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Abstract: This paper deals with the motion of a charged spherically symmetric thin shell composed of a scalar field. The 

equations of motion resulting from the matching conditions of the two surrounding spacetimes which are described by the 

Reissner Nordstrom metric are derived. I evaluate the case of massless scalar field, where the scalar field potential is zero, also I 

evaluate the case of massive scalar field. 
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1. Introduction 

The study of the dynamics of a shell separating two 

background in the context of general relativity has been 

developed in a powerful and direct formalism since the 

pioneer work of Israel [1] and applied to the charged shell by 

Kuchar [2]. It has been applied to cosmology, mainly to 

inflation [3], and to modeling the dynamics of the border 

between two regions in different states, like bubbles or 

between two given spaces [4]. Nunez and de Oliveira [5] used 

it in the study of the dynamics of massive shell ejected in 

supernova explosion. Israel [1] found a set of invariant 

boundary conditions connecting the relation between the 

extrinsic curvature of a shell on its both sides and the matter of 

this shell.  

The cornerstone of these studies consists of analyzing the 

behavior of the intrinsic and extrinsic curvatures across the 

shell. It turns out that the intrinsic curvature changes 

smoothly, whereas the extrinsic curvature suffers a jump 

determined by the energy-momentum tensor of the shell. This 

jump has to be in accordance with the corresponding 

boundary conditions which, in turn, can be obtained from the 

Einstein field equations of the surrounding spacetime, and 

from the equations which govern the behavior of the matter 

in the shell. 

In the relativistic astrophysics, the thin shell equations help 

to study the properties of the compact objects, boson stars are 

such compact objects that are composed of scalar field [6,7]. 

More recently, boson stars have also been proposed as a 

candidate for composing dark matter [8]. 

The paper is organized as follows. In Section 2 I briefly 

review the Darmois – Israel formalism. In Section 3 the 

equations of motion of charged thin shell are derived. The 

equations of motion of charged scalar field shell in the case 

of massless and massive scalar field with arbitrary scalar 

potential are presented in section 4. A general conclusion is 

given in section 5. 

2. The Darmois Israel Formalism 

Consider two distinct spacetime manifolds M+ and M−  

with metrics given by ( )g xµ
µν
+

+  and 

8

ij

ij
S K T n nµ ν

µν π

+

−

Λ = − −  
, in terms of independently defined 

coordinate systems xµ
± . The manifolds are bounded by 

hypersurfaces +Σ and −Σ , respectively, with induced metrics 

ijg ±
. The hypersurfaces are isometric, i.e. 

( ) ( ) ( )ij ij ijg g gξ ξ ξ+ −= = , in terms of the intrinsic coordinates, 

invariant under the isometry. A single manifold M is 

obtained by gluing together M+ and M− at their boundaries, 

i.e. M M M+ −= U , with the natural identification of the 

boundaries + −Σ = Σ = Σ . The second fundamental forms 

(extrinsic curvature) associated with the two sides of the shell 

are: 

2

( )
ij i j i j

x x x
K n

γ α β
γ

γ αβξ ξ ξ ξ
± ±

Σ
∂ ∂ ∂= − + Γ

∂ ∂ ∂ ∂
M          (1) 
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where nγ
±

 are the unit normal 4-vector to Σ in M , with 

1n nµ
µ =  and 0in eµ

µ = .  The Israel formalism requires that 

the normal point from M− to M+ . For the case of a thin shell 

ijK is not continuous across Σ , so that, the discontinuity in 

the second fundamental form is defined as K K Kij ij ij
+ −= − 

  . 

The Einstein equation determines the relations between the 

extrinsic curvature and the three dimensional intrinsic energy 

momentum tensor are given by the Lanczos equations, 

[ ]( )1

8
ij ij ij

S K K g
π

−
 = −                (2) 

where [ ]K is the trace of ijK    and ijS is the surface 

stress-energy tensor on Σ . The first contracted Gauss- 

Kodazzi equation or the “Hamiltonian” constraint 

2 31
( )

2

ij

ijG n n K K K R
µ ν

µν = − −        (3) 

with the Einstein equations provide the evolution identity 

8

ij

ij
S K T n nµ ν

µν π

+

−

Λ = − −  
            (4) 

The convention [ ]X X X+ −= − , and 
1

( )
2

X X X
+ −= + , is 

used. The second contracted Gauss- Kodazzi equation or the 

“ADM” constraint, 

; ,

j

i i j iG e n K Kµ ν
µν = −                  (5) 

With the Lanczos equations gives the conservation identity 

;

i

j i i
S T e nµ ν

µν
+

−
 =                    (6) 

If the shell is composed of a perfect fluid, the energy 

momentum tensor is 

( )ij i j ijS p u u pσ γ= + +                  (7) 

where σ and p are the surface energy density and surface 

pressure of the matter on the shell, respectively and 
i iu d dξ τ= is the three-velocity of that matter which moves 

perpendicular to n
µ .  One may obtain an equation governing 

the behavior of the radial pressure in terms of the surface 

stresses at the junction boundary from the following identity: 

1
( )

2

i i i

j j jT n n K K S
µ ν

µν
+ −  = +              (8) 

For spherically symmetric thin shell, the Lanczos equations 

reduce to 

1

4
Kθ

θσ
π

−
 =                      (9) 

( )1

8
p K Kτ θ

τ θπ
   = +                  (10) 

If the surface stress-energy terms are zero, the junction is 

denoted as a boundary surface. If surface stress terms are 

present, the junction is called a thin shell. 

3. Equations of Motion of Charged Thin 

Shell 

The interior and exterior space-times are described by the 

Reissner-Nordstrom (RN) metrics given by:  

2 2 1 2 2 2ds f dt f dr r d−
± ± ±= − + + Ω          (11) 

with 

2 2 2 2sind d dθ θ ϕΩ = +  

is the line element on the unit sphere, and  

2

2

2
1

m q
f

r r

± ±
± = − +              (12) 

where m± and q±  are the mass and charge, respectively. The 

suffix ‘+’ denotes a quantity evaluated just outside the shell 

and ‘-‘ just inside the shell.  

Let r  be the area radius, i.e. the radial coordinate such that 
2

4A rπ= is the area of the spheres of symmetry at constant r . 

The area radius is continuous across Σ , which is not true for 

the time coordinates. Let the equation of the shell be 

( )r R τ± ±= , the history of the shell is described by the 

hypersurface ( , , )x xα α τ θ ϕ± ±= , in the regions M ± , 

respectively; the function ( )R τ  is the proper radius of Σ  , 

describes the time evolution of the shell. The induced intrinsic 

metric on Σ  is written as  

2 2 2 2 2 2( )( sin )ds d R d dτ τ θ θ ϕ= − + +      (13) 

where τ  is the proper time of the shell. The four velocity is 

given by 

1 2( , ,0,0)U f f R Rµ −
± ± ±= + & &  

where the overdot denotes a derivative with respect to τ . The 

unit normal to the junction surface is 

1 2( , ,0,0)n Rf f Rµ −
± ± ±= +& & . Using equation (1), the 

non-trivial components of the extrinsic curvature are given by: 

21
K K f R

R

θ ϕ
θ ϕ

± ±
±= = + &               (14) 

2

2 32

1
( )
m q

K R
R Rf R

τ
τ

± ±

±

= − +
+

&&
&

 

Assume that charge in both regions is the same, 
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q q q+ −= = . 

Therefore, the Lanczos equations (9,10), with the extrinsic 

curvature equations (14), are given by 

21

4
f R

R
σ

π

+

−

−  = +
 

&                   (15) 

2
2

2

2

2
1

1

8

m q
R RR

R Rp
R f Rπ

+

−

 
− + + + 

=  
+ 

  

& &&

&
        (16) 

Rearranging equation (15) into the form 

2 2
4

M
R f R f R

R
πσ − += + − + ≡& &        (17) 

where 2
4M Rπσ= is the rest mass of the shell. Equation (17) 

can be written in the form 

( ) ( )
2 2

22

2 2

1

24 4

M R
R f f f f

R M
− + − += + − − +&      (18) 

It represents the energy equation of the shell, and can be 

called the expansion law of the shell. Equation (18) can be 

written in the following dynamical form 

2 ( ) 0effR V R+ =&                    (19) 

where 

22 2

2 2

2
( ) 1

4
eff

m mM m q
V R

M RR R

+ −− = − − − + 
 

   (20) 

with, 1

2
( )m m m+ −= +  is the effective potential that 

determines the motion of the shell. Equation (19) represent the 

energy conservation law which states that the sum of the 

‘‘kinetic component’’ ( 2R&  ) and ‘‘potential component’’ (Veff) 

equals zero at any time. This equation has a form similar to 

Keplerian equations with total zero energy and zero charge. 

The solutions allowed from equation (19) are only those for 

which the effective potential is negative or zero. The case of 

(Veff = 0) correspond either to a static configuration or to the 

turning points, i.e., orbits of extremely radius R.  

4. Equations of Motion of Charged Scalar 

Field Shell 

By using the transformation ( ,

, ,

j

i i ju φ φ φ= − ) [2], the 

surface energy density and pressure of a perfect fluid can be 

written in terms of the potential V(φ) of a scalar field. 

Therefore,   

,

,

1
2 ( ) ,

2

i

i Vσ φ φ φ−
 = −                 (21) 

,

,

1
2 ( ) ,

2

i

ip Vφ φ φ−
 = + 

 

From (7) the energy momentum tensor of the scalar field 

will be: 

21
( ) ( )

2

ij i j ijS Vφ φ γ φ φ = ∇ ∇ − ∇ +  

 

Since, φ depends only on τ, then equation (21) leads to  

21
2 ( ) ,

2
Vσ φ φ = + 

&             (22) 

21
2 ( ) ,

2
p Vφ φ = − 

&
 

The total mass of the shell (M= σA), in terms of the scalar 

field, is  

2 22 2 ( )M R Vπ φ φ = + 
&           (23) 

Using equations (14), (22) and (23) to get  

2
0

R V

R
φ φ

φ
∂+ + =
∂

&
&& &                     (24) 

which represent the Klein-Gordon equation, 0Vφ φ+ ∂ ∂ = , 

in the particular coordinate system of the shell. The full 

dynamics of the charged scalar shell and the scalar field, will 

be determined by the Klein-Gordon equation (24), and by the 

equation of energy conservation (19) (with the effective 

potential (20)) simultaneously for ( )φ τ  and ( )R τ . The 

effective potential, in terms of the scalar field, is:  

2

2 2

2
2 2 2 2

2

( ) 1
2 ( 2 )

2
( 2 )

eff

m m
V R

R V

m q
R V

R R

π φ

π φ

+ − −
= −  + 

− + − +

&

&

        (25) 

The exact solution of the KG equation and the equation of 

motion (19) with (25) is not possible. Taking into account the 

transparency condition, 0G U nµ ν
µν

+

−
  =  , the conservation 

identity, equation (6), provides the simple relationship: 

( ) 0
d dA

A p
d d

σ
τ τ

+ =
 

where 2
4A Rπ= is the area of the shell and M Aσ≡  is the 

total mass associated to the shell . It can be written in the form 

2
( ) 0

R
p

R
σ σ+ + =

&
&                 (26) 

and  

, 2( ) 0RR pσ σ+ + =                     (27) 
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when 0R ≠& . There are two strategies to integrate this 

equation. The first one deals with ( )p p R= , and the second 

strategy deals with an equation of state ( )p p σ= .  The first 

approach leads to the solution  

2

2
( ) ( )

R

R

R p R RdR
R

σ −= ∫
o

 

The second approach leads to the solution  

2
ln( )

( )

d c

p R

σ

σ

σ
σ σ

=
+∫

o

                 (28) 

where c is a constant of integration. In the present case, this 

equation can be solved by using the equation of state of  

polytrope-type: 

p γκσ=                           (29) 

where κ , 
1(1 )nγ −= + and n are constants. Then, from 

equation (28) the scalar density is written in the form  

1

2 1

1
1 1

2( 1) 1

n

n n

n

c c

R kc R kc

γ γ

γ γσ
− −

− −

  
= =   − −   

 

So that the scalar field and the scalar potential are given by  

2
2( 1)

2

2 1
12( 1) 1 1 [ ][ ]

n

nn n

cR cR
p

R kcR kc

γ

γ
γ γ γ

φ σ
−

+− − −
= + = =

−−
&

 

2 1
2( 1) 1

2 1
12( 1) 1 1

( 2 ) ( 2 )
2 ( )

[ ][ ]

n n

nn n

c R kc c R kc
V p

R kcR kc

γ γ

γ
γ γ γ

φ σ
− −

+− − −

− −= − = =
−−

 

For γ = k =1, equation (29) will be p = σ, then (28) become 
2 4

c Rσ −= . 

4.1. Massless Scalar Field 

When the scalar potential field V(φ) is zero, a scalar field 

becomes massless and the Klein-Gordon equation (24) can be 

integrated to get, 2c Rφ =& . Thus, the equation of motion (19) 

and (25) can be written in the form: 

2 2 2 4
2 4

2 2 6

2
1 0

4

m m m q c
R R

Rc R R

π
π

+ −− + − − + − = 
 

&     (30) 

The massless scalar shell may expand or collapse 

depending on the sign of velocity ( R& ) of the shell with respect 

to stationary observer. The effective potential tends to 

negative infinity when R tends to infinity, and then the shell 

expands to infinity or collapses to zero. Equation (19) and (30) 

become  

2 4 1 2 2 6

11 0R aR bR q R c R− − −+ − − + − =&  

where 

2

22

m m
a

cπ
+ −− =  

 
,  2b m=  and  

2 4

1c cπ= . For the 

turning points ( 0R =& ), the algebraic equation for R(τ) will be  

10 6 5 2 4

1 0aR R bR q R c− + − + =  

The shell will expand with the initial value of R to 

maximum radius and collapses into the central Schwarzschild 

mass.  

4.2. Massive Scalar Field 

For a massive scalar field: 
2 2( )V mφ φ= . From (22), the 

surface density and pressure will be  

2 pφ σ= +&                       (31) 

2 22 2V m pφ σ= = −  

I will discuss the motion of a massive scalar field in two 

approach of p by taking p as an explicit function of  R, and as 

an explicit function of σ (polytropic type). 

In the first approach p = p(R), with 
Rp p e ζ−=

o , where p
o

and ζ are constants. From (27) the surface density is  

2 2 2

2 1
( )Rp R

e
R R

ζξ ζσ
ζ

− += + o

 

with ξ is the constant of integration. Thus, φ  and φ&  are 

obtained from equation (31):  

2 2

2 2 2

2(1 )
( ) (1 )

22

Rp R
V m e

R R

ζξ ζφ φ
ζ

− += = − −o
     (32) 

2

2 2 2

2(1 )
(1 )R R

p e
R R

ζξ ζφ
ζ

− += + +
o

&
 

These equations satisfy the KG equation (24). From (32) 

and (25) the effective potential become 

2

2
2 2

2

2
( ) 1 ( )

( ) ( )
2

eff

m m M m
V R

RM R

q MMq

RR RR

+ − ∗

∗

∗ ∗

∗ ∗

− = − − 
 

+ −

%% %

% %

%%

% %

      (33) 

with, 1

2
( )m m m+ −= +% % % , where the masses , ,m m M+ −

%% % and the 

radius R% are dimensionless, and M%  has the explicit form: 

2

84
(1 )

RRp
M RR e

M M

ζππξ ζ
ζ

∗−
∗

∗ ∗

= + + %o% %
 

From (19), the behavior of the effective potential (33) with 

0R =& implies that, the shell stops with two points and recoils. 

There exist a different values of charge parameter for which 

the scalar field shell executes an oscillatory motion. This 

oscillation occur at two points where Veff  cuts the horizon. 
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In the second approach, ( )p p σ= , a polytropic type 

equation of state (29) with 3
2γ =  and 1k c= = , will be  

3
2p σ= . From (28) the density become 

2
2

2
( )

R

c R
σ =

−
 

Thus φ  and φ& will be  

4
2

2 3( )

cR

c R
φ =

−
&  

4 2

2 3

( 2 )
2 ( )

( )

R c R
V

c R
φ −=

−

 

The effective potential (25) become 

2

2
2 2

2

( ) 1

( ) ( ) ( )
2

eff

m m M
V R

RM

m m q MMq

RR R RR

+ − ∗

∗

+ − ∗ ∗

∗ ∗

− = − − 
 

+
+ −

% %

%

%% % %

% % %

          (34) 

with 

2 2 2 2

2

2 2

4
( )

R R R R
M

M c R R

π ∗ ∗

∗ ∗

=
−

% %
%

%

 

Equation (19) and (34) become  

2 2 22 20 19 18 17 16

2 15 14 3 13 12 4 11 10

4 8 5 6 6 4 7 2 8

4 2 8

12 8 2

70 56 28 8 0

R R R mR lR cmR zR

c mR hR c mR dR c mR gR

c wR c wR c wR c wR wc

π− + − + + +
− + + + − +
− + − + − =

&

 

where 

2

2

m m
w

π
+ −− =  

 
, 

2 2
6 4z c cq w= − − and 

3 2 2
4 6 8h c c q cw= − + + , 

4 3 2 24 28d c c q c w= − − , 
4 2 356g c q c w= + , 

2 4l q c= −  

Moreover, for the turning points, 0R =& , the algebraic 

equation of  R(τ) will be:  

2 22 20 19 18 17 16

2 15 14 3 13

12 4 11 10 4 8 5 6

6 4 7 2 8

4 2 8

12 8

2 70 56

28 8 0

R R mR lR cmR zR

c mR hR c mR

dR c mR gR c wR c wR

c wR c wR wc

π− + − + + +
− + +
+ − + − +
− + − =

 

During the expansion stage the scalar field is decreased due 

to the term 2R Rφ&&  in the Klein-Gordon equation (24); the 

shell starts collapsing, R& changes its sign, and thus the 

amplitude of φ  is increased until the shell completes the 

collapse.  

5. Conclusion 

In the framework of Darmois-Israel formalism, the 

equations of motion of a charged spherically symmetric thin 

shell have been formulated by taking the internal and external 

regions to the boundary surface as RN solution. The equations 

of motion are originally derived for perfect fluid in polytropic 

equation of state and then are written in terms of scalar field. 

The complete dynamical behavior of the charged scalar field 

thin shell is described by the equation of motion (19) and the 

KG equation (24).  

There exist two different approaches of P to integrate these 

equations of motion: in the first one, by taking the pressure of 

the shell as an explicit function of radius R, and in the second 

one by taking the pressure as an explicit function of the 

energy-density σ of the shell (polytropic type). Both strategies 

are then used to analyze the cases of a massless as well as a 

massive scalar shell. In the both (massless and massive scalar 

field) cases, the three possible phases (expanding, collapsing 

and oscillating) during the dynamics of the scalar field in the 

present configuration are exist. 

There are a difference between the model presented here 

and the model used in [9], where the gravitational field outside 

the shell is described by the Vaidya metric, also with the 

model used in [10], where the gravitational field outside the 

shell is described by the Schwarzschild metric. 
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