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Abstract: Lasers of high power densities are useful for a variety of material processing techniques. Laser heating of a finite 

homogeneous Silver Selenide slab is studied according to the hyperbolic heat conduction model. Laplace Integral transform 

technique is used to get the solution. This material suffers phase transition from semiconductor to metallic phase at 403 K. It 

has vital technological applications. The obtained temperature field makes it possible to determine the time required to initiate 

phase transition or melting. The functional dependence of the obtained functions is revealed. Different laser power densities 

are considered as illustrative examples. 
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1. Introduction 

There is an increasing interest to study laser interaction 

with matter. 

Laser sources of high power density up to 10
12

 W/m
2
 or 

more and that of moderate power densities have vital 

applications in different fields especially for material 

processing techniques such as spot, welding, surface 

annealing, drilling of metals, laser cutting of metals, laser 

shock hardening, laser glazing, measuring the physical 

properties of thin films, local diffusion and alloying to form 

(p-n) junctions, optical recording [1-6]. 

In many of such studies and applications it is particularly 

important to find theoretically the temperature field within 

the irradiated target. This makes it possible to determine the 

critical time required to initiate phase transition and also to 

determine the critical time required to initiate melting. For 

multi-phase problems, it is important to find the rate of 

melting or the rate of evaporation of the considered target. 

The study of laser damage in some of the irradiated materials 

is important to avoid damage as in the case of laser mirrors 

[7]. 

There are two trends in such a study. The first trend is the 

Fourier model that assumes infinite speed of heat transport, 

i.e. a local thermal disturbance is instantaneously felt at each 

point of the irradiated material. This is formulated through 

the parabolic heat conduction equation (PHCE). The second 

trend which is more realistic one is based on the Cattaneo 

flux law. This leads to the hyperbolic heat conduction 

equation (HHCE). 

Accoding to (HHCE) heat is suggested to propagate with 

finite velocity. This is more suitable when extremely short 

laser pulses or laser of very high frequencies are considered 

[8]. 

The present trial deals with heating a finite silver selenide 

(Ag2Se) slab. 

The considered material (Ag2Se) has applications in 

different technological fields. It acts as a thermoelectric 

power generator material [9]. It has an important role in the 

field of switching devices [10, 11]. Such a material 



 International Journal of Applied Mathematics and Theoretical Physics 2019; 5(1): 32-37 33 

 

undergoes through phase transition. It has two phases [10]: β-

phase with orthorhombic structure (below 400°K) and α – 

phase (for temperature level greater than 400°K) with body-

centered-cubic (bcc). Morover, the considered material 

shows semiconductor properties up to 403°K, and then 

behaves as a metal [10]. 

The objective of the present study is to find analytically 

the temperature field induced within the irradiated target 

(Ag2Se) by an internal laser source with volume capacity "g" 

W/m
3
. 

Hyperbolic heat conduction equation ((HHCE) in 

dimensionless domain is solved. Laplace integral transform 

technique makes it possible to get the solution. The obtained 

expression for the temperature field enables to find the variation 

of the front surface temperature with the exposure time. From 

which one can determine the critical time required to initiate 

phase transition (tph) and that required to initiate melting "tm". 

Thus the functional dependences of such functions are clarified. 

Computations dealing with some illustrative examples 

considering different operating conductions are given. 

2. Mathematical Formulation 

According to the hyperbolic model of heat conduction, the 

modified Fourier equation (Cattaneo equation) has the form 

[8]:  

( , )
( , ) ( , )k

q x t
t q x t T x t

t
λ∂ + = − ∇

∂                   (1) 

The energy conservation (continuity) equation is written in 

the form:  

.p

T
c q g

t
ρ ∂ = −∇ +

∂                               (2) 

Equation (1) is incorporated with equation (2) to give the 

following hyperbolic equation of heat conduction (HHCE):  

2
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In equation (1), (2), 
2

,seckt
w

α= is the thermal relaxation 

time characterizing a time scale of the flux relaxation 

process, 
2

, ,
secpc

m
ρ
λα =  is the thermal diffusivity written in 

terms of the heat thermal conductivity λ and heat capacity per 

unit volume ( ) .  and   ,  / secpc W mρ  is the speed of 

propagation of the thermal wave in the target material. 

For a material that absorbs laser energy internally, the 

internal energy source "g" is modeled as:  

0( , ) (0, ) (1 ) exp( )g x t q t R xµ µ= − −               (4) 

0q  (0, t), W/m2 is the external laser irradiance incident on 

the font surface of the target. 

R , is the front surface reflectance of the slab, and µ  is 

the absorption attenuation coefficient. 

Equation (4) assumes no spatial variations of the incident 

laser intensity in the plane perpendicular to the incident laser 

beam direction and no heat transport in the direction 

perpendicular to the direction of the incident beam [2, 5, 13]. 

Thus one dimensional case is considered. 

For such a case, the diameter of the laser beam is also 

assumed to be large compared to the thickness of the slab. 

Equation (3) is subjected to the following initial and 

boundary condition:  

0 ( ,0) 0At t T x= =                                (5) 

0

x d
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At x d

x =

∂= =
∂                              (6) 

0
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Condition (6) indicates that the slab in thermally insulated 

at the rear surface. 

To convert the hyperbolic equation (3) to be in 

dimensionless coordinates, let us consider the following 

dimensionless variables defined as [8, 14]:  
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0T , °K is the ambient temperature, mT , °K is the melting 

temperature of the target material. 

One obtains Cattaneo (modified Fourier) equation in the 

form:  

2
ϕ ϕ θ
τ

∂ + = −∇
∂                             (15) 
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Moreover, the following two equations are obtained:  

The energy conservation equation:  

2 2
ϕ ϕ θ ψ
τ

∂ + = −∇ +
∂                          (16) 

The hyperbolic heat conduction equation:  

2 2

2 2
2 2 4

X
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τ ττ

∂ ∂ ∂ ∂+ = + +
∂ ∂∂ ∂

                (17) 

The dimensionless heat source capacity is given in the 

form [8]  

0( , ) ( ) exp( )X Xψ τ ψ η τ β= −                    (18) 

Where,  

0
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(2 )
( ) ,k

r
r

q t
q q

q

τη τ η= =                     (19) 
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2 kW tβ µ=                                     (21) 

rq , W/m2 arbitrary reference lase intensity, [8]  

η , Dimensionless laser energy absorbed in the medium 

β , Dimensionless attenuation coefficient 

Introducing the expression of ( , )Xψ τ equation ( 18) into 

equation (17) one gets the( HHCE) in the form [8]:  

2 2

02 2
2 2 ( 2 ) exp( )X

X

θ θ θ ηψ η β
τ ττ

∂ ∂ ∂ ∂+ = + + −
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 (22) 

Equation (22) is subjected to the following initial and 

boundary conditions in the dimensionless scales as:  

0 ( ,0) 0At Xτ θ= =                            (23) 

0
2

d
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Let us solve equation (22) for the case when qo = constant, 

modeled as a unit step function. 

Taking Laplace integral transform for equation (22) with 

respect to time τ  one gets:  

2
0

2

4
( , ) ( 2 ) ( , )

Xe
X S S S X S

SX

βψ η
θ θ

−∂ − + = −
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  (26) 

Let  

( , ) ( , ) ( , )H pX S X S X Sθ θ θ= +                    (27) 

Let us find the solution of the homogeneous part Hθ :  

2

2
( , ) ( 2 ) ( , ) 0H HX S S S X S

X
θ θ∂ − + =

∂
        (28) 

The solution is obtained in the form:  

( 2) ( 2)
( , )

S S X S S X

H X S A Be eθ + − +
= +           (29) 

To get a finite solution at infinity we put A =0, thus:  

( 2)
( , )

S S X
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To find a particular solution ( , )p X Sθ  for equation (26) 

let us use the inverse differential operator technique [15], this 

gives:  
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Equation (30) and (31) lead to the following solution of 

equation (26):  
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Let us apply the boundary condition at 0X =  (equation 

(25) to equation (32) to get the factor B  in the form:  

0
2

4 2

( 2) [ ( 2) ] ( 2)
B

S S S S S S S

βψ η ϕ
β

= − +
+ + − +   (33) 

Substituting equation (33) into equation (32) one gets the 

solution in the form:  

( 2) ( 2)
0 0
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                                 (34) 

Comparing the order of magnitude of different terms in 

equation (34) reveals that the first term can be neglected, thus:  

( 2)
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2
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Consider the inverse Laplace transform [16, 17, 18]:  

1( )
1 2 22

1
[ ] ( ) , 0

2( )

k S S a ate
L e I a t k u t k K

S S a

− + −− = − − ≥
+ �

 (36) 



 International Journal of Applied Mathematics and Theoretical Physics 2019; 5(1): 32-37 35 

 

Where the modified Bessel function I
�

 is defined as:  
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The step function ( )u t k−  is defined as:  
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Thus for the first term of equation (35), put k = X , a = 2 

one obtains:  
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For the second term let us consider:  
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Thus, one finally can get the solution in the form:  
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3. Computations 

Since we are interested in the determination of the critical 

time required to initiate phase transition tph and that required 

to initiate melting tm, we computed the obtained temperature 

profile ( , )Xθ τ  at X =0 for the irradiated target which is a 

slab of silver selenide (Ag2Se) of thickness d= 0.5 µm. 

The following laser irradiances are considered 0 ( )q t =0.5 

x 1012 W/m2, 0.7 x1012 W/m2, 1.0 x 1012 W/m2. For a source 

of constant strength [8, 19, 20] let us take η (τ) = 1, β =1, µ = 

107 m-1. Also, tk = 1000 µs, W = 0.0197 m/sec, (1 – R) = 0.67 

[20]. The physical, optical and thermal properties of the 

silver selenide slab material [21, 22] are given in table 1. 

Table 1. The physical, optical and thermal properties of the silver selenide slab material [21, 22]. 

 ρ kgm-3 λ, Wm-1 K -1 α, m2sec-1 Cp, Jkg-1 K -1 Tm, K Tph, K 

silver selenide 8200 1.08 3.9×10-7 277 855 403 

 

The temperature of the irradiated front surface as a function 

of the exposure time for different indicated irradiances are 

given in table 2, table 3 and table 4 respectively. 

Table 2. The temperature of the front surface as function of the exposure time 

q0(t) =0.5 x 1012 W/m2, d= 0.5 µ m, W = 0.0197 m sec-1, tk = 1000 µs. 

t,(µs) θ(0,t),(K) 

100 100.23 

120 143.48 

140 194.21 

160 252.3 

180 317.69 

200 390 

220 470.85 

240 556.99 

260 650.98 

280 752.02 

300 860.12 

Table 3. The temperature of the front surface as function of the exposure time 

q0(t) =0.7 x 1012 W/m2, d= 0.5 µ m, W = 0.0197 m sec-1, tk = 1000 µs. 

t,(µs) θ(0,t),(K) 

100 140.32 

120 200.88 

140 271.89 

160 353.22 

180 444.77 

200 546.43 

220 658.12 

240 779.78 

260 911.36 

Table 4. The temperature of the front surface as function of the exposure time 

q0(t) =1 x 1012 W/m2, d= 0.5 µ m, W = 0.0197 m sec-1, tk = 1000 µs. 

t,(µs) θ(0,t),(K) 

90 162.86 

100 200.45 



36 Mohamed Abdelhady Kamel El-Adawi et al.:  Heating Effects Induced in a Finite Silver Selenide Slab by a Modelled Laser 

Internal Source Using the Hyperbolic Heat Conduction (HHCE) Model in Dimensionless Domain 

t,(µs) θ(0,t),(K) 

110 241.83 

120 286.97 

130 335.84 

140 388.41 

150 444.68 

160 504.6 

170 548.18 

180 635.38 

190 706.19 

200 780.61 

210 858.61 

Form the corresponding data, one can determine both tph and 

tm for each value of the laser irradiance. The obtained values of 

the tph and tm are tabulated in table 5 and are illustrated 

graphically in figure 1 as function of the laser irradiance. 

Table 5. The variation of the time required to initiate phase transition tph and 

that required to initiate melting tm as function of the laser irradiance (d= 0.5 

µm). 

q,(Wm-2) tph,(µs) Tm,(µs) 

0.5×1012 203.5 299.10 

0.7×1012 171.3 251.63 

1×1012 142.7 209.56 

 

 

Figure 1. The dependence of tph and tm, on the heat flux density (W/m2) (d= 0.5 µm). 

4. Conclusion 

As a result of the obtained temperature profiles and 

computed data the following conclusions can be summarized 

as follows:  

1. The temperature of the front surface of the irradiated 

target does depend linearly on the maximum value of 

the received laser irradiance. That is not the case for the 

profile within the whole target. 

2. The critical time required to initiate phase transition and 

that required to initiate melting at the front surface have 

nonlinear dependence on the thickness of the irradiated 

slab. Such dependence is controlled through the 

function exp ( )xβ− defined in the text. 

3. The obtained mathematical expressions for the 

temperature profile specify the optimum conditions to 

realize either phase transition only or melting or both. 

In general the obtained results in this study have vital 

importance in the field of technological applications for laser 

interaction with solid matter. 
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