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Abstract: Where Earth is not strictly rigid body but can responds to any effects that tend to its rotation and shape, we will
explain, in the present paper, the goal which is to define the forced nutation for a rigid Earth model using two different
theories. We will formulate a first order Hamiltonian of a deformable Earth for its rotational motion around the Sun through the
contribution of triaxial symmetry of the Earth. The formulation of the theory will be formed twice times. Firstly, deduce the
tidal affect’s forces by Luni - Solar attraction coupling with the Earth’s geopotential force. Secondly, through the formulation,
we will neglect the coupling between the different effects (the geopotential Earth force effect and the Luni - Solar attraction
force), so, we will find the transform of the Hamiltonian for each force separately. The analytical solution for the formulated
Hamiltonian will be derived for the two cases by using perturbation technique of Lie - Hori series. Once can get the analytical
solution by getting the generation function, we will derive the nutation series analytically and numerically for each case and

conclude over the results.
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1. Introduction

Because of Earth is responds to any effect to be as a
deformable body and not as a strictly rigid, it is possesses
some sort of elastic properties [1]. Many papers concerned
with the study of a rotation for a deformable Earth through
different theories of Earth’s model as the series of papers [2-
6] and another series [7-13]. So, its shape changes through
the rotational motion about its axis, this change affects on the
periodic rotation and its uniformity, which intern affects on
its shape, also, the same done due to the tidal effects of Sun
and Moon.

The present work is concerned with these affects which
have been studied twice times, firstly as a coupling effects of
rotational Earth including its geopotential and the tidal
effects produced with its motion around the Sun through its
orbit including the Moon’s gravitational effects, secondly, we
will concern with neglecting the coupling between the

different effects. Short periodic nutation terms will be treated
in Hamiltonian form through the contributions of triaxial
symmetry of the Earth in each theory and the comparison of
results will be done.

2. Canonical Transformation

Andoyer and Euler system’s variables will be obtained
through a canonical transformation [2].

In the case of the body assuming rigid, by taking into
account its elasticity such as responds to effects produced by
its rotation and by other external tidal effects, we taking into
account the Andoyer and Euler angles variables.

As shown in figure 1, the angles A, p and v are correspond
to Andoyer’s variables while /, g,  and 7,
corresponding Delaunay’s variables for Moon and Sun

respectively.
The conjugate momenta are given by:
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sin g sin (4[/ —U) ’
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N is the component of angular momentum of rotation of
the deformed body, while N is the component on the body
axis OZ [9].

\ equatonal (body) plane
7

7 Y

7 Ecliptic(inertial) plane

Figure 1. Euler and Andoyer Angles.

3. The Hamiltonian

The Hamiltonian H describing deformable Earth under
tidal effects written as [2-4]

H=T +T +T +R, +E, +V, +V, 2)

Where
T. : is the K. E. for the torque free rigid Earth rotation.

T. : is the increase in the K. E. due to the rotational
deformation.

1; : The increase in the K. E due to the tidal deformation.

Ry : The contribution from the motion of the ecliptic of

A

2
T.=3D,sing, Az/l—sin 20{l +(% —%)cosu, Ccos U:| +Z
c

date.

E. : The elastic strain energy stored by the rotational
deformation.

V,: The potential energy due to motion of the disturbing
bodies, with assumed triaxial solid.

V.: The increase of potential energy due to the effect of
these quantities.

Which defined as:
M?*=N?(sin’v 2u) N?
T = sin“ U _ cos AN 3)
2 A B 2c
2 _ a2
3 %D, sin” g, sin 20, sin 2v 4)

el ) 25t

+%(M2 -N? )(% —?j (2P2 (sin O'D) cos20+P; (sin O'D) cos 20"])

1 1
ELCAR (i

12 )P} (sin 0" cos2a"cos2v - /12_BP22 (sin 07)sin 20 sin 2v ]
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2

Ry =M'sing'Ry +N'Ry,

Where
dmr
)

R, :sinﬂcos()l'—l'l)c;—l;l—sin()l'—ﬂ =

Ry, =(1-cos n)‘il—';' (6)

The ecliptic of date is defined by longitude of its node and
its inclination (I1, m) with respect to the ecliptic of epoch,
(These two angles being functions of time). The primed
variables rotate the ecliptic frame of date to that of the
principal axis.

+MTsin 20’[%1’21 (sin JD)COS asiny +%le (sin a’)sin a"cos V} } 5)

0\
[G—DJ P, (sin9) D3ZB,« cos 6,

7

(10)

O

3
[%J le(sind)cosa DSZ Zci(T)Sin(/J"’V_TH,«) (11)

1=l
0\
a . .
(ﬁ] P} (sind)sina |Z|3T:Ei1 E,- C,(T)cos(,uﬂ/—f@) (12)

After some modification, we write & as below

2
Er:(%) 2_”(12/‘ +12ﬂ) (7) 6, = (my +my +my) 0, +(my+my) L +(my+my)g,
5
+myh,, +my (g, +h)+msQ (13)
Where: I3 + 1 =5.813114x10% g.c.s
where
Gm"|2c=4-B (. A-B .
v, = 5 {2}’2(51n51])+ 2 Jf’zz(smé"])cosZa’D } (8) Q=h,-A,
2 Op5 F=(,+g,,
v, = —%k2 Qm—BRﬁ{PZ (sin 5D) +3sin0, (—%sin g.b (sin JD)
" = (my,my,ms,my,ms),
%cosUerl(sinJ)sin(a'D+V,.) D=l +g, +h,+g +h (14)
So,
L aPz(' 5”) (2a”+2v) 9)
[ e \Singjeos r 6 =ml,, +my((, +{)+mF+mD+mQ (15)

Where: L, 8, h, are the Delaunay variables for Sun,

k, is the love number, O’D,JD and a,0 are spherical 1> &ms>h,, are the Delaunay variables for Moon,
coordinates of the perturbing and perturbed body Q is the mean longitude of the node of Moon.
respectively, the spherical functions can be simplified after And 7 ==1, the functions of B;, C;,D; are:
neglecting the second order terms to

__1 2 o1 p_Ll.2, 09
B =-—(3cos1-1) 47 - sin 21 4) ——sin> I 4; (16)
6 2 4
C (T) = —i sin2] A4 +% (1 + TcosI)(—l+2TcosI) AY +£sin1 (1 + Tcosl) 47 17
D, (T) = —%Sin2 14+ Tsin1(1+ TcosI)Ail)
~Li+reos 1) 42
Z( T cos ) ; (18)

We taking the orders of magnitude with respect to main

terms 7, into consideration [6]
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v, 5V - 4. Tidal Effects of Rotational Earth
— 06x107, = 03x10

° ° Canonical transformation as based as the perturbation’s

The perturbation technique used base on the line series technique Lie series method [14]

method [14]. H=H@u'U",
The Hamiltonian (1) shows that v,1,¢,,g,,,h, and £

are fast variables, while the remaining variables are slow & &

ones. H=H, +—'ZHn (19)
In this we shall deal with the fast variables with a first =

transformation to obtain the generating function for first

order terms. Where H written by ordering as
H=H,+H +H, (20)
4.1. Zero Order
Since
HOZM_Z(i"'lJ"'N_Z[E_i_iJ*'”ePe +ny, P, +n, B, +n, B (21)
44 B) 4lc 4 B) 5 T TE g T

Transformation of zero order:

H,=H (22)
For simplicity, we will dropping the primes
SO,
o M*P(1 1) N*(2 1 1
Ho ==\ 2 )\ o7 ) e, g B *my B, (23)
4.2. First Order
1 M?sin20 . P-N(1 1
H, =—<Rp+E, +3Dr$smar €0s g, + ————| ——— |cos2U
£ Ac 4 A B

+U, {%Xl (3»cos2 U—l) +3 ), sin® U"‘%)@ sin® 20}
+U, {—%){1 sin20 + X, sin20 — X, sin 20(1 —cos? U)}

1 . 2 1 2 _1 .2
+U, [Zsm U+EX2 (1 +cos 0) ZX3 sin 20}} (24)
Where

Q? 47
D, = —TGJ‘P,OJ“ (5F2 (r) + r2G2 (r))

ap,
» d—/:(ZFz (r) +r2G2 (r)) ]dr (25)

Which for the Earth model used and taking Q O, D, has a value of D, =-2.845379x10" g.c.s
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p, =9 2”][2;)0 (57 (") +rGy (7)) - dep (2 (r) 472G, (7)) ]ar

r

The function p,, F, and G, depend on the model used.

_ 6.95339%10*° g.c.s  for Moon
3.185508%x10% g.c.s  for Sun

we rewrite eqns. (5) in a simplest form as

:Zl‘,zz: Zl‘,zgnp” cos (2nu+ pu+16,)

n=0 p=07=-1 i

Where

1
o000 = ;{RE +E, +3D,(M?sin26/2Ac)sing, coscr}

1| M>-N*(1 1
= ——— COS2U
1000 g{ 4 (A B] }

_Bi 1 2 - ) 3 )
501,-0—?{5)(1(3005 g 1)+3)(251n U+5)(3s1n 20}

$o0,-1: =0
(-1 ) . . C(1
$ot,-1i = - (g ) {_%Xl sin20 + X, sin20 — Y sin 20(1 -2cos’ 2(7) = c (( ))) 50111}
i
D(-1)(1_ . 1 1 D, (1)
So2-1i :T{ZM sin” U+E,Y2 (1 +cos’ U) _ZX3 sin’ 20} = D, (1) oo
C:(0)=D.(0)=0 (34) .
(0)=0,(0) o, = -]
Transformation of first order:
We have Then from eqns. (36) and (37)
HY = A, +(H,, W) (35) NV NN
Hlp - zz z zgnpri COS(ZI’!U"‘p,U"‘ Tez)
From (27) n=0 p=07=-1i#0
y 1 2 1 o000 =0
=YD & prcos(2mw+ pu+6)  (36) '
n=0 p=07=—1 i oot = $100i
We choose Z(')l,—li = 501,—11'
O_/g , _
Ay = <H1 >,1,u,/l 2Lkl 37) Coz-1i = on-i
Then Since
Hy = &o000 +$o0010 Hlp:(VVl’HO)

Since

(26)

@7

(28)

29

(30)

€2))

(32)

(33)

(3%)

(39
(40)
(41)

(42)
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_OW, 0H, , OW, 0H, ,( OW, 0H, L OW, 0H, L 0W, OH, ,L OW, 0H,
- + + + + + 43)

oy o0M Ov ON 0¢, oF,  0g, Op,  Oh Op,  0(; Op,

from eqns. (38) and (43)
12 1 gt'
:zzz " in 2nU+p,u+T9) (44)
n=0 p=07=-1i=0 Q
Where plane perpendicular to figure axis of Earth) can be obtained.
O=2n,+p, +1n;, 4.3.1. Nutation of the Andoyer Plane
The longitude of the node and the inclination of this plane
_ai_ﬁ 2 1. 1 are given respectively by A and I, 7 =cos ' (Aj . The
#ooN 2(c 4 B M
nutation corresponding to the variables, known as poisson
OH, M ( 1 + 1 j terms, are obtained through the equation [15-16].
n,=——=—|—+—|,
oM 2\4 B 1w
00 Msinl oI ’
n; = a—l (45)
t ! o _ os/ w (46)
Since the angle o between the angular momentum vector MsinT| a4 ou

and the figure axis of Earth is about 10 rad, we could take
the approximation coso [I1 [5].

4.3. Forced Nutation

Once the generating function has been developed, the
periodic perturbation of the fundamental plane, which
includes the Andoyer plane (the plane perpendicular to the
angular momentum vector) and the equatorial plane (the

Msm]zl‘liiz ’;p” m PCOSI)COS(ZnU+P,U+r9)

n=0 p=07=-1i#0

4.3.2. Nutation of Equatorial Plane
The longitude of the node, ¢ ,

= -/ and the inclination Er

From eqns. (44) and (46) we have

12 1 1
“Msinl zz z Z E@QH’] cos (2n0 + pu+16,) (47)

n=0 p=or=-1i#0

(43)

=-1I, (in-phase) are given up to the first order by [15]

/1f =A+——siny and [ s =1+0ocosu following Kinoshita, the periodic perturbation of the increment /lf -A and

sin/

I, =1 called oppolzer terms, are given up to the first order by

1 .
=———— || sIn
Msinosinl K

A(/]f '/‘)
A1,-1)=

From eqns. (44) and (49)

MN
MH

| 1
A(/]f _A) Msinosin ] Z::

n=0 p

— || O
M sinosin/ K

1
(=1
~

1l

|
—_
W
(=1

ov  ou do |’
ow  ow . oW
— |- — 49
S'u v a,u] m’“aa} (52



91 Mohamed Soliman et al.: Forced Nutation for Rigid Earth Model with Different Theories

+Jcos,ugnp%sin(2nu+p,u+ 16, )} }

1

A(If —I) Venoenl ZZZZ{COS# 2n p EQ cos(2nU+p,u+T6?)

n=0 p=07=-1i#0

U

+Usm/1£Q sm(2nu+p/1+ 16, )} }

4.4. Final Expressions

Bu using eqns. (47), (48), (50) and (51) we can find

12
Ay, =- MQSIH[ZZZZ{sm/Jp 2n { cos(2nU+p/1+T6’)

n=0 p=07=-1i20

U

—Jcos,u{—sm(2u + pu+16. ) +

sing "p o

sin(nu+2pu +16) }

:——ZZZZ{COS,{I 2n p f cos(2nu+p,u+r9)

n=0 p=07=-1i#0

U

+CTCos,u<r sm(2nu+p,u+n9) ( pcos[){ cos(2nU+2pU+T9) }

sino sin 1
O M?P=N*(1 1
S. Forced Nutation and the Free Earth T :T[E_ZJ cos2U .
Rotation
On. o 4=
In the following, we shall focus on two affects on the rigid vy = Gg MPZ (sin O'D)
Earth, the centrifugal perturbation and the tidal perturbation r 2
forces by neglect the coupling between them. Zero order transformation
5.1. Free Rigid Earth ) )
L oML N2 11
Let the Hamiltonian forced as a4 \4a B 4 \¢c A4 B
Hp =Hop + Hyp+ Hop >4) o _MA(1 1) N2 1 1
4 2
Where : 4 \A B 4 \c A B
H,, = 7:’0 (55) The primes are droppeq for simplicity of writing.
' First order transformation:
H,, =T'+V} +R; (56) 2 _ 2
% Hlﬁ’:RE +u i—l cos 2V
5 : 4 B 4
Hyp =V5 (57)
1 [ 2
Where: +Ek° (3cos o I)ZBi cos G,
T, =T'+T), (58)  Where
TGO_JM_2 l+l +N_2 2 l—l , i 3Gm- 2c—A-B
4 \4 B 4 \c A B ° B )

(50)

(51

(52)

(53)

(59

(60)

(61)

(62)

(63)
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G is the gravitational constant, mD,aEI are the mass and the

semi-major axis of the perturbing body (Moon, Sun) and A,
B, ¢ are the moments of inertia in the absence of deformation

A
(we will use triaxial symmetry case A ~ B).

So
0
K =25 (e 4) (64)
B
HZ =R +lk'(3cosza—1)BD (65)
e = R TR .
M2-N*(1 1
Hy i periodic = — (E - Zj cos 2V
_Mz—Nz(l 1)sin2v
Wp =————| 5~ +
4 B 4) 2n,

5.2. Tidal Perturbation Force

In which

The generating function of this transformation will be

+%k; (30082 g- I)ZBI‘ cos

i#0

=H-H

periocic

- (7.1)

Wig = IHI_/i,period[cdt

We take the approximation coso 1 [5]

5 k! (30052 U—l)

Zﬁsin@

iz0 i

We will study the effects of tidal forces, rotational and deformation so, let the Hamiltonian formed as

H,=H,+H,+H,

H, =0

Hy =E +T) +T) +V}

Hlt :Er +3Dr

M?sin20

Cc

sing, cos g,

+U, {%){1 (30052 U—l) +3, sin’ 0+%){3 sin” 20 }

+U, {—%Xl sin20 + ), sin 20 — X, sin 20(1 -2 cos? U) }

+U, {%){1 sin” 0+%(1+cos2 U) —%){3 sin” 20 }

We do not need to H,,, since we calculate the first order transformation

First order transformation:

H=E

,3D,M?sin20
! 2Ac

sin g, cos O,

+B, {%){1 (3 cos” U—l) +3, sin’ U+%){3 sin” 20}

and the periodic terms are:

1 1 . .
Hy, por = Bizo {E)(l (3»cos2 0—1) —Ek; (3 cos’ 0—1) +3 ), sin’ J+%)(3 sin’ 20} cos g,

92

(66)

(67)

(68)

(69)
(70)

(71)

(72)

(73)
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+Ci(1'){—%)(1 sin20 + X, sin20 - x; sin20(1—2cos2 U)}cos(,u—rﬁi)

+D; (T) {%){1 sin” 0'+%)(2 (1 +cos’ U) —%)(3 sin” 20} cos (2,u— TQ) (74)
where
periocic = ]:[ - H*
And
Hperiodic = (VVi’HO)

after transformation eqn. (74), we can get the generating function as follows for simplification

I/Vll = IHlt,period[cdt

=Wio ¥ W1, Moy (73)
Where
1 2 1
Wi =l =X (3005 U—l) (3cos —1)k +3 ), sin’ U+ )(3 sin® 20 Z—sm@ (76)
2 2 i#0
1 G (
W = [ —X;sin20+ x, sin20 - X3(1 2cos’ a)sm2a}z sm(/.{ 6) (77)
r=1iz0 p
1., 1 2 1. . Dl
Wi =| = Xisin“ o+—x, |l +cos” 0)—— x5 sin” 20 sm2 16, 78
121 [4X1 2X2( ) 4)(3 l 1;2]1 (Qu-16) (78)

5.3. Forced Nutation

5.3.1. Nutation of Andoyer Plane
By using eqns. (68) and (75) in eqn. (46) respectively, where we can take the approximation by neglecting terms in o’, can
get

A, =- k! » —=siné,,
7 Msin [ Z n, sin

1

IAVRESS Msml{ Z—smﬁ +X222 sin 2,u TH) } (79)

i20 n; i=%1 1¢0

k! B,
A, =- . —Lms cos @,
7 MsinI;n > !

1 , B, .
) Z o, {2 T T 1) | -

i20 i r=%1 i#0

Where

(81
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5.3.2. Nutation of Equatorial Plane
By using eqns. (49) throughout (68) and (75) respectively we can get

A(A, —/1) 0o,

A1, —1) 0o (82)

Ay -2), = Mslln1|: ( jzzn —Tn, sin(24-16))

r=+1 %0 "H

+3( X )QJZZ —721 sin (24— 16),)

=1 i£0 /1

X4 — X ZZ (sm 3u- T9)+s1n(,u T&’))

T—%1 i
A(l ) { (X2__lezz ———cos 2/1 TH)
7=zl iz0 Mt T I
+_( X XZ);;%‘T” cos 76,
1
4(,( +4X, = X3 ;ﬂ;ﬁ(ws(ﬂ( 16,) +cos (4~ TH)) (83)

5.3.3. Final Expression
By using eqns. (79), (80), (82) and (83), we can calculate the nutation series in longitude Ay, and obliquity Al of the

figure plane:

Ay, = e Zn—isma (84)
—_ 11 _
Ay, = Msm[{ Z; " ( Xi ij;ﬂg pp— ]smra

[XzZZzn - [)(2 %XI]ZZ - }m 2u-16)

r=%1i#0 =120 'l
Xit4)X, - X3 ZZ = (sm 3u- T0)+51n(/1 TH)) } (85)
=1 1¢0
k!
VRS Msm[;“—lms cos (86)

O EL R B S

7=%1i#0

n
4
jaN
5
(=]
AN
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6. Numerical Representation of Nutation Series
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( +2cosl

sin /

r=%1i#0

ZZ 2n, —n9

1

2

[30-

6] T on(au-rg)

r=%1i#0

(ﬂ+4Xz X:) ZZ%(COS(S/J 16,) +cos (- 16,))

=1 #0

(87

The numerical computations of the forced nutation for angular momentum axis eqns. (47), (48), (50), (51), (52), (53), (79),
(80), (82), (83), (84), (85), (86) and (87) will be carried out by using the numerical coefficient in table 1 [10, 17].

Table 1. Numerical coefficients.

Parameter Values Source
Q 157.0410667 arcsec Allen (2000)
I 84381".412 Allen (2000)
A 0.80101x10*gr.cm® Allen (2000)
C 0.80365x10* gr.cm? Allen (2000)
a, 0.1495979x10%cm Allen (2000)
anm 0.384401x10"cm Allen (2000)
Ve 7568".01772/Jcy Selim (2007)
kig 3475".18832/Jcy Selim (2007)
Table 2. Coupling between affecting forces (Nutation in Longitude and Obliquity); Unit=0.001 mas.
. Nutation of Andoyer plane Longitude Nutation of equatorial plane Obliquity
Period (days) -
andoyer oppolzer figlon andoyer Oppolzer figobli
-6798.36 0.00095 0.00029 0.00123 -0.00020 -0.00028 -0.00048
-3399.18 0.00000 0.00002 0.00003 0.00002 -0.00002 -0.00000
1305.47 -0.00000 0.00000 -0.00000 0.00000 -0.00000 -0.00000
409.23 0.00000 0.00000 0.00000 0.00000 -0.00000 0.00000
365.26 0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000
212.32 -0.00000 0.00000 -0.00000 0.00000 -0.00000 -0.00000
182.62 -0.00003 -0.00014 -0.00016 -0.00014 0.00014 -0.00000
121.75 -0.00000 -0.00001 -0.00001 -0.00001 0.00001 -0.00000
117.54 -0.00000 0.00000 -0.00000 0.00000 -0.00000 -0.00000
-32.61 0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000
29.53 -0.00000 0.00000 -0.00000 0.00000 -0.00000 -0.00000
-27.33 0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000
Table 3. Affecting forces separately (Nutation in Longitude and Obliquity); Unit=0.001 mas.
Free Rigid
Period (days) Nutation of Andoyer plane longitude Nutation of equatorial plane Obliquity
andoyerlonr figlonr andoyeroblir figoblir
-6798.36 0.00000 0.00000 0.00000 0.00000
-3399.18 0.00000 0.00000 -0.00000 -0.00000
1305.47 -0.00000 -0.00000 -0.00000 -0.00000
409.23 0.00000 0.00000 -0.00000 -0.00000
365.26 0.00000 0.00000 0.00000 0.00000
212.32 -0.00000 -0.00000 -0.00000 -0.00000
182.62 -0.00000 -0.00000 0.00000 0.00000
121.75 -0.00000 -0.00000 0.00000 0.00000
117.54 -0.00000 -0.00000 0.00000 0.00000
-32.61 0.00000 0.00000 0.00000 0.00000
29.53 -0.00000 -0.00000 0.00000 0.00000
-27.33 0.00000 0.00000 -0.00000 -0.00000
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Table 3. Continued.

96

Tidal Forces
Period (days) Nutation of Andoyer plane longitude Nutation of equatorial plane Obliquity

andoyerlont oplont figlont andoyeroblit opoblit figoblit
-6798.36 0.00096 0.00000 0.00096 0.00000 0.00028 0.00028
-3399.18 0.00000 0.00000 0.00000 0.00000 0.00002 0.00002
1305.47 -0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000
409.23 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
365.26 0.00000 -0.00000 0.00000 0.00000 -0.00000 -0.00000
212.32 -0.00000 0.00000 -0.00000 0.000000 0.00000 0.00000
182.62 -0.00000 -0.00000 -0.00000 0.00043 -0.00027 0.00016
121.75 -0.00000 -0.00000 -0.00000 0.00002 -0.00001 0.00001
117.54 -0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000
-32.61 0.00000 -0.00000 0.00000 0.00000 -0.00000 -0.00000
29.53 -0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000
-27.33 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

7. Conclusion

Numerical of nutation series for the plane perpendicular to
angular momentum vector and the plane perpendicular to
figure axis of Earth will be carried out for the two cases of
the present theories, tidal effect’s forces coupling with the
geopotential and the other by neglect the coupling between
affecting forces. As mention before, we taking the
approximation triaxial symmetry of Earth and using the other
numerical coefficient listed in table 1 (Numerical
coefficients) [10, 17].

As we saw in Part 1 and 2

Tides are generated by the same forces, which cause
nutation, but with the basic difference that the tidal effects
depend on the elastic responses of the Earth, and in turn on
the Earth’s internal structure.

In part 1, tidal disturbances cause vertical deformation not
exceeding 0°". 009. The tidal distortion of the Earth’s figure
appears as a displacement of the plane by a few centimeters.
These changes are reflected as variations in the astronomical
latitude (defined as the complement of the angle between the
rotation axis and the local vertical). The geocentric latitude is
also affected but to a lesser extent not exceeding 0."003.

In part 2, we notes that tidal disturbance nearly neglected
in case of free rotation of Earth, but the effected forces are
that forces caused by gravitation of Moon and Sun which
clear at the same periods as part 1 (periods -6798.36 and 182,
62) although the precession and nutation are less than in the
case of coupling effects but they are clear.
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