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Abstract: We have studied the gravitation in the context of the noncommutative manifold M4×Z2 where Z2 is not the two point 

space but corresponds to a direction-vector attached to a space-time point. A local field theory, noncommutative Yang - Mills 

fields is limited to obtain the return thatsuch a symmetry group differences are. Noncommutative gauge symmetry of space - time 

and theinternal symmetry of the mixer is a very natural and clear perception that the gravitational forcegauge a characteristic 

feature of the theory. The gauge fields of the dimensionally reduced noncommutativeYang-Mills theory map onto a Weitzenbӧck 

spacetime and a teleparallel theory of gravity arisesas the zero curvature reduction of a Poincare gauge theory which induces an 

Einstein-Cartanspace-time characterized by connections with both nonvanishing torsion and curvature. This analysissuggests that 

noncommutative Yang-Mills theory naturally induces gravitation through a torsioned space-time. Thus as in the case of a 

noncommutative manifold whereZ2 is a two-point space there appears to be aconnection between gravity and electroweak theory 

in this formalism this is achieved through therealization of chiral anomaly and torsion. It is noted to be that that Weitzenbӧck 

geometry thatEinstein's General Relativity with the teleparallel gravity equivalent, provoked by her some notablefeatures are. This 

show has been that the geometry torsioned space-time at which the the chiralanomaly inconsistencies in the torch made is. This 

show is that it naturally Weitzenbӧck geometryof the moves that the gravity of a teleparallel formula birth towards. 

Keywords: Field Theory, Einstein Gravity, Four Dimensional Manifold, Gauge Symmetries 

 

1. Introduction 

In recent times general relativity in noncommutative 

geometry has been studied by several authors [1, 2]. 

Chamseddine, Felder and Frӧhlich [1] considered gravity in a 

space-time which isthe product of a four dimensional 

manifold by a two-point space. It has been found that 

whenthe Riemannian metric is the same on the two copies of 

the manifold, one obtains a modelof scalar field coupled to 

Einstein gravity. The scalar field is geometrically represented 

as describing the distance between the two points in the 

internal space. Langmann and Szabo [2] considered 

noncommutative gauge theory in flat space and showed that 

dimensional reductions lead to Weitzenbӧck geometry on 

space-time and the induced diffeomorphism invariant 

fieldtheory can be made equivalent to a teleparallel 

formulation of gravity which macroscopicallydescribes 

general relativity. These authors have elegantly shown that 

noncommutative U(1) Yang-Mills theory on flat space 
n nR R×  can generate a theory of gravitation on nR . The 

basicobservation is that the algebra of functions on 2nR  with 

Lie bracket defined in terms of thedeformed product of the 

noncommutative theory contains the Lie algebra of vector 

fields on nR . A local field theory can be obtained by 

restricting noncommutative Yang-Mills fields such thatthe 

symmetry group contains diffeomorphism invariance. 

Noncommutative gauge symmetriesgive a very natural and 

explicit realizations of the mixing of space-time and internal 

symmetrieswhich is a characteristic featureof the 

conventionalgaugetheoryofgravity. 

Thegaugefieldsofthedimensionallyreducednoncommutative 

Yang-Mills theory map onto a Weitzenbӧck spacetime and a 

teleparalleltheory of gravity arises as the zero curvature 

reduction of a Poincaregauge theory which induces an 

Einstein-Cartan space-time characterized by connections 

withboth nonvanishing torsion and curvature. This analysis 

suggests that noncommutative Yang-Mills theory naturally 

induces gravitation through a torsioned space-time. 

In section 2, we shall study gravity in the space-time 

manifold 4 2M Z× where 2Z is a discrete space described by a 
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‘direction-vector’ and show how this leads to torsion. In 

section 3 we shallconsider chiral anomaly, torsion and 

topological invariants. 

2. Noncommutative Space 
4 2
×M Z  and 

Torsion 

In an earlier paper [3, 4] it has been pointed out that 

noncommutative geometry having the space-time manifold 

leads to the quantization of a fermion when the discrete 

space-timeis incorporated as an internal variable. Indeed this 

leads to the introduction of an anisotropicfeature in the 

internal space so that we can consider the space-time 

coordinate in complex-time as Z x iµ µ µζ= + where µζ
represents a ‘direction vector’ attached to the space-time 

point xµ . The two orientations of the ‘direction vector’ give 

rise to two internal helicitiescorresponding to fermion and 

antifermion. The complex space-time exhibiting the 

internalhelicity states can be written in terms of a two-

component spinorial variable ( )θ θ when the‘ direction vector’ 

µζ is associated with θ through the relation 

1
( 1, 2)

2

α
µ µ αζ λ θ α= = . This helpsus to write the relevant 

metric as ( , , )g xµν θ θ . This metric gives rise to the (2, )SL C  

gaugetheory of gravity [5] when the gauge fields Aµ are 

matrix-valued having the (2, )SL C group structure and the 

curvature is given by 

[ , ]F A A A Aµν µ ν ν µ µ ν= ∂ − ∂ +                    (1) 

It is noted that in this framework, the noncommutative space

4 2M Z×  appears as if the space-time point qµ in Minkowski 

space is extended by a gauge field Aµ which is matrix-valued 

andbelongs to the group structure (2, )SL C . Indeed we can 

identify the position and momentumoperators as 

( )
Q

i A
p

µ
µ

µω
∂= − +

∂
 

( )
P

i A
q

µ
µ

µω
∂= − +

∂
                             (2) 

where ω is the dimensionless variable, 
lmc

ω = ℏ
. Here qµ is 

the space-time point in Minkowski space 4M  and pµ its 

conjugate representing the momentum variable. To study the 

effect of this geometry in gravitation following Carmeli and 

Malin [6] we choose the simplest Lagrangian density in 

spinor affine space 

1
( )

4
L Tr F F

µναβ
µν αβε=                         (3) 

Now writing 

.F f gµν µν=
� �

, .F f gµν µν=
� �

 

Where 1 2 3( , , )g g g g=
�

are the generators of the (2, )SL C  

group in tangent space given by 

1

0 0

1 0
g

 
=  
 

, 2

1 0

0 1
g

 
=  − 

, 3

0 1

0 0
g

 
=  
 

 

we can define the current density 

J a f fµ µναβ µναβ
ν αβ ν αβθ ε ε= × = ∂
� �� �

                (4) 

satisfying the relation 

0J fµ µναβ
µ µ ν αβθ ε∂ = ∂ ∂ =

��
                      (5) 

When the space is Riemannian with metric structure, the 

conserved current may be written as 

1
J J a fµ µ µναβ

ν αβε
χ

= + ×
�� � �

                 (6) 

where
4

8 G

c

πχ = −  [5]. J µ�
is the contribution to the 

conserved current due to the energy momentum tensor,

.J J nµ µ=
� �ɶ , n

�
being a unit vector. The second part of the 

right hand sideof eqn. (6) is the contribution of the spinorial 

variable θ which is associated with the directionvector. We 

can now write the action 

4
1 2S S S A J J d xµ µ= + − ∫

� �
                      (7) 

where 
2

1 1

16
A

Gk π
= = ; k =Planck length. Using the 

relations [6] 

R R V δ
αβγ αβγ=                                   (8) 

Where R R V δ
αβγ αβγ=                             (9) 

V δ
being an arbitrary vector and taking 

(0)R R V e eδ
αβγδ αβγδ γα δβ= −                     (10) 

With 

(0) a a
a aR αβγδ α βγδ β αγδ αγ β δ αγ α δω ω ω ω= −∂ + ∂ + ∂ − ∂   (11) 

denoting Riemannian curvature related to rotation whereas 

the second term e eγα δβ  in equation (10) corresponds to 

translation, we have 

4 4
1 2 2

1 1
ReS J J d x d x

k k
µ µ= = −∫ ∫
� �
ɶ ɶ               (12) 
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where R  is the scalar curvature and e is given by the relation 

eαβγδ
αβγλε ε = −                                (13) 

Againwriting 

2a f k S nν αβ ναβ× =
�� �

                          (14) 

where n
�

is unit vector, the second part of the action becomes 

4
2 2

4
S S S d x

k

ναβ
ναβ= − ∫                       (15) 

giving rise to the torsion term. Thus we find that the 

topological Lagrangian given by equation (3) which is 

associated with the ‘direction-vector’ represented in spinorial 

variable leads to torsion. Indeed the gauge theoretical 

extension of a space-time point in the noncommutative 

manifold 4 2M Z×  may be taken to be responsible for torsion 

and eventually helps us to realize the Einstein-Cartan space-

time. 

3. Chiral Anomaly, Torsion and 

Topological Invariants in 

Noncommutative Manifold 
4 2

M Z×  

We may observe here that the gauge-theoretical extension 

of the space-time point xµ in thenoncommutative manifold 

4 2M Z×  as discussed above will lead to the deformation of 

symplecticstructure. Indeed from equation (2) we note that 

the symplectic form of the phase space willnow be given by 

1

2

ij
i jg dp dqΩ = Λ                              (16) 

With 

ij ij ijg j= + ∆ℏ                               (17) 

Where 

0ij I
j

I o

− 
=  
 

                                  (18) 

is associated with the usual symplectic structure and ij∆  is 

the curvature tensor comingfrom the induced vector potential

Aµ . When we associate a gauge field iA with the phase space 

variable ip and iq , the phase space variable 
aφ will be 

modified ( )
a ai Aφ φ+ ℏ as where

1 2 3 1 2 3
( , , , , , )

a p p p q q qφ = , 

1,...,6a = are canonical coordinates in 
6ℜ . Thus for the 

functions ( )
a af i Aφ + ℏ  and ( )

a ag i Aφ + ℏ we can consider the 

product upto the order of ℏ and suppressing the index a over 

φ . 

( ) ( ) [ ( ( )][ ( ( )a a a a a a
a af i A g i A f i A f g i A gφ φ φ φ φ φ+ + = + ∂ + ∂ℏ ℏ ℏ ℏ  

2( ) ( ) [( ( )) ( ) ( )) ( )] ( )a
a af g i A f g g f oφ φ φ φ φ φ= + ∂ + ∂ +ℏ ℏ (19) 

Now since aA is taken to be a gauge field to extract a 

physically meaningful result for theexpression of the product 

given by eqn. (19) we express it in terms of the gauge 

invariant quantity abF , the field strength defined by

c
ab a b b a abcF A A ε= ∂ − ∂ = Β where cΒ represents the magnetic 

field. Indeed writing the extended coordinates as operators 

we substitute the expression for
a aiAφ + by ( )

a ab
biFφ φ+ ∂ , 

where b bφ
∂∂ ≡

∂
Now neglecting the second order derivative 

terms and higher order terms 
2

( )O k , the expression (19) can 

be written as 

( ) ( ) ( ) ( )
2

ab a b

i
f g F f gφ φ φ φ+ ∂ ∂                  (20) 

The curvature abF will deform the symplectic structure. It 

may be remarked here that when the curvature abF is trivial 

such that 0a abF∂ = , abF becomes a constant matrix and by 

normalization we can relate abF with the matrix 

0

0

ij I
j

I

 
=  − 

 

in eqn. (18) changing the indices a , b  to i, j associated with 

the usual symplectic structure. In that case we note that the 

product given by eqn. (20) is just the star product 

2
( * )( ) ( ) ( ) ( ) ( ) ( )

2
a b

i
f g f g f g Oφ φ φ φ φ+ + ∂ ∂ +ℏ

ℏ    (21) 

With abF  being the usual symplectic matrix. Comparing 

this with eqn. (20) we note that the product deformation may 

be viewed as to be caused by the induced background 

magnetic field. It is observed that when abF is nontrivial we 

will have the deformation of the symplectic structure so that 

the noncommutativity parameter becomes a function of φ (φ=p, 

q). This deformation of the symplectic structure gives rise to 

the Berry phase which is related to chiral anomaly [7, 8]. 

In the background of the (2, )SL C gauge fields, the 

Lagrangian for a Dirac spinor field maybe written (neglecting 

the mass term) 

1

4
L D F Fµ µναβ

µ µν αβψγ ψ ε= − −                    (22) 

where Dµ is the (2, )SL C  gauge covariant derivative given 

by D igAµ µ µ≡ ∂ −  whereg is some coupling constant and

(2, )A SL Cµ ∈ . It has been shown in an earlier paper [9] that 

if we split the Dirac massless spinor into chiral forms and 

identify the internal helicity as determined by the direction 
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vector with left (right) chirality, we have the standard 

conservation laws. 

11
[ ( ) ] 0
2

R Rig jµ µ µψ γ ψ∂ − + =  

21
[ ( ) ] 0
2

L L R Rig ig jµ µ µ µψ γ ψ ψ γ ψ∂ − + + =  

21
[ ( ) ] 0
2

L Lig jµ µ µψ γ ψ∂ − + =                      (23) 

Where jµ
�

is given by equation (4). These three equations 

represent a consistent set of equationsif we choose 

1 21

2
j jµ µ= − , 3 21

2
j jµ µ= +                          (24) 

which evidently gurantees the vector current conservation. 

Then we can write 

2( ) 0R R jµ µ µψ γ ψ∂ + =  

2( ) 0L L jµ µ µψ γ ψ∂ − =                           (25) 

5 2
5( ) 2J jµ µ µ µ µ µψγ γ ψ∂ = ∂ = − ∂                  (26) 

Thus the chiral anomaly is expressed here in terms of the 

second (2, )SL C  component of the gauge field current 2jµ . 

Now from eqn. (4) and (14) in the previous section, we 

note that the current 2jµ associated with the chiral anomaly 

gives rise to torsion. 

It may be mentioned here that when a vector µξ is attached 

to a space-time point xµ , the space-time manifold can be 

taken to correspond to the de Sitter space 4,1M . Indeed when 

we consider µξ as an internal variable the wave function of 

this extended particle may be written as ( , )xµ µφ ξ . This 

suggests that with 0ξ =  we can relate
2
µγ ξ= with the 

radius of thisextension. 

If we consider xµ as the centre of mass coordinate and γ as 

its extension, this leads to the extension of the Lorentz group

(3,1)SO  to the de Sitter group (4,1)SO . When the attached 

vector µξ  appears as the ’direction vector’ the space-time 

manifold corresponds to thenoncommutative space 4 2M Z×  

which has the fermionic field as the underlying field. In 

thecase of a massive spinor we can define a plane D− where 

for the coordinate z x iµ µ µξ= + , µξ belongs to the interior of 

the forward light cone 0ξ 〉〉 and represents the upper half plane. 

The lower half plane D+  is given by the set of coordinates 

z x iµ µ µξ= − with µξ in the interior of the backward light 

cone 0ξ 〈〈 . The map 
*z z→ sends the upper half plane to the 

lowerhalf plane. The space M of the null plane ( 2 0µξ = ) is the 

Shilov boundary so that a function holomorphic in ( )D D− +
is 

determined by the boundary value. If we consider that any 

function holomorphic in ( )D D− +
the helicity

1 1
( )

2 2
+ −  in the 

null plane may be taken to be the limitingvalue of the internal 

helicity in the upper (lower) half plane. In the manifold

4 2M Z× the inherent anisotropy in the discrete space suggests 

that we should consider the space or timereversal noninvariant 

current associated with the field strength given by 

j Fµ µνλσ
ν λσε= ∂                               (27) 

From eqn. (4) we find that this is associated with the axial 

vector current as given by relation (26). Again from the 

relation (14) we note that this is associated with torsion. 

It may be observed that for the (2, )SL C  gauge theoretical 

extension corresponding to thisnoncommutative space we can 

take for the Hermitian representation the group manifold 

corresponding to the gauge field ( )A SUµ = ∈ . Taking µ∇ as the 

covariant derivative iAµ µ µ∇ = ∂ − we have the commutator 

( , ) λ
µ ν µν λ∇ ∇ = Γ ∇                              (28) 

where λ
µνΓ is the structure constant. Noting that the 

commutator [ , ]µ ν∇ ∇  effectively coresponds to the field 

strength given by 

[ , ]F A A A Aµν µ ν ν µ µ ν= ∂ − ∂ +                (29) 

we can relate the structure constant as the axial vector 

torsion. 

Cartan’s structural equation in Riemann-Cartan space-time 

U4 is given by [10] 

T de eα α α β
β= + Γ ∧  

R dα α α β
β β β α= Γ ∧ Γ ∧ Γ                          (30) 

where αβΓ and eα
represent spin connection and the local 

frames respectivley. The minimalLagrangian density of a 

spin 
1

2
field ψ  with an external gravitational field with 

torsion is givenby [11] 

* * *
5

1
[ ]

2 4
D

i
L D D m Aψ γ ψ ψ γψ ψψ ψγ γψ= ∧ + ∧ + − ∧ (31) 

where the exterior covariant derivative D is torsion-free, A is 

the axial vector part of the torsion one-form and ∗is the 

Hodge duality operator. It is noted that the axial vector 

torsion one-form is given by ( )A e Tα
α= ∗ ∧ . Here eα

αγ γ= . 

In Riemannian Cartan space-time U4 there arisetwo 

boundary terms BT and BL given by [12]. 
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2 ( )TB T T R e e d e Tα α β α
α αβ α= ∧ − ∧ ∧ = ∧      (32) 

1

2
L LB R R dCβ α

α β= − ∧ ≡  

Where 

1 1
[ ( )]

2 3
LC Rβ α β γ γ

α β α αβ= − Γ ∧ + Γ ∧ Γ ∧ Γ  

is the Chern-Simons term for the curvature. The translation 

Chern-Simons term is given by 

2

1
( )

2
TC e T

l

α
α= ∧                               (33) 

Chandia and Zanelli [13] have observed that the quantum 

violation of the chiral current conservation in a Riemannian 

background with torsion is given by 

5

2 2

1 2
[ ( )]

8
j R R T T R e e

l

αβ α α β
µ µ αβ α αβπ

∂ 〈 〉 = ∧ + ∧ − ∧ ∧ (34) 

where the first term on the R. H. S. is the well known 

Pontryagin density and represents theanomaly in Riemannain 

space-time without torsion. The second term on the R. H. S. 

is associated with torsion and corresponds to the Nieh-Yan 

density given by [14] 

2
2 ( )TN l dC d e Tα

α= = ∧  

( )T T R e eα α β
α αβ= ∧ − ∧ ∧                     (35) 

It has been pointed out by these authors that if we combine 

the spin connection and vierbeintogether in a connection for

(5)SO  in a tangent space in the form 

1

1
0

AB

e
l

W

e
l

αβ α

α

 Γ 
=  
 −  

                              (36) 

whereα, β=1, 2, 3, 4 and A, B=1, 2, 5, then we obtain the

(5)SO  curvature two-form 

AB AB AC CBF dW W F= + ∧                     (37) 

from which we obtain (5)SO Pontryagin density 

2

2
( )

AB
ABF F R R T T R e e

l

αβ α αβ
αβ α α β∧ = ∧ + ∧ − ∧ ∧ (38) 

From this we observe that the N - Y term is related to the 

difference between the (5)SO  and (4)SO Pontryagin 

densities 

4

2

2
( (5)) ( (4))

M

N P SO P SO
l

= −∫                 (39) 

In view of this, the N -Y density is also found to be a 

topological invariant. As we have pointedout that the 

introduction of the internal variable µξ attached to the space-

time point leads the deSitter space 4,1M  and the N-Y density 

N is given by the difference between the SO(5) and SO(4) 

Pontryagin density, the topological invariant N effectively 

corresponds to the contribution of the direction vector µξ . In 

case of axial vector torsion 0
a

aT T∧ = in eqn. (38) and the 

SO(5) Pontryagin density reduces to SO(4) Pontryagin density 

when the torsion contributing density 0
a b

abR e e∧ ∧ = . 

Indeed in the tangent space only SO(3, 1) symmetry is 

preserved and SO(4, 1) symmetry is broken. This implies that 

the topological invariant N is in effect associated with the 

discrete space 2Z  in the manifold 4 2M Z×  with the broken 

2Z  symmetry and thus maybe taken to be a contribution 

related to the noncommutativity of space. Kreimer and Mielke 

[15] have objected to the inclusion of the N- Y term in chiral 

anomaly on the ground that toobtain a finite quantity the 

tetrads have to be rescaled. Indeed to this end Chandia and 

Zanellihave prescribed the rescaling 

1
e e e

M

α α α−→ =  

when in the limit M → ∞ , Ml fixed, we have the expression 

for the anomaly 

2

1
[ 2( )]

8
A R R T T R e eαβ α α β

αβ α αβπ
= ∧ + ∧ − ∧ ∧  (40) 

However, Kreimer and Mielke have observed that this 

rescaling is not merely a simple manipulation but it also requires 

the change in the wave function renormalization Z-factor which 

willultimately lead to the vanishing value of the N -Y density in 

the expression for chiral anomaly. The crux of the trouble lies in 

the incorporation of the length scale l in the expression for 

thecontribution of the N - Y density. However we may observe 

here that in noncommutativegeometry, there is an implicit length 

scale governed by the commutation relation 

[ , ]x x Kµ ν µν µνθ ε= =                          (41) 

where K has the dimension of 
2l . So we can associate the 

length scale in equation (38) withthe measure of the 

noncommutativity of space coordinates. Indeed it is very natural 

here inthe sense that the noncommutative manifold 4 2M Z×  

which induces chiral anomaly leads totorsion. However this 

anomaly induced torsion is the axial vector one as only the axial 

vectorpart of torsion can interact with a Dirac fermion. It has 

been pointed out in an earlier paper [16] that chiral anomaly 

induces the topological origin of mass in flat space. The mass-

energy of matter is related to the curvature when chiral anomaly 
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gives rise to torsion. In view of this we may take torsion as the 

fundamental entity and Einstein’s general relativity may be 

associated with the teleparallel gravity. This suggests that the 

noncommutative geometry which induces chiral anomaly 

effectively gives rise to a torsioned space-time. 

4. Discussion 

Chamseddine, Felder and Frӧhlich [1] have studied gravity 

in noncommutative geometry byintroducing a gravity action 

for a space-time which is the product of a four-dimensional 

manifoldby a two-point space. In the simplest case where the 

Riemannian metric is taken to be thesame on the two copies of 

the manifold, we have a model of a scalar field coupled to 

Einsteingravity. The field geometrically describes the distance 

between the two points in the internalspace. It has been pointed 

out that vacuum expectation value of the field φ determines 

theelectroweak scale and thus forms a connection between 

gravity and the standard model. In ourpresent formalism the 

noncommutative manifold has been taken to be 4 2M Z×
where 2Z isnot a two-point space but corresponds to 

a ’direction-vector’ attached to a space-time point. In this 

geometry we have found that this leads to the introduction of 

torsion and gives rise toa Einstein-Cartan space-time. This 

torsion is an axial vector one and is associated with thechiral 

anomaly giving rise to the topological origin of mass [16] 

which in turn is responsiblefor curvature. This gives an 

indication that torsion may be taken to be the 

fundamentalentity in gravitational interaction and general 

relativity and it can be effectively described bythe teleparallel 

gravity. Gravity is a teleparallel theory Poincare gauge theory, 

zero curvaturereduces as the show go to the Einstein - Cartan 

space-time nonvanishing torsion and bent bothto the 

connection with this that the zero torsion range in our 

Einstein’s similar to a Riemannianstructure is general relativity 

A recent paper [4] It is mentioned that was the extent 4 2M Z× , 

where the isolated space in a direction - vector, 2Z  symmetry 

broken chiral contradiction tothe mass topological origin for 

the responsible and consistently electroweak theory describes 

it. Thus such a non - commutative manifold cases where 2Z  is 

a two - point in space where theconnection between gravity 

and electroweak theory of a link appear at the chiral 

contradictionsand torsion realization through the acquisition to 

have. 

5. Conclusion 

We have observed that the Weitzenbӧck geometry which 

induces the equivalence of the teleparallel gravity with 

Einstein general relativity has some salient features. Nester 

[17] has shown that it leads to a pure tensorial proof of the 

positivity of energy in general relativity. Mielke [12] has 

pointed out that it yields a natural introduction of Ashtekar 

variables. Besides, it indicates the reality of torsioned space-

time whereby torsion may be taken to be the fundamental 

entity rather than curvature. In the noncommutative manifold 

4 2M Z×  where 2Z  corresponds to a direction-vector as well 

as in noncommutative (1)U Yang-Mills theory we have a 

natural choice of torsioned space-time. However, in 

noncommutative manifold 4 2M Z× torsion is related to 

deformation of symplectic structure whereas 

noncommutative gauge theory is chracterised by area 

preserving diffeomorphism. Recently it has been pointed out 

that the N-Y density of 4U  space may be taken to be related 

to the gravitational constant [18, 19]. Consequently this 

method is very much akin to our present line if we reflect that 

torsion is linked to internal space which types the space-time 

noncommutative such that the gravitational constant shots the 

rule of noncommutativity. 
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