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Abstract: We present a spherically symmetric solution ofdgeeeral relativistic field equations in isotropisocdinates for
anisotropic neutral fluid, compatible with a sugense star modelirgy considering a specific choice of anisotropy factor A
that includes a positive constant “0” defined as anisotropy parameter, which varies the relation between the radial and
tangential pressure. Further, we have construcgegpar-dense star model with all degree of suitgbie have found that the
maximum mass decreases with the increase of amjsojfrarametero. The robustness of our result is that it matakigls the
recent discoveries.
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compact stars (Delgaty and Lake 1998) researchave h
been continuously proposing different models of
astrophysical objects immense gravity by considgerine
distinct nature of matter or radiation (energy-maimen
tensor) present in them. Analytical solutions oé tfield
equations for various neutral/charged static sph#yi
symmetric  configurations for anisotropic  pressure
compatible to compact stellar modeling have beernioéd

in numerous works. Some of them include (Herredhlaeon
1985, Herrera and Santos 1997, Herrera et al. 20ak,and
Harko 2002, Mak et al. 2002, Mak and Harko 2003ai€ih
and Maharaj 2006, Sharma and Maharaj 2007, Heeteah
2008, Maharaj and Takisa 2012, Thirukkanesh andeRag
2012, Maurya and Gupta 2012; 2013; 2014, Takisa and
Maharaj 2013a; 2013b, Maharaj et al. 2014, Malaver
2013;2014, Pant et al 2014a;2014b, Maurya and
Heupta,2013;2014).

1. Introduction

Of course no astrophysical object is composed oélpu
perfect fluid. In the formulism of realistic modef super
dense stars, it is also important to include thesgure
anisotropy. Since the theoretical investigation®kaflerman
(1972) about more realistic stellar models showt tifme
stellar matter may be anisotropic at least in @entary high
density rangep > 10 g/cc, where the nuclear interactions
must be treated relativistically. According to thegews in
such massive stellar objects the radial pressune moa be
equal to the tangential one. Bowers and Liang (1%&4e
extensively investigated the possible importancdocélly
anisotropic equations of state for relativisticddlispheres by
generalizing the equations of hydrostatic equilibri to
include the effect of local anisotropy. Their stushows that
anisotropy may have non-negligible effects on suc
parameters as maximum equilibrium mass and sunfade
shift. Due to the uncertainty in the behavior ofttein 2. Conditions for Well behaved Solution
highly compact stars like normal matter neutromssta self-
bound strange quark matter (SQM) stars insight itht®
structure of such astrophysical objects can beimddaby
reference to applicable analytic solutions of E@irss
gravitational field equations. Even though a fewesically
symmetric analytical solutions (in both curvatureda Y B
isotropic coordinates) are relevant in the modeliofy e“ande”.

For well behaved nature of the solution in isotcopi
coordinates, the following conditions should bessied:
(i) The solution should be free from physical and gecios
singularities i.e. finite and positive values ofntal
pressure, central density and non zero positivaesabf
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(i) The solution should have positive and monotonicallyand for matter distributions with anisotropic press the
decreasing expressions for radial pressure, trasmive field equation (2) reduces to the following.

pressure and density with the increase of
(iii) The solution should have positive value of ratiacé of
energy stress tensor to energy Density, Q. =2R)/p and

less than 1(weak energy condition) and less than 1/

(strong energy condition) throughout within the rsta
monotonically decreasing as well, Esculpi et aljZj0
(iv)The casuality condition should be obeyed i.e. igloaf
sound should be less than that of light throughtbet
model. In addition to the above the velocity of stu

d @}
should be decreasing towards the surfacedrl.@‘.p or

[dzfj >0 o<r<r

do for “—= ' ='b je. the velocity of sound is
increasing with the increase of density .In thieteat it is
worth mentioning that the equation of state atadftigh
distribution, has the property that the sound spied
decreasing outwards, Canuto [1975] .

p

—< — , everywhere within the ball., =
- dp yw y
dlog.P_p dp_ dp_ p o
diog.p pdp _dp Vp for realistic matter, ., . The

stiffness parameter should increase from its lowakte 4/3

from the center to infinity.

(WThe red shift z should be positive, finite and
monotonically decreasing in nature with the incecoaf.

(vi) The anisotropy factor should be zero at the cesmerbe
increasing towards the surface.

3. Field Equationsin I sotropic
Coordinates

We consider the static and spherically symmetritrimen
isotropic co-ordinates

ds? = -e[ dr2 +r?(d@? +sin? @dg?) |+e’dt? (1)

Where,& andU are functions offr . Einstein’s field
equations of gravitation for a non empty spaceetare

R =5 RS, =T} =I(py + VY, = ped} + (b —p)xix'] ()

Where R'J- is Ricci tensoer,-i is energy- momentum tensor ,

R is the scalar curvature, denotes the radial pressurg,
is the transversal pressur@,the density distributiony' is

the unit spacelike vector in the radial directiamd&/; the
velocity vector, satisfying the relation

gijvivj =1 (3)

Since the field is static, we have

(4)

Thus we find that for the metric (1) under theseditions

2 / /
S GO NCANCENCS (5)
4 r 2 r
_ a)" U" (U/)Z w/ U/
—e Y=+ [ B 6
Ps e[2+2+4+2r+2r] ©
p=-evlor+ @) 200 ] )

r

Where, prime(’) denotes differentiation with respectrto
From equations (5) and (6) we obtain following eliéntial
equation inGandy.

o VW) (W) Wy U P

e (7+E+T_7_7_7_7)_2r7_(p[_pr) (8)

Our task is to explore the solutions of equatioh Bd
obtain the fluid paramete® ., ppand@ from equation (5),
(6) and (7) respectively. To solve the above equatve
consider a seed solution as Pant et al [2014b].

We also take,

=12
2aCk%@+Cr?) 7
BZ

9)

(pD_pr)zA:

WhereA is the anisotropy factor whose value is zero at th
center and increases towards the boundaryyasd positive
constant defined as anisotropy parameter for Esaill
[2007].

4. Boundary Conditionsin I sotropic
Coordinates

For exploring the boundary conditions, we use the
principle that the metric coefficientgj and their first

derivatives Jj j k in interior solution (I) as well as in
exterior solution (E) are continuous upto and ore th
boundary B. The continuity of metric coefficien@; of |
and B on the boundary is known first fundamentaifoThe
continuity of derivatives of metric coefficien@;j of I and

B on the boundary is known second fundamental form.

The exterior field of a spherically symmetric stati
charged fluid distribution is described by Schwahiisl
metric as

ds’= [1— Z(EM
c°R

=1
)cz o? —(1— ZG'g J dR? -R’d6” - R?sin 6dg?  (10)
C

2

Where M is the mass of the ball as determined lgy th
external observer and R is the radial coordinatethaf
exterior region.

Since Schwarzschild metric (10) is considered as th
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exterior solution, thus we shall arrive at the daling 1 21)
conclusions by matching first and second fundanhdotens: Where, f = (1+Cr ?)14
GM (11) The trace of stress tensor to energy density iatgiven
pr +2pD
by Q :T

R, = r,.e 2 and R=m=0 (12 : :
6. Properties of the New Solution

%(a/ +E) . :( 5 CZM J}/Z (13) The central values of pressure and density arendiye
b CRy 2C
i (P )r=0 = (P0) =0 mb(“ A) +S(A-D)] (22)
1( _GM (., _GM |"?
ho-FleR] )= 12 -

7B?

Equations (11) to (14) are four conditions, knows a
boundary conditions in isotropic coordinates. Meerp (12)
and (14) are equivalent to zero pressure of theriot
solution on the boundary. A>(S-3)/(S+3),C>0 (24)

5. A New Class of Solution Subjecting the condition that positive value oficabf
' pressure-density and less than 1 at the centre i%.sl

The equation (8) is solved by assuming the seedtisnl | hich leads to the following inequality,
as Pant et al [2014b]. Thus we have,

The central values of pressure and density wilhéye zero
positive definite, if the following conditions wille satisfied.

p, _31+A)+SA- S_1 _S(-A
1 =
e¥'? = B(1+Cr ) 7,x=Cr? y—(:i—and { r=0 ( )r =" 6(1+ A) 2 6(1+ A) =1(25)
X
42 All the values of A which satisfy equation (24),llvélso
_n)=A= 20CT*(+Cr) 7 (15) lead to the conditioh> <1
(n:l n')_ - 82 Po
Differentiating (20) with respect to r, we get
_On §upstltut|r_19 the apovg in egn (8), we get thieviong 100 A2 5 26+ 108)+ (26-109)]
Riccati differential equation iw, . as )
dp, _ c?r +2Af 25(26-252)] 26)
dy 2 1 Ll 12 1 . a d 3438201+ Af ZSFf38 +14] f *SA*{~46-14S} + (-46+14S) (
dx 7 (1+X) Yoy 49 (1+x)?2 (@1+x)?2 (16) + £ 25 2A(-46+257%)] |
Which yields the following solution, ~10.Cr {A%1 %% (98a + 26+ 105) + (980 + 26-105) |
dpy _ cx +2Af 25 (98a + 26 - 25%)] 27
2 S o 343871+ ar 25F £98| +14 £ S A2(98a - 46-14S) + (98 - 46+145) (27)
B {1+ A(1+ Cr )14} (1+ Cr ) 14 (17) + £ 2527980 - 46 +2S?))]
ez = 5
B Thus it is found that extrema of @nd p, occur at the
Where A, B, C and K are arbitrary constants and centre I.e
S=+980 +1 (18) p=0 >r=0and (p)-o=-ve  (28)
The expressions for energy density and radial presand Thus the expression of right hand side of equa(@8) is

negative for all values of A satisfying conditior24{,

tangential pressure are given by X k
showing thereby that the radial pressure and testersal

P= e (84+ 2401?) (19) Pressure are maximum at the centre and monotoyicall
decreasing.
i c Or 2 f2A(L6 - 4S)+ (1644S) Now differentiating equation (19) with respect tove get
" aon7r s A L f1425A@2+145) + £ (42-14SJ (20) do —7[ 1680~ 240Cr ] (29)
dr 34328
_ C Crf25A(98a -16- 4S)+ (98a —16+49)]
PO = 2021 21+ Af 25 L 1425742 +14S) + 114 (42-14S) } Thus the extrema gf occur at the centre if
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Table 1. The effect of anisotropy on maximum radius and maximum mass of

adtar.
y - 1680 C ? o M
(0) o= oo (B0 O e RO AT
343 B 0.00 0.1728 12.68 1.47
) ) ) o 0.01 0.1588 12.58 1.35
Thus, the expression of right hand side of (30)egative o 0.1302 1211 1.06
showing thereby that the densjtyis maximum at the centre o3 0.0805 10.34 056
and monotonically decreasing. 0.04 0.0050 2.82 0.01
The square of adiabatic sound speed at the centre,
0.3000 Q

(dp ]co’ is given by

2 _ 2 2
[%J =(46(1+ A)” ~145-4AS" +145 ) < Jandpositive (31)
r=0

do 1200+ A)?

The causality condition is obeyed at the centre dlbr
values of constants satisfying condition (24).

Due to cumbersome expressions the trend of pressure
ratio and adiabatic sound speed are studied

density

analytically after applying the boundary conditions
Applying the boundary conditions from (11) to (1&)e

get the values of the arbitrary constants in terais

GM
Schwarzschild parametelﬂscﬁand radius of the st&.
71-d)
C= ———>0 foru<0.244
(7d -5)1,2 (32)
7u.l+Cr?) ¥ - (5-95)Cr2d.L+Cr2) 14
A= TuC b) ( _9)+Sb ( b)ELS 33)
(5+S)d.Cr2.A+Cr?) ¥ —7u.1+Cr2) 14
5-S 5+S
. \/(1+ Cr2)* + A(@L+Cr2)« (34)
d
Where we ‘d’ given by
d=(@1-2u)"?
Whose value lies between
0.715 < d <1 for Gf> 0. (35)
Surface density is given by
Cr 2 [84 + 24Cr 2]
R2 = b b 36
Po 0 T T swr o )2 36)
Central red- shift is given by
_| B* _
ZO_|:M } (37)
The surface red shift is given by
Vo _
Zb :[e 2 _1] —d'l '1 (38)
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Fig 1. The variation of P, o ,Q,ﬁ, Z, [%ZJ ¥ A etc from centre to

surfacefor a = 0.01 are shown in the following graphs.

7. Discussions and Conclusions

From table 2 and figure 1 it has been observed tthat
physical quantities
P, Py do, dpg

(P Pas o o dp ——,2,Q ) are positive at the

ip
centre and within the limit of realistic state efijola and
monotonically decreasing while the quantitiggind A are
increasing for all values of u satisfying the inalify 0.1728 >

u >0. Thus, the solution is well behaved for alues 0 < u <
0.1728 fora lying in the range 0 to 0.04.

Table 1 shows that with the increase in the valfie o
anisotropy in the fluid ball the mass decreasess T
because of diversion of pressure away from radiattion.

We present a model of super dense quark star lwastte
particular solution discussed above by assumindacer
density p, = 2x10"g/cm® the resulting well behaved solution
has a maximum mass M = 1.35,dnd radius R=12.58 km.
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Table 2. The march of pressure, density, trace of energy stress tensor to density , square of adiabatic speed of sound within the ball for a = 0.01 for which
Umex=0.1588

r d d

N PR P rnz pr,f Q % TPp

0 0.231149 0.231149 2.581626 0.26861 0.130053 0.1218862
0.1 0.223839 0.224296 2.525393 0.26627 0.129926 0.1218679
0.2 0.203583 0.205272 2.369259 0.25921 0.129546 0.1218107
0.3 0.174576 0.177944 2.144815 0.24732 0.128912 0.1217058
0.4 0.141735 0.146856 1.889215 0.23049 0.128021 0.1215363
0.5 0.109135 0.115804 1.633464 0.20860 0.126864 0.1212753
0.6 0.079348 0.087217 1.397399 0.18161 0.125425 0.1208874
0.7 0.053554 0.062245 1.190392 0.14957 0.123687 0.1203315
0.8 0.031973 0.041146 1.014533 0.11263 0.121632 0.1195654
0.9 0.014298 0.023677 0.867854 0.07104 0.119244 0.1185503
1 0.000000 0.009380 0.746636 0.02512 0.116513 0.1172536
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