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Abstract: In this paper, we extend the 4 × 4 Darbyshire operator to develop a new n-dimensional formalism using n-

dimensional Dirac matrices. We then present a set of properties satisfied by the new operator and briefly discuss some areas of 

interest for potential applications.  
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1. Introduction 

In non-relativistic mechanics, the energy, E for a free 

particle is given by: 

� = ����                                        (1) 

Where p is the particle three momentum and m is the 

particle rest mass. Here the free particle is in a region of 

uniform potential set to zero. Introducing quantum 

mechanical operators for energy, � → 
ℏ ��
	 and momentum, p	 → −
ℏ∇  leads us to the time-dependent Schrödinger 

equation for a free particle of the form: 


ℏ ���
 = − ℏ��∇��                             (2) 

Where i is an imaginary unit, ħ is the Planck constant 

divided by 2π, ∇2 is the Laplacian differential operator, and � 

is the wave function (or quantum state) of the particle. The 

Schrödinger equation suffers from not being relativistically 

covariant, meaning it does not take into account Einstein's 

theory of special relativity.  

In relativistic mechanics, the energy of a free particle is 

given by: 

� = ���p�+����                          (3) 

Where c is the speed of light. Inserting the quantum 

mechanical operators for p and E gives: 


ℏ ���
 = ��−
ℏ∇����+�����                 (4) 

This, however, is a cumbersome expression to work with 

because the differential operator cannot be evaluated while 

under the square root sign. To try and overcome this problem, 

Klein and Gordon instead began with the square of (3), such 

that: �� = ��p�+����                            (5) 

Then: 

�
ℏ ������ = ��−
ℏ∇����+������ 

Which simplifies to: 

−ℏ� ������ = −ℏ���∇�� +����� 

Rearranging terms give us the Klein-Gordon equation of 

the form: 

− ��� ���
�� − ∇�� = −����ℏ� �                   (6) 

Note that if the particle is at rest (i. e., m = 0), (6) simply 

reduces to the scalar wave equation that describe spin 1 

particles. Klein and Gordon proposed that (6) described the 

quantum mechanical relativistic electron, in fact, it turned out 

that this was not the case but instead described spin 0 (or 

spinless) particles. In general, particles with half-integer 

spins (1/2, 3/2, 5/2), are known as fermions, while those with 

integer spins (0, 1, 2), are called bosons. A key distinction 

between the them is that fermions obey the Pauli exclusion 

principle; that is, there cannot be two identical fermions 
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simultaneously having the same quantum numbers. In 

contrast, bosons obey the rules of Bose–Einstein statistics 

and have no such restriction, and as such can group together 

even if in identical states. No spinless particles have yet been 

discovered, although the Higgs boson is supposed to exist as a 

spinless particle, according to the Standard Model. Recently, 

two teams of physicists, working independently, reported 

preliminary hints of a possible new subatomic particle, which 

if real, could be either a heavier version of the Higgs boson 

or a graviton [1].  

(5) clearly shows that both positive as well as negative 

energy solutions for each value of p are possible, that is: 

� = ���p�+����±
 

For a free particle in a positive energy state, there is no 

mechanism for it to make a transition to the negative energy 

state. So, in order to try and explain such ambiguity, Dirac 

[2] proposed taking only the square root of the positive 

relativistic energy, which gives: 


ℏ ���
 = � !"− ℏ��∇�+����# �                        (7) 

In order to make sense of (7) Dirac postulated that the 

square root of a quadratic form in p should be linear in p, 

such that: 

���p�+���� = ��α ∙ p + &����                (8) 

That is: ��p�+���� = ��α ∙ p + &����� = ���α ∙ p�� + &������� + �α ∙ p&��� + &����α ∙ p  (9) 

It follows that, �'(�� = &� = I, the identity matrix and the 

following anti-commutator relations are also satisfied: '('+ + '+'( = ,'(, '+-. = 2I0(+ , 
, 1 = 1,2,3          (10) 

'+& + &'+ = ,'+ , &-. = 0, 1 = 1,2,3                 (11) 

Where 0(+ is the Kronecker delta given by: 

0(+ = 51, if	
 = 10, if	
 ≠ 1                                  (12) 

0 is the null matrix. So, if '( 	and β were simply numbers 

they would commute and would not satisfy the anti-

commutation relations (10) and (11). In order for everything 

to be consistent, Dirac stated that '( 	 and β were not 

numbers but had to be matrices. Since these matrices are 

operators operating on � , then �  itself must be 

multicomponent i. e., a column matrix, at least. From (10) 

and (11), it is possible to show the '( 	 and β matrices 

traceless, and Hermitian, and must have even dimension of 

at least four. All of this ultimately led to the Dirac equation 

given in its original form as: 

9&��� + ��∑ ';<;=;>� �?��@, �� = 
ℏ ���A,
��
         (13) 

Where � = ��@, �� is the wave function for the electron of 

rest mass m with space time coordinates x, t and p1, p2, p3 are 

the components of the momentum, represented by the 

momentum operator in the Schrödinger equation. The new 

elements in (13) are the 4 × 4 matrices αk and β, and the four-

component wave function ψ. There are four components in ψ 

because evaluation of it at any given point in space is a 

bispinor. It is interpreted as a superposition of a spin-up 

electron, a spin-down electron, a spin-up positron, and a spin-

down positron. The single equation thus unravels into four 

coupled partial differential equations (PDEs) for the wave 

function ψ of the spinor components, ψi with i = 1 … 4. 

Moreover, (13) is a relativistic wave equation which 

describes all spin ½ particles (e. g., electrons and quarks) for 

which parity is symmetric, and is consistent with both the 

principles of quantum mechanics and the theory of special 

relativity, and was the first theory to account fully for both of 

them. In addition, the equation implied the existence of a new 

form of matter, antimatter, as of then unobserved, which was 

shown to exist experimentally several years later. Moreover, 

although original thought was that negative energy solutions 

were not possible, this was not the case. Indeed, Dirac 

resolved this problem by postulating that all the negative 

energy states are occupied by fermions (e. g., electrons), and 

as a result of the Pauli exclusion principle, no two of them 

could occupy the same quantum state. Thus, a particle with 

positive energy could be stable since it does not have states 

left to occupy in the negative region. This, however, meant 

that in relativistic quantum mechanics there was no such 

thing as a theory of a single particle. Even a vacuum is filled 

with infinitely many negative energy particles, and by 

pumping enough energy into the vacuum matter could be 

created in the form of electrons excited out of the vacuum, 

and holes left behind in the sea of negative energy electrons. 

These holes are positively charged positrons with properties 

the same as that of the electron. In this case, we have to deal 

with a theory of (infinitely) many particles even if there are 

only a few in our system to begin with. This ultimately led to 

the development of quantum field theory where electrons and 

positrons are regarded as being the excitations of the same 

fundamental matter. 

2. Dirac Matrices 

As already mentioned, the new elements in (13) are the 4 × 

4 Dirac (or gamma) matrices αi and β, and the four-

component wave function ψ. Remarkably, the algebraic 

structure represented by these Dirac (or gamma) matrices had 

been created some 50 years earlier used in the description of 

Clifford algebras. Note also that there are other possible 

chooses for αi and β that satisfy the above properties. Two of 

these, known as the Weyl and Majorana representations, are 

also four dimensional and can be convenient for some 

advanced applications, but these will not be discussed any 

further here.  

The Dirac matrices can be built up from the set of 2 × 2 

Pauli spin matrices, σ1, σ2 and σ3, and the 2 ×  2 identity 

matrix, defined by: 
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B� = C0 11 0D , 	B� = C0 −

 0 D , 	B= = C1 00 −1D , 	I� = C1 00 1D (14) 

Such that the Dirac matrices are given as: 

& = �	I� 00 −	I�� , 	B( = � 0 	B(	B( 0 � , 
 = 1,2,3            (15) 

A complete set of 4 × 4 Dirac matrices can subsequently 

be developed as direct products �⨂�  of the Pauli spin 

matrices and the identity matrix, such that: 

	B( = 	 I�⨂B(�F�, 
 = 1,2,3                          (16) 

	G( = 	B(�F�⨂I�, 
 = 1,2,3	                         (17) 

Where B(�F�  are the 2 ×  2 Pauli spin matrices. These 

matrices satisfy the anti-commutation relations, such that: B(B+ + B+B( = ,B( , B+-. = 2I�0(+ , 
, 1 = 1,2,3       (18) 

G(G+ + G+G( = ,G( , G+-. = 2I�0(+, 
, 1 = 1,2,3       (19) 

Where I� =	4 × 4 identity matrix. Dirac’s original matrices 

were written '(, defined by: '( = E�( = G( 	B( , 
 = 1,2,3                          (20) '� = E=I = G=                               (21) 

Where & ≡ '� can also be used. In this case, we can write: 

'� = E�� = K0 0 0 10 0 1 00 1 0 01 0 0 0L , 	'� = E�� = K
0 0 0 −
0 0 
 00 −
 0 0
 0 0 0 L 

'= = E�= = K0 0 1 00 0 0 −11 0 0 00 −1 0 0 L , 	'� = & = E=I = K
1 0 0 00 1 0 00 0 −1 00 0 0 −1L                                           (22) 

It is also possible to premultiply (13) by β and develop a 

similar set of gamma matrices which satisfy the above anti-

commutator properties, such that: MI = &, M� = &'�, M� = &'�,M= = &'=          (23) 

And so: 

MI = K1 0 0 00 1 0 00 0 −1 00 0 0 −1L , M
� = K 0 0 0 10 0 1 00 −1 0 0−1 0 0 0L 

M� = K 0 0 0 −
0 0 
 00 
 0 0−
 0 0 0 L , 	M
= = K0 0 1 00 0 0 −11 0 0 00 −1 0 0 L (24) 

Or more commonly, as: 

MI = �I� 00 −I�� , 	M( = � 0 	B(	−B( 0 � , 
 = 1,2,3       (25) 

In general, the gamma matrices, NMI, M�, M�, M=O are a set of 

4 × 4 matrices with specific anti-commutation relations that 

ensure they generate a matrix representation of a Clifford 

algebra. In addition to the four gamma matrices described 

above, it is sometimes customary to write a fifth gamma 

matrix, MP of the form: 

MP = �0 I�I� 0�                                 (26) 

Clifford algebras are a type of associative algebra that can 

be used to generalise the real numbers, complex numbers, 

quaternions and several other hyper complex number 

systems.
 
The theory of Clifford algebras is closely connected 

to the theory of quadratic forms and orthogonal 

transformations and have important applications in a number 

of fields including geometry, theoretical physics and digital 

image processing.  

3. The Darbyshire Operator (Ø) 

3.1. The 4 ×4 Construction 

In previous works [3-5], a new 4 × 4 matrix operator was 

developed based on Dirac matrices as defined in (22). This 

operator, named the Darbyshire operator (Ø), was applied to 

the study of nonlinear coupled wave equations that describe 

multi-grating formation in a four-wave mixing interaction. 

Four-wave mixing is a nonlinear process in which light 

waves interact through the third order electric susceptibility 

of a material to create phase conjugate waves. The interaction 

of these waves creates a complex interference pattern, which 

leads the modulation of the refractive index of the material. 

This refractive index acts as a thick phase hologram and 

causes waves to diffract and exchange energy which can 

result in amplified phase conjugate reflectivity.  

Theoretically, the four-wave mixing process often results 

in a set of nonlinear coupled wave equations in which an 

analytical solution is generally difficult to achieve, relying 

frequently on several simplifying assumptions and the use of 

intensive numerical analysis. To overcome these problems, a 

novel approach has been based upon the identification of 

underlying group symmetries within the set of nonlinear 

coupled wave equations. It was shown in previous works [3-

5], that the introduction of the Darbyshire operator led to an 

analytical solution to the four-wave mixing problem based on 

group theoretical techniques. Indeed, the application of the 

operator uncovered a four-dimensional group symmetry as 

the underlying structure to the nonlinear coupled wave 
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equations. In this paper, we extend the 4 × 4 formalism using 

n-dimensional Dirac matrices to develop an n-dimensional 

version of the Darbyshire operator. 

The Darbyshire operator makes use of the symmetry 

across the trailing diagonal of a 4 × 4 square matrix. If we 

write the Dirac matrix, E11, such that: 

E�� = 	B�⨂	B� = 0(PQ+ = 51, if	
 = 10, if	
 ≠ 1                 (27) 

Then, the Darbyshire operator, for a 4 	×  4 square 

matrix,	A, can be written as: A(+∅ = �E���(TATUV �E���U+ = 0(PQTATUV 0UPQ+ = APQ+PQ(    (28) 

Where T is the matrix transpose, thus: A∅ = E��AVE��                                  (29) 

This formulation turned out to be extremely useful in the 

solution to a set of nonlinear coupled wave equations written 

in compact matrix form that described four-wave mixing in 

nonlinear optics [3].  

3.2. The Dirac Matrices to n-Dimensions 

Pais [6] showed that it was possible to extend the 4 × 4 

Dirac matrices to n-dimensions. For n-dimensions there 

exists n Dirac matrices with dimension 2W� × 2W� , and by 

defining X = ;�, it is possible to write: 

Γ�=Λ[  

Γ�� = Λ[Q�⨂B��[Q�.��⨂	I�[Q�.��⨂ ∙∙∙ 	⨂	I�[�, � = 1,… 	] − 1 

Γ��.� = Λ[Q�⨂B=�[Q�.��⨂	I�[Q�.��⨂ ∙∙∙ 	⨂	I�[�,� = 1,… 	] − 1  (30) 

Γ�[ = B����⨂	I���⨂ ∙∙∙ 	⨂	I�[� 
Where Λ� = B����⨂	B����⨂ ∙∙∙ 	⨂	B����	and the superscripts 

refer to distinct sets of the Pauli matrices. Now, the n-

dimensional Dirac matrices satisfy the anti-commutator 

relation given by: Γ(Γ+ + Γ+Γ( = ,Γ(, Γ+-. = 2I;0(+ , 
, 1 = 1…^        (31) 

Where I; is the n-dimensional identity matrix. 

3.3. The n-Dimensional Formalism 

Based on (30), it is possible to write the n-dimensional 

Darbyshire operator, in terms of n-dimensional Dirac 

matrices, as: A∅ = Γ�AVΓ� = Λ[AVΛ[                          (32) 

Where Λ� = B����⨂	B����⨂ ∙∙∙ 	⨂	B���� . More importantly, 

for an n × n square matrix,	A the following general properties 

of the n-dimensional formalism can be written down: 

(i). 9A∅?V = �AV�∅ = A∅ 

(ii). 9A∅?Q� = �AQ��∅ = A∅ 

(iii). 9A∅?_ = �A_�∅, where †	is the Hermitian conjugate. 

(iv). �A + B�∅ = A∅ + B∅ 

(v). �AB�∅ = A∅B∅ 

(vi). �ABC�∅ = A∅B∅C∅ , for cyclic permutations of the 

matrices. Where A = 9c(+?, B = 9d(+?	and	C = 9�(+? 
are square matrices of the same dimension n. 

(vii). hA∅h	=|A|,  where |∙| represents the determinant of a 

matrix. 

(viii). hA∅h = I, and therefore unitary. 

(ix). Tr9A∅? = Tr�A�, where Tr represents the trace of a 

matrix. 

It is also possible to write the operator as the sum of a 

symmetric and anti-symmetric matrix, in the trailing 

diagonal, such that: 

A∅ = �� 9A∅ + A∅? + �� 9A∅ − A∅?              (33) 

Indeed, further analysis of the n-dimensional Darbyshire 

operator is likely to uncover more useful properties, 

especially when considering symmetry and group theoretical 

methods. 

4. A Brief Review of Potential 

Applications 

We note that higher-dimensional gamma matrices are 

already used in relativistically invariant wave equations in 

arbitrary space-time dimensions, notably in superstring 

theory. Superstring theory is based on supersymmetry that 

proposes a type of space time symmetry that relates two basic 

classes of elementary particles, namely bosons, which have 

an integer-valued spin, and fermions, which have a half-

integer spin. Since the groups generated by these matrices are 

all the same, it is possible to look for similarity 

transformations that connects them all. This transformation is 

generated by a respective charge conjugation matrix, Indeed, 

C-symmetry refers the symmetry of physical laws under a 

charge conjugation transformation in which 

electromagnetism, gravity and the strong interaction all obey, 

but weak interactions violate. This interestingly relates back 

to the original analysis by Pais [6], which was used here in 

our development of the n-dimensional Darbyshire operator.  

When these higher-dimensional matrices are interpreted as 

the matrices of the action of a set of orthogonal basis vectors 

for contravariant vectors in Minkowski space, the column 

vectors on which the matrices act become a space of spinors, 

on which the Clifford algebra of space time acts. This in turn 

makes it possible to represent infinitesimal spatial rotations 

and Lorentz boosts (i. e., rotation-free Lorentz 

transformations). Lorentz transformations are coordinate 

transformations between two coordinate frames that move at 

constant velocity relative to each other. Historically, the 

transformations were the result of attempts by Lorentz and 

others to explain how the speed of light was observed to be 

independent of the reference frame, and to understand the 

symmetries of the laws of electromagnetism.  
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Minkowski space is the mathematical setting in which 

Einstein’s theory of special relativity is most conveniently 

formulated. In this setting the three ordinary dimensions of 

space are combined with a single dimension of time to form a 

four-dimensional space-time continuum. While a Euclidean 

space has only space-like dimensions, a Minkowski space also 

has one time-like dimension. The symmetry group of a 

Euclidean space is the Euclidean group and for a Minkowski 

space it is the Poincare  ̈ group; the Poincare¨ group is the 

group of isometries of Minkowski space-time. An isometry is a 

way in which the contents of space-time could be shifted that 

would not affect the proper time along a trajectory between 

events. If you ignore the effects of gravity, then there are ten 

basic ways of doing such shifts: translation through time, 

translation through any of the three dimensions of space, 

rotation (by a fixed angle) around any of the three spatial axes, 

or a boost in any of the three spatial directions. These 

isometries form the Poincare¨ group since there is an identity 

(no shift, everything stays where it was), and inverses (move 

everything back to where it was). 

5. Conclusions 

In this paper, we have extended a new matrix operator that 

was initially developed using the 4 × 4 Dirac matrices into 

its n-dimensional counterpart. We have presented a set of 

properties satisfied by the new formalism and briefly 

discussed some areas of interest for potential applications.  
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