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Abstract: In order to simulate fluid flow, heat transfer, and other related physical phenomena, it is necessary to describe the 

associated physics in mathematical terms. Nearly all the physical phenomena of interest to us in this book are governed by 

principles of conservation and are expressed in terms of partial differential equations expressing these principles. In this research 

paper, is a summary of conservation equations (Continuity, Momentum, Species, and Energy) that govern the flow of a 

Newtonian fluid. In particular, this paper studied the solution of two-dimensional (2D) Navier-Stokes (N-S) equations using the 

finite difference method (FDM), finite element method (FEM), and finite volume method (FVM) on a test problem of Methane 

combustion in a laminar diffusion flame. First, the computational domain was decomposed into grids in FDM and elements in 

FEM, later the Navier-Stokes equations, Energy, and, Species conservation equations were solved at the grid points and a 

MATLAB code has been written to check the consistency, stability, and accuracy for finer meshes. Following this step, the 

discretized equations for each sub-domain will be developed using the finite difference and finite element method, resolved using 

an iterative solver-Gauss Seidel technique. The MATLAB code is written for 2D geometries for science and engineering 

applications. The focus of this research paper is the development of physical models using numerical methods like FDM, and 

FEM for modeling science and Engineering applications by using Navier-stokes equations, Energy equations, and Species 

conservation equations. 
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1. Introduction 

Computational fluid dynamics (CFD) calculations of 

reacting flows or flows in which multiple species mix finds 

widespread use in a large number of practical applications. 

Examples include combustors, catalytic converters, and 

mixing devices in the chemical industry and in biological 

applications, among many others. In such calculations, mass 

conservation equations for individual species must be solved. 

The Navier-Stokes equation is a set of nonlinear partial 

differential equations describing the flow of fluids, 

representing the conservation of linear momentum. It is the 

cornerstone of fluid mechanics as noted by Cengel et al. [6]. It 

is solved jointly with the continuity equation. These equations 

cannot be solved exactly. So, approximations and simplifying 

assumptions are commonly made to allow the equations to be 

solved approximately. Recently, high-speed computers have 

been used to solve such equations by replacing them with a set 

of algebraic equations using a variety of numerical techniques 

like finite difference, finite volume, and finite element 

methods. The finite element method is the most powerful 

numerical technique for computational fluid dynamics which 

is readily applicable to domains of complex geometrical shape 

and provides great freedom in the choice of numerical 
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approximations. It reduces a partial differential equation 

system to a system of algebraic equations that can be solved 

using traditional linear algebra techniques. One of the major 

advantages of the finite element, finite difference, and finite 

volume method is that a general-purpose computer program 

can be developed easily to analyze various kinds of problems 

as noted by Kwon et al. [2]. In particular, a finite element 

method can easily handle any complex shape of a problem 

domain with prescribed boundary conditions Ghia et al. [4] 

studied high Reynolds number solutions for incompressible 

flow using the Navier-Stokes equation and the multigrid 

method. Persson [7] implemented a three-methods-based 

solver of the incompressible Navier-Stokes equations on 

unstructured two-dimensional triangular meshes. He solved 

the lid-driven cavity flow problem for four different Reynold 

numbers: 100, 500, 1000, and 2000. Gleisner et al. [11] 

discussed the three methods/ procedures for the Navier-Stokes 

equations in the primitive variable formulation and the 

vorticity stream function formulations. If the species interact 

with one another strongly, as in cases where chemical 

reactions or multi-component diffusion is present, it becomes 

numerically difficult to solve the species conservation 

equations in a sequential (or segregated) manner. These 

difficulties have been well-documented for reacting flow 

calculations. Recently, it has been demonstrated that a 

segregated solution is also prohibitive when the full 

multi-component diffusion equations are solved [9]. Sample 

calculations have shown that a simple problem involving g 

diffusive mixing of three species in a square box cannot be 

brought to convergence using a segregated solution approach 

even with strong under relaxation of the species Mazumder 

[12]. In this case too, as in cases with chemical reactions, the 

species are tightly coupled. In summary, in any problem in 

which the species are tightly coupled ugh the 

physics/chemistry mandates coupled solution of the species 

conservation equations. In general, coupled solution of a set of 

partial differential equations is the cornerstone for the 

simulation of a wide range of problems. Examples include e 

solution of Maxwell’s equation [14] for electromagnetic 

phenomena, the radiative transfer equation [Mathur et al. [8], 

Mazumder [7] for heat transfer applications, and the 

Navier-Stokes equation Vanka [2], de Lemos [6] for fluid 

thermal-chemical phenomena, just to name a few. Thus, the 

volume of literature in this area is too large to have a 

comprehensive discussion in a limited space. Here, we will 

restrict ourselves to the discussion of pertinent methods and 

algorithms that have been prevalent for the simulation of fluid 

flow and associated phenomena, especially since the nature 

and technique for coupling the governing equations is, to a 

large degree, physics-dependent. Traditionally, in 

computational fluid dynamics (CFD), coupled solution of 

partial differential equations has their early roots in the 

aerospace area in which density-based time-marching 

methods are used. Compressing fluid flow results in a set of 

five (in three dimensions) coupled equations that are 

time-marched to a steady state using either explicit or implicit 

methods. Additional equations, such as the species 

conservation equations, are generally added as separate 

blocks and can be solved similarly. For example, Vanka [10] 

used this method for the implicit coupled solution of the 

Navier-Stokes equation in primitive variables. Duan et al. [6] 

have demonstrated this method for the solution of the coupled 

electric potential and species conservation equations in the 

context of fuel cell simulations, while Mazumder [9] has 

demonstrated it for the solution of the multi-component 

species diffusion equations. On an unstructured mesh, the 

discrete equations, when written in block-implicit form, result 

in a matrix that is sparse but not banded. Thus, line-by-line 

sweeps with block-tridiagonal inversion, as used for 

structured meshes, cannot be employed directly in this case. 

Nevertheless, the idea of using line-like sub-domains to 

perform line-by-line sweeps on unstructured meshes has been 

used successfully by Cete et al. Cete et al. [9] and by Li et al. 

Li et al. [9]—the so-called “unstructured ADI” method. It 

requires re-ordering of the cells and the compilation of 

additional connectivity information and is prohibitively 

tedious for three-dimensional (3D) 

computing-by-point-by-point block (or vector) Gauss-Seidel 

is a straightforward extension of the scalar Gauss-Seidel 

method for the solution of a coupled set of partial differential 

equations (PDE) on an unstructured mesh. However, as with 

scalar Gauss-Seidel, the spectral radius of convergence 

rapidly approaches unity as the mesh is refined, and the 

convergence deteriorates. Thus, the standalone block 

Gauss-Seidel is not attractive for large-scale computations of 

reacting flows. One approach to circumvent this problem is to 

use a multigrid method with block Gauss-Seidel as the 

smoother. In recent years, multigrid methods have become 

quite popular and are being widely used [Wesseling [4], Chow 

[2] Volker & Tobisca [15], Stüben [17], Walbroo [4], and 

Webster [10]. Of these, the algebraic multigrid (AMG) 

method Stüben [16], Walbro [14] has become the frontrunner 

on account of its ability to elegantly accommodate complex 

geometry and arbitrary unstructured mesh topology. In such 

methods, the linear algebraic equations are agglomerated (or 

added) to develop equations that philosophically correspond 

to equations for coarser geometric entities. The agglomeration 

strategy involves the comparison of link coefficients between 

adjacent cells. Research has now taken AMG methods for a 

single PDE (i.e., scalar case) to a level where the method has 

outshone most other methods because of its convergence 

characteristics and low memory requirements. In the case of 

coupled PDEs, however, issues remain. While the method has 

been used successfully for the solution of coupled PDEs 

Walbro [9], Raw [1], Webster [5], questions remain as to the 

best strategy for agglomerating two cells (or block algebraic 

equations) since each PDE now has a different set of link 

coefficients. In this work, a strategy that builds upon the 

“unstructured ADI” idea has been used. In the block 

Gauss-Seidel method, only variable-to-variable coupling is 

attained and all neighboring spatial cells are treated explicitly. 

Marker and Cell (MAC) Method: This is an easy method to 

implement and involves the use of massless marker particles 

over the whole fluid domain [3]. A cell flagging procedure is 
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used over the domain, whereby a cell is either full, empty, or 

on a surface. A full cell initially is any cell with a marker 

particle present within it. An empty cell is any cell without a 

marker particle within it. A surface cell is any full cell adjacent 

to an empty cell. The MAC method can model highly 

deformed fluids and can also model detached and merging 

fluids. However, it is heavy on computer storage, especially in 

three dimensions, as every marker particle’s position must be 

stored. 

2. Objectives 

2.1. General Objectives 

The general objective of this research is to study the 

application of FDM and FEM on a Methane-Air combustion 

system in a laminar diffusive flame by solving the 

two-dimensional conservation equations numerically. To 

achieve this objective, efficient numerical methods are 

developed for a couple of solutions on momentum, energy, 

mass, and species conservation equations. 

2.2. Specific Objectives 

1) To analyze the stability, accuracy, convergence, and 

consistency of the FDM to solve the PDE numerically. 

2) To analyze the stability, accuracy, convergence, and 

consistency of the FEM to solve the PDE numerically. 

3) To study the nature of the mathematical model dictates 

the computational algorithms needed to solve the final 

set of governing equations for the three methods. 

4) To write MATLAB programs for both analytical and 

numerical solutions. 

5) Comparison of FDM & FEM using Navier-Stokes 

Equations for four conservation equations. 

3. Governing Equations 

Prior to the discussion of algorithms, it is necessary to 

discuss the governing equations and accompanying boundary 

conditions. Another motivation for a detailed discussion of 

the governing equations is that in low-speed reacting flow 

applications, which happen to be of interest to the authors, 

diffusive transport of mass is critical. Reacting flow 

formulations outlined in various textbooks and published 

articles pay little or no attention to diffusive (molecular) 

transport of species since turbulent transport dominates in the 

vast majority of applications of such flows. Thus, there is a 

need to critically assess commonly used formulations for the 

treatment of mass transport. 

Continuity Equation: 

�� + � ⋅ (��) = 0 

Momentum Equation: 

��	
�

��
+ � ⋅ (���) = -�
 + � ⋅ � + �� 

Energy Equation: 

��	��

��
 + � ⋅ (��ℎ) = -� ⋅ � + ���  

Species Equation: 

��	���

��
+ � ⋅ (����) = -� ⋅ �� + ���  

where � is the mixture density, p is the pressure, τ is the shear 

stress tensor, and B the body force vector. The continuity 

equations and Momentum equations are the well-known 

Navier–Stokes equations and need no further discussion. In 

the Species equation, ��  is the mass fraction of the kth 

species, �� is the mass diffusion flux of the kth species, and 

���  is the production rate of the kth species due to 

homogeneous chemical reactions. The total number of 

gas-phase species in the system is denoted by N. In the energy 

equation, ���  represents the net source due to viscous 

dissipation and other work and heat interactions, and q 

denotes the net heat flux due to molecular conduction, 

radiation, and inter-species diffusion. 

4. Test Problem 

Combustion is one of the most important processes in 

engineering, which involves turbulent fluid flow, heat 

transfer, chemical reaction, radiative heat transfer, and other 

complicated physical & chemical processes. Typical 

engineering applications include internal combustion 

engines, power station combustors, aero engines, gas turbine 

combustors, boilers, furnaces, and much other combustion 

equipment. It is important to be able to predict the flow, 

temperatures, resulting species concentrations, and 

emissions from various combustion systems for the design 

and improvement of combustion equipment, particularly 

with the current concerns about CO2 and other emission 

levels and their effects on the environment. CFD lends itself 

very well to the modeling of combustion. Combustion 

processes are governed by basic transport equations for fluid 

flow and heat transfer with additional models for 

combustion chemistry, radiative heat transfer, and other 

important sub-processes. There are many types of 

combustion processes. Gaseous fuel combustion, liquid fuel 

combustion, spray combustion, solid fuel combustion, and 

pulverized fuel combustion are a few of the many other 

processes used in a wide variety of application areas. To 

illustrate the application of CFD we concentrate on gaseous 

combustion. For other processes the relevant literature to 

find out how CFD has been successfully applied in areas like 

spray combustion (Beck and Watkins, 200pulverizedised 

coal combustion (Lockwood et al., [9], diesel and spark 

ignition engines (Blunsdon et al., 1992, 1993; Henson and 

Malalasekera, [6] a modeling tool. Gaseous combustion 

involves a chemical reaction between a fuel and an oxidant 

that are both in the gas phase. 
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Figure 1. 2D Geometry where the methane-air mixture is combusted. 

There are two categories of gaseous combustion processes: 

premixed combustion and non-premixed combustion. For 

example, combustion in a spark ignition internal combustion 

engine (petrol engine) can be categorized as premixed 

combustion, as the fuel (gasoline) is mixed with air prior to 

combustion, which takes place after spark ignition. Similarly, the 

flame in the familiar Bunsen burner is also premixed combustion, 

as air is allowed to mix with gas prior to combustion. By contrast, 

a jet flame where the fuel enters ambient air and is allowed to 

burn is an example of a non-premixed flame. The gaseous fuel 

mixes with the oxidant stream (air) and then combustion takes 

place where the conditions are right. 

In addition, we conclude the above test problem s follows: 

1) The test problem considered for the present study is that of 

a homogeneous combustion methane-airline–air mixture 

under laminar flow conditions, that is, a laminar flame. 

2) A simple two-dimensional (2D) diffusion flame 

configuration, as shown in Figure 1, is considered. Based 

on the inlet conditions, the overall equivalence ratio is 

unity, and the Reynolds number based on the channel 

width is approximately 150. 

3) A 2-step reaction mechanism involving 6 gas-phase 

species (CH4, CO2, H2O, N2, O2, CO) was used for 

gas-phase chemistry calculations. 

5. Discretization with FEM and FDM 

Before discretizing with numerical methods, it is to be 

noted that to make the conservation equations simpler all the 

conditions of the system must be defined. Known conditions 

are: 

i. Reynolds No.: 150 approximately 

ii. X domain length: 1m 

iii. Y domain length: 0.05m 

iv. Wall Temperature: 800K 

v. Inlet Air Temperature: 800K 

vi. Inlet Methane Temperature: 600K 

vii. Equivalence Ratio: 1 

viii. FDM via MAC algorithm 

 

Figure 2. FDM via MAC algorithm. 

 

Figure 3. Initializing temporary variables. 
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Figure 4. FEM via Galerkin method. 

 

Figure 5. FVM via a SIMPLE algorithm. 

6. Conclusions 

To illustrate the finite difference and finite element method 

discussed in this project we considered a square lid-driven 

cavity flow of length 1 unit and breadth 0.05 unit. The 

boundary conditions are such that the flow is driven by a unit 

horizontal velocity at the top boundary. In this project work, 

we discussed finite difference via the Marker and Cell 

method abbreviated as MAC as well as finite element via the 

Galerkin Finite element method solution of the 

two-dimensional structured or incompressible Navier-Stokes 

equation, species and energy equations by the benchmark of 

the square lid-driven cavity and compared it with 2D 

structured FVM via SIMPLE algorithm. Dirichlet boundary 

conditions were imposed on every boundary of the domain. 

The finite element programming codes were constructed to 

solve these equations. Having studied some of the basic 

features and difficulties with simulating incompressible fluid 

flow we now turn to consider the full-fledged Navier-Stokes 

equations and proceed to solve the Energy and Species 

equations which in addition to the Stokes system are both 

non-linear and time-dependent. Indeed, the Navier-Stokes 

equations, species, and energy conservation equations are so 

complex that their numerical study has grown into a 

discipline of its own called computational fluid dynamics, 

abbreviated CFD. These project work programming codes 

are written using MATLAB R2021b. 
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