemical structures. 

This present study is aimed to build robust and rational 

Genetic function approximation (GFA) based QSTR models 

for the predicting the toxicity of Polychlorinated biphenyls 

(PCBs) by exploring the correlations between the 

experimental log (1/EC50) of the compounds and their 

calculated molecular descriptors. It is envisaged that the 

wealth of information in this study would provide a fast, 

economical, more environmentally friendly and less time 

consuming techniques of accessing the toxicity of 

Polychlorinated biphenyls (PCBs) and other related toxic 

Polychlorinated aromatic chemicals/ pollutants that could 

endanger our environment. 

2. Materials and Methods 

2.1. Data Collection 

A data set of Polychlorinated biphenyls (30 PCBs) used 

for the QSTR analysis was selected from the literature [14]. 

The Chemical structures and corresponding log (1/EC50) 

values for studied compounds are represented in Table 1. 

Table 1. Chemical structures and experimental log (1/EC50) values for studied compounds (30 PCBs). 

S/N Chemical Structures Log (1/EC50) 

1 

 
3,3',4,4'-Tetrachlorobiphenyl 

6.15 

2 

 
2,3',4,4'-Tetrachlorobiphenyl 

4.55 

3 

 
3,3',4,4',5-Pentachlorobiphenyl 

6.89 
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S/N Chemical Structures Log (1/EC50) 

4 

 
2,3,3',4,4'-Pentachlorobiphenyl 

5.37 

5 

 
2,3,4,4',5-Pentachlorobiphenyl 

5.39 

6 

 
2,3',4,4',5-Pentachlorobiphenyl 

5.04 

7 

 
2',3,4,4',5-Pentachlorobiphenyl 

4.85 

8 

 
2,3,3',4,4',5-Hexachlorobiphenyl 

5.15 

9 

 
2,3',4,4',5,5’-Hexachlorobiphenyl 

4.80 
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S/N Chemical Structures Log (1/EC50) 

10 

 
2,3,3',4,4',5'-Hexachlorobiphenyl 

5.33 

11 

 
2,3',4,4',5',6-Hexachlorobiphenyl 

4.00 

12 

 
2,2',4,4',5',5-Hexachlorobiphenyl 

4.10 

13 

 
2,2',4,4'-Tetrachlorobiphenyl 

3.89 

14 

 
2,3,4,5-Tetrachlorobiphenyl 

3.85 

15 

 
4'-Hydroxy-2,3,4,5-Tetrachlorobiphenyl 

4.05 
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S/N Chemical Structures Log (1/EC50) 

16 

 
4'-Methyl-2,3,4,5-Tetrachlorobiphenyl 

4.51 

17 

 
4'-Fluoro-2,3,4,5-Tetrachlorobiphenyl 

4.60 

18 

 
4'-Methoxy-2,3,4,5-Tetrachlorobiphenyl 

4.80 

19 

 
4'-Isopropyl-2,3,4,5-Tetrachlorobiphenyl 

5.89 

20 

 
4'-Acetyl-2,3,4,5-Tetrachlorobiphenyl 

5.17 

21 

 
4'-Cyano-2,3,4,5-Tetrachlorobiphenyl 

5.27 

Cl

Cl

Cl

Cl

F
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S/N Chemical Structures Log (1/EC50) 

22 

 
4'-Ethyl-2,3,4,5-Tetrachlorobiphenyl 

5.46 

23 

 
4'-Bromo-2,3,4,5-Tetrachlorobiphenyl 

5.60 

24 

 
4'-Iodo-2,3,4,5-Tetrachlorobiphenyl 

5.82 

25 

 
4'-Phenyl-2,3,4,5-Tetrachlorobiphenyl 

5.18 

26 

 
3'-Nitro-2,3,4,5-tetrachlorobiphenyl 

4.85 

27 

 
4'-N-Acetylamino-2,3,4,5-tetrachlorobiphenyl 

5.09 

Cl

Cl

Cl

Cl

I
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S/N Chemical Structures Log (1/EC50) 

28 

 
4'-Trifluromethyl-2,3,4,5-tetrachlorobiphenyl 

6.43 

29 

 
4'-t-Butyl-2,3,4,5-tetrachlorobiphenyl 

5.17 

30 

 
4'-n-Butyl-2,3,4,5-tetrachlorobiphenyl 

5.13 

 

2.2. Molecular Optimization and Descriptors Calculation 

Optimization is the process of finding the equilibrium or 

lowest energy geometry of molecules. The chemical structure 

of each compound was drawn with ChemDraw ultra [15] 

version 12.02 module of the program and subsequently 

imported into Wave function program Spartan ‘14’ [16] 

version 1.2.2 for structural minimization. The geometries of 

all the compounds (30 PCBs) were optimized by means of 

Density functional theory (DFT) using B3LYP level of theory 

and 6-31G* as the basis set. The molecular descriptors were 

calculated by using paDel descriptor tool kit and Spartan 

“14” software. The most significant descriptors were 

identified using the Genetic Function Approximation (GFA) 

algorithm. 

2.3. Genetic Function Algorithm and Model Building 

In this study, a statistical technique of analysis by Genetic 

function approximation algorithm was employed to build the 

models. Genetic function approximation (GFA) algorithm is 

a search method to find exact or approximation solution to 

optimization and search problems which is based on the 

principles of Darwinian evolution [17]. 

A peculiar features of Genetic function approximation 

(GFA) algorithm is that it generate a population of equations 

rather than a single equation as do most other statistical 

methods. The range of variations in this population gives 

added information on the quality of fit and importance of the 

descriptors [18]. The fitness function or Lack of Fit (LOF) 

used to estimate the quality of the model here was the leave 

one out gross validated correlation coefficient (Q
2

LOO) and is 

calculated by equation 1. 

��� =
���

{[
�[�
�∗��}�
 �

                             (1) 

Where c= number of basic function  

d = smoothing parameter  

m = number of samples in the training set  

LSE = least square error 

P = total number of features contained in all basics 

functions [19].
 

2.4. Validation of Developed Model 

The predictive ability of the developed QSTR model were 

evaluated using both internal and external statistical 

validation parameters. The validation parameters were 

compare with the minimum recommended value for a 

generally acceptable QSTR model proposed by 

Revinchandran et al. [20] shown in Table 2. 

Table 2. Validation parameters for a generally acceptable QSAR/QSTR 

model. 

S/N Symbol Name Range 

1 R2 Coefficient of determination ≥ 0.6 

2 Q2 Gross validation coefficient > 0.5 
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S/N Symbol Name Range 

3 R2 pred. 
Coefficient of determination for 

external test set  
≥ 0.6 

4 R2 adj Adjusted square correlation coefficient > 0.5 

5 p (95%) Confidence interval at 95%  ≤ 0.05 

6 Next test set Minimum number of extend test set ≥ 5 

7 R2 – Q2 Difference between R2 and Q2 ≤ 0.3 

3. QSTR Results 

3.1. QSTR Study Using DFT 

A QSTR study was carried out for a set of 30 PCBs 

compounds in order to build a robust and rational Genetic 

function approximation (GFA) based QSTR models for 

predicting the toxicity of Polychlorinated biphenyls (PCBs) 

by exploring the correlations between the experimental 

p1/EC50 of the compounds and their calculated molecular 

descriptors that are responsible for the toxicity of the 

compound. Dataset Division GUI v 1.2 software was 

employed to divide the data set of studied compounds into a 

training set of 21 PCBs (70%) which was used to build the 

model and a prediction set (test set) of 9 PCBs (30%), which 

was applied to test the built model. The training set for the 

studied compounds with corresponding experimental, 

predicted and residual values in log (1/EC50) was presented 

in Table 3.  

Table 3. IUPAC Name of the Training set with corresponding Experimental, Predicted and Residual Toxicity Values. 

S/N IUPAC NAME Experimental log (1/EC50) Predicted log (1/EC50) Residual log (1/EC50) 

1 2,3',4,4'-Tetrachlorobiphenyl 4.550 4.964 -0.414 

2 3,3',4,4',5-Pentachlorobiphenyl 6.890 6.808 0.082 

3 2,3,3',4,4'-Pentachlorobiphenyl 5.370 5.482 -0.112 

4 2,3,4,4',5-Pentachlorobiphenyl 5.390 4.954 0.436 

5 2,3',4,4',5-Pentachlorobiphenyl 5.040 5.176 -0.136 

6 2',3,4,4',5-Pentachlorobiphenyl 4.850 4.759 0.091 

7 2,3,3',4,4',5-Hexachlorobiphenyl 5.150 5.312 -0.162 

8 2,3',4,4',5,5’-Hexachlorobiphenyl 4.800 4.939 -0.139 

9 2,3,3',4,4',5'-Hexachlorobiphenyl 5.330 5.114 0.216 

10 2,3',4,4',5',6-Hexachlorobiphenyl 4.000 3.961 0.039 

11 2,2',4,4'-Tetrachlorobiphenyl 3.890 3.873 0.017 

12 4'-Hydroxy-2,3,4,5-Tetrachlorobiphenyl 4.050 4.098 -0.048 

13 4'-Fluoro-2,3,4,5-Tetrachlorobiphenyl 4.600 4.671 -0.071 

14 4'-Isopropyl-2,3,4,5-Tetrachlorobiphenyl 5.890 5.642 0.248 

15 4'-Bromo-2,3,4,5-Tetrachlorobiphenyl 5.600 5.562 0.038 

16 4'-Phenyl-2,3,4,5-Tetrachlorobiphenyl 5.180 5.185 -0.005 

17 3'-Nitro-2,3,4,5-tetrachlorobiphenyl 4.850 4.735 0.115 

18 4'-N-Acetylamino-2,3,4,5-tetrachlorobiphenyl 5.090 4.944 0.146 

19 4'-Trifluromethyl-2,3,4,5-tetrachlorobiphenyl 6.430 6.485 -0.055 

20 4'-t-Butyl-2,3,4,5-tetrachlorobiphenyl 5.170 5.367 -0.197 

21 4'-n-Butyl-2,3,4,5-tetrachlorobiphenyl 5.130 5.218 -0.088 

 

From the Table 3, the compound numbered 11 in the 

dataset, (2,2',4,4'-Tetrachlorobiphenyl) shown to has its 

predicted value as the most closest to experimental value 

compared to all other compounds in the dataset with the 

lowest positive residual value, this indicates that it is the best 

predicted compound of the dataset. 

The GFA analysis generated five models out of which the 

most statistically significant model (model-1) was selected as 

presented in Table 4. The statistical parameters of the best 

model was presented in Table 5. A brief description of the 

descriptors of the model was shown in Table 6.  

Table 4. Best selected model; Model-1. 

S/N Equation Definition 

1. 

Y = - 1.443 * X490 + 2.841* X556 

+ 1.765 * X1332+ 4.895 * X1438 + 

3.434 

X490: SpMin8_Bhm 

X556: SpMax2_Bhs 

X1332: RDF65i 

X1438: E1p 

Table 5. Statistical parameters of the best model. 

Model R2 R2adj Friedman LOF R2cv F-Value  

1 0.938 0.923 0.185 0.906 60.731 

Table 6. A brief description of the selected descriptors of the best model. 

Descriptor Regression coefficient Description Descriptor Class 

SpMin8_Bhm -1.443 
Smallest absolute eigenvalue of Burden modified matrix - 

n 8 / weighted by relative mass 
Burden Modified Eigenvalues Descriptor 

SpMax2_Bhs  2.841 
Largest absolute eigenvalue of Burden modified matrix - 

n 2 / weighted by relative I-state 
Burden Modified Eigenvalues Descriptor 

RDF65i 1.765 
Radial distribution function - 065 / weighted by relative 

first ionization potential 
RDF Descriptor 

E1p 4.895 
1st component accessibility directional WHIM index / 

weighted by relative polarizabilities 
PaDEL WHIM Descriptor 
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The QSTR results in Table 5 were in good agreement with 

optimum acceptable parameters of a QSAR/QSTR model 

reported in Table 2.  

The scattered plot between the experimental and predicted 

in log (
1
/EC50) of test set (External set validation) is 

presented in Figure 1. The Figure 2 shows a plot of 

experimental and predicted in log (
1
/EC50) of training set. 

The scattered plot of predicted versus experimental in log 

(
1
/EC50) for all of the 30 PCBs compounds studied (training 

and test set) is presented Figure. 

 
Figure 1. A graphical representation of the model-1 Validation (Test Set). 

 
Figure 2. A graphical representation of the model-1 (Training Set). 

 
Figure 3. A graphical representation of predicted log (1/EC50) (training & 

test set) versus Experimental log (I/EC50) values by GFA modeling. 

3.2. Evaluation of the GFA Model 

The robustness GFA model was tested by applying Y-

randomization. The low R
2
 and Q

2
 values that were obtained 

showing that the good results in the original model is not due 

to a chance correlation or structural depending of the training 

set. The results of Y-randomization test are presented in 

Table 7. The Random models parameters are shown in Table 

8. 

Table 7. The results of Y-randomization of the Training set. 

Model R R^2 Q^2 

Original 0.905 0.818 0.713 

Random 1 0.426 0.181 -0.197 

Random 2 0.452 0.204 -0.486 

Random 3 0.347 0.121 -0.392 

Random 4 0.262 0.069 -0.363 

Random 5 0.221 0.049 -0.801 

Table 8. Random models parameters. 

Average R: 0.394 

Average r^2: 0.179 

Average Q^2: -0.333 

cRp^2: 0.737 

3.3. Applicability Domain (AD) 

Since the model 1 cannot predict the toxicity of all 

compounds in the universe, its applicability domain was 

determined using William’s plot; the plot of the standardized 

residuals versus the leverage as shown in Figure 4. This was 

exploited to visualize the applicability domain (AD) [21]. 

Leverage indicates a compound’s distance from the centroid 

of X. The leverage of a compound in the original space is 

defined as; 

hi = �� �� ������ 

Where ��  the descriptor vector of the considered 

compound and X is the descriptor matrix derived from the 

training set descriptor values. 

The warning leverage (h*) is defined as: 

h � 3
��

�

 
 

Where n = number of training compounds  

p = number of predictor variables 

 
Figure 4. Williams plot of the model. 
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From the Williams plot (Figure 4) above, it is observed 

that compound in the test set fall inside the domain of the 

GFA model (the warning leverage h* =0.50) except only four 

compounds (two in the training set and two in the test set) 

which have the leverage higher than the warning h* value, 

thus they can be regarded as structural outliers. 

3.4. Discussions 

The result of the GFA QSTR model reported in Table 4 is 

in agreement with the standard shown in Table 2 as R
2
 = 

0.938, R
2

adj = 0.923, R
2
cv = 0.906, F-value = 60.731, P95% ˂ 

0.05, R
2
pred. = 0.7238. This confirms the goodness and 

reliability of the model. Figure 1 and Figure 2 also reveal the 

agreement between the experimental and the predicted log 

(1/EC50) values of the molecules in the training and the test 

set respectively. The high Linearity of these plots indicate a 

sound agreement between the experimental and predicted 

values indicative of the high internal and external predictive 

power of the model. 

Likewise, Figure 3 gives a combine plot of the 

experimental and the predicted values of log (1/EC50) 

training and test set molecules. The high linearity of the plot 

is indicative of an excellent external predictive power of the 

model. The comparison of observed and predicted log 

(1/EC50) of the compounds is presented in Table 3. The 

predictability of model 1 is evidenced by the low residual 

values observed in the Table.  

The P-value of the optimization model at 95% confidence 

level shown has α value ˂ 0.05. This reveals that the 

alternative hypothesis that the magnitude of the observed 

toxicity of PCBs is a direct function of the descriptors of 

their total chemical structures takes preference over the null 

hypothesis which states otherwise. 

The statistical significance of the relationship between the 

toxicity of PCBs and their molecular descriptors was further 

demonstrated by Y-randomization procedure. The results of 

Y-randomization test as well as the random models 

parameters are shown in Tables 7 and Table 8 respectively. 

The low R
2
 and Q

2
 values obtained show that the 

optimization model is robust and reliable and was not 

obtained due to a chance correlation. 

Since the model 1 cannot predict the toxicity of all 

compounds in the universe, its applicability domain was 

determined using William’s plot shown in Figure 4. All the 

compounds in the test set fall inside the domain of the GFA 

model (the warning leverage h* =0.50) except for four 

compounds (two in the training set and two in the test set) 

which have the leverage higher than the warning h* value as 

shown in the plot. This implies that the models can be 

successfully applied to this series of Polychlorinated 

biphenyls (PCBs). The few compounds with higher leverage 

than h* that are outside the domain are most likely to be 

structural outliers. 

3.5. Significance of the Descriptors in the Model 1 

The positive coefficient of the descriptors; SpMax2_Bhs, 

RDF65i and E1p reveal that the toxicity of PCBs increases 

with increase in the values of these descriptors. Thus, the 

higher the values of these descriptors in a PCB, the more the 

toxicity of the molecule and vice versa. Also, the negative 

coefficient of SpMin8_Bhm descriptor is an indication that 

the value of this descriptor in a PCB varies inversely with its 

toxicity. The percentage contribution of each descriptor in the 

model include; 45% (E1p), 16% (RDF65i), 26% 

(SpMax2_Bhs), 13% (SpMin8_Bhm). This reveals that 1st 

component accessibility directional WHIM index / weighted 

by relative polarizabilities descriptor (E1p) plays the most 

dominant role in influencing the observed toxicity of PCBs. 

This can be rationalized thus: 

E1p is a descriptor of molecular polarity. The result of the 

QSTR model reveals that the toxicity of PCBs increases with 

increase in the value of this descriptor in them. This is in 

consonance with similar theoretical study on toxicity of 

dibenzo-p-dioxins by Ya-Ying et al. (2008) [22] in which a 

descriptor of molecular polarity, αxx was found to 

overwhelmingly influence the toxicity of the dioxins. The 

result of Quantitative structure-toxicity relationship study of 

some dioxins using molecular descriptors by Hassan et al. 

(2015) [23] also reveals the strong influence of molecular 

polarity on toxicity of this class of compounds. In their work, 

the observed toxicity of studied dioxins was found to be 

positively influenced by a descriptor of molecular polarity. 

Though polarity of molecule enhances its water solubility 

and promotes its metabolism. The increase in toxicity with 

increase in polarity as depicted by the model may be as a 

result of the production of toxic intermediates or final 

products due to enhanced metabolism of PCBs owing to their 

enhanced water solubility orchestrated by their increasing 

polarity. 

4. Conclusion 

In this study, QSTR modelling for the toxicity of 

Polychlorinated biphenyls (30 PCBs) to explore the structural 

features that are responsible for its toxicity was successfully 

performed using Genetic Function Approximation (GFA) 

approach at B3LYP level of theory and 6-31G* as the basis 

set. The observed log (1/EC50) of the Polychlorinated 

biphenyls (PCBs) was found to be predominantly influenced 

by SpMin8_Bhm, SpMax2_Bhs, RDF65i and E1p 

descriptors. The robustness, reliability, stability and 

applicability of the QSTR models was established by internal 

and external validation techniques (R
2
 = 0.938, R

2
adj = 0.923, 

R
2
cv = 0.906, F-value = 60.731, P95% ˂ 0.05, R

2
pred. = 

0.7238). It is envisaged that the wealth of information in this 

model will provide a fast, economical and more 

environmental friendly techniques of accessing the toxicity 

of Polychlorinated biphenyls and other related toxic 

Polychlorinated aromatic chemicals. 
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