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Abstract: Climate Change hypothesis pushed the scientific community to question the characteristics of the classical 

statistics such as mean, variance, standard deviation, covariance, etc. in the hydroclimatic field. Many studies have revealed 

that the climate has always changed and that these changes are closely related to the Hurst phenomenon detected in long 

hydroclimatic time series and in stochastic term which is equivalent to a simple scaling behavior of climate variability on the 

time scale. A new statistical framework taking into account the climatic variability is now applied. Most studies are at annual 

scale where variability at finer scales is not taken into account. This paper proposes to verify the validity of the new statistical 

framework at finer time scale: the daily time scale. Twelve (12) daily time series of flows, rainfalls and temperatures with 

18,628 observations, each one, were studied. Four different methods, such as Rescaled range Statistic (R/S) method, R/S 

modified method, Aggregate Variances method and Aggregated Standard Deviation (ASD) were applied to determine the 

Hurst exponent (H). All methods lead to the conclusion that the investigated time series have a long-term persistence 

phenomenon. Contrary to annual time series where variability corresponds to a Simple Scaling Stochastic (SSS) process, the 

daily time series seem to correspond to a process having both a SSS component and a deterministic component. 

Keywords: Climate Change, Hurst Phenomenon, Hydroclimatic, Persistence, Uncertainty 

 

1. Introduction 

In the last three decades, climate change has been the 

subject of intensive scientific research. The focuses are on the 

understanding of factors, mechanisms and processes related to 

climate, and also on the climate modeling at global scale. 

Another important field of recent research is the detection and 

attribution of changes in the past climate. Many hydrologists 

agree that climate change is a result of human’s activities but 

the recent research on climate change has led a strong 

conclusion that climate has always, throughout the Earth’s 

history, changed irregularly on all time scale [1]. However, the 

same author said that undoubtedly, change has been 

accelerated in modern times due to radical developments in 

demography, technology and life conditions. He also classified 

change with respect to its predictability. For this author, the 

change is regular in simple systems (Left part of Fig. 1). The 

regular change can be periodic or non-periodic. Whatever it is, 

using equations of dynamical systems, regular change is 

predictable. But this kind of change is rather trivial. More 

interesting are the more complex systems with long time 

horizons (right part of Fig. 1), where change is unpredictable 

in deterministic terms, or random. 
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Fig. 1. Classification of change with respect to predictability [1]. 

For [2], the falling and rising local trends can be regarded 

as climate changes or variations, considered by many as 

deterministic components in climatic time series. According 

to this author, climate cannot be predicted in deterministic 

term under change [1-3]. In all cases, however, these changes 

are irregular and are better modeled as stochastic fluctuations 

on many time scales, in the absence of an accurate 

deterministic model that could explain them and predict their 

future. Under climate change, are the typical statistics, used 

on hydroclimatic (such as mean, variance, standard deviation, 

cross and autocorrelation) with hypothesis of identically 

distributed and independent of variables, consistent? 

According to [4], climate must be considered as a stochastic 

system. A stochastic basis for dealing with these shifts and 

trends is offered by Simple Scaling Stochastic (SSS) processes 

that are consistent with the assumption of hydroclimatic 

fluctuations on multiple time scales, a behavior that is none 

other than the Hurst phenomenon discovered by [5]. 

Pure randomness, such as in classical statistics, where 

different variables are identically distributed and 

independent, is sometimes a useful model, but in most cases 

it is inadequate [1]. In several studies such as [2, 6-9] the 

Hurt phenomenon was explained by multi-scale variability of 

time series. A number of studies have identified the Hurst 

phenomenon in several environmental quantities such as (to 

mention a few of the more recent) wind power [10]; global 

mean temperatures [11]; flows of the Nile [2, 12]; flows of 

the River Warta, Poland [13]; inflows of Lake Maggiore, 

Italy [14]; indexes of North Atlantic Oscillation [15]; and 

tree-ring widths, which are indicators of past climate [6]. The 

Hurst phenomenon which characterizes the dependence in 

time series is interpreted as “memory indicator”. Thus, the 

long-rang dependence is interpreted as “long memory”. 

But the Hurst phenomenon is not necessarily an indicator 

of infinite memory of a process [16]. It is more insightful to 

interpret long-range dependence as long-term change [2]. 

According to [1-2], the fluctuations (i.e. change) in times 

series can be regarded as a manifestation of Hurst 

phenomenon. 

2. Study Location and Data 

The Ouémé catchment covers an area of 49,256 km
2
 at the 

hydrometric station of Bonou, with a length of 523 km 

representing 47.2% of Benin area [17]. It extends from 

latitude 7°58 to 10°12 and from longitude 1°35 to 3°05 [18] 

(Fig. 2). The rainfall, which is mainly controlled by the 

atmospheric circulation of two air masses and their seasonal 

movement (the Harmattan and the monsoon), is characterized 

by two types of climate: from the bimodal climate in the 

south to unimodal climate in the north [17]. The averages of 

annual rainfall (1960 - 2010) are 1204.77 mm at the Bétérou 

and 1098.40 mm at Savè. The dynamic of the flow is 

characterized by a high discharge during the rainy season. 

The maximum flow over 1952 - 2010 is around 267.88 m
3
/s 

at Bétérou and 478.87 m
3
/s at Savè’s bridge. From November 

to May almost all the rivers dry up and the averages of low 

flows go from 49 to 5m
3
/s at Savè station and 17 to 2 m

3
/s at 

Bétérou [18]. 

 

Fig. 2. Location of the study area [19]. 
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Data used in this study included daily time series of river 

flows, rainfalls and temperatures from January first 1960 to 

December 31 2010 (18,628 days). Meteorological data 

(rainfall and temperature) and river flows data were provided 

respectively by the Benin Meteorological Department, 

ASCENA (Agency for Air Navigation Safety in Africa and 

Madagascar) and the National Directorate of Water (DG-

Eau). Spatialized regional daily average rainfall was obtained 

by kriging method by [19]. A common characteristic that 

comes from the four examples depicted in Fig. 3 is that a 

local multi-day average (30-day and 365-day average) is not 

stable but, it exhibits significant variability. In Fig. 3a and 

Fig. 3b, one observes an alternation of rising and falling 

trends in the time series of runoff and rainfall moving 

averages. But, regarding temperatures, there is a rising trend 

of different moving averages of each time series. As it has 

been noted above, these fluctuations can be regarded as the 

evidence of long-term change in the times series. To verify 

the hypothesis of long-term change in time series, we need to 

determine the Hurst exponent (H). 

 

Fig. 3. Change at different scales in hydrometeological data à Savè station. 

3. Estimation of Hurst Exponent 

The Hurst exponent H (0<H<1) provides a measure of the 

intensity of the long-term persistence (LTP). Thus, it is used 

to classify time series according to their dependence structure 

[20]. 

If H = 1/2, the autocorrelations are zero and the spectral 

density is constant and positive. The process therefore has no 

LTP (white noise). 

If 1/2<H<1, the autocorrelations are all positive and 

decrease hyperbolically to zero. The spectral density exhibits 

a pole at zero frequency. The series presents non-periodic 

cycles of all kinds. Low frequencies are very important and 

cycles (not periodicals) slow becoming more pronounced. 

The process has the form of LTP. 

If 0<H<l/2, the autocorrelation sign alternates and the 

spectral density, null at zero, is dominated by high-frequency 

components. The process is anti-persistent. 

Many methods for estimating of Hurst exponent are 

available. Some of these are described in detail in [21-22]. In 

this paper, we use only the Rescaled range Statistic (R/S) 

method, the Rescaled range Statistic (R/S) method modified 

by [23], the aggregated variance method [22] and Aggregated 

Standard Deviation (ASD) method. 

3.1. The R/S Method 

Introduce by [5] and developed in [24-26]; the R/S statistic 

is certainly the most known and used method of estimating of 

H. It is defined as the extent of the partial sums of deviations 

of a time series to its mean divided by its standard deviation. 

For a time series, 

Yt, t = 1, 2,....., T, with mean 
tY . R is defined by: 

1 1
1 1

( ) ( )

k k

T Tj j
k T k T

j j

R Max Y Y Min Y Y
≤ ≤ ≤ ≤

= =

= − − −∑ ∑       (1) 

In practice, this method involves several steps: 

First, one determines a sequence of integers (ki) i = 1,..., m 

of length m, arbitrarily chosen, such that 1 < km <... < k1 < n, 

for which the sequence defined by [27] is used such that for 

i = 1, 2, 3,..., 6, 
i

n
k

i

 =  
 

 and for 

i = 7, 8, 9, …., m, 1

1.15
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k
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Then, for each ki, one determines the Q (ki) statistic. 

Afterward the logarithms of Q (ki) and the logarithms of ki 
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are determined, and the log Q (ki) versus logKi is plotted. 

Finally, one draws a line whose expression is: logQ (ki) = a + 

blogki + u and one applies the ordinary least square which 

gives the estimators of a and b and then one can determine 

the estimated Hurst coefficient as H = b. 

Various authors [24, 26, 28] emphasized the superiority of 

the R/S analysis compared to more traditional methods of 

detection of LTP such as studying autocorrelation, reports 

variances and spectral analysis. [20] shows that the R/S 

analysis can detect the presence of LTP even in a highly non- 

Gaussian time series. 

3.2. Modified R/S Method (Lo Method) 

Among the disadvantages of R/S Statistics proposed by 

Hurst, one can cite its sensitivity to the presence of short-

term persistence (STP). To overcome this problem, [23] 

proposed another statistic, called "modified R/S statistic." Its 

limit distribution is invariant to different forms of short 

memory processes. This method allows testing the null 

hypothesis of no LTP against the alternative of STP. The 

modified R/S statistic of Lo has the following form: 

1 ( )
( )

( )
q

q

R n
Q n

S nn
=ɶ                          (2) 

With 
1/2

2

1 1

2
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nS and nX  are respectively the empirical variance and 

mean. 

( ) 1
1

j

j
w q

q
= −

+
 (q=1, 2,…, q) are the weights proposed 

by [29]. 

In practice, the selection of the integer q is a real problem. 

[30-31] have shown by Monte Carlo studies that when q is 

relatively large compared to the sample size, the estimator is 

biased and therefore q must be chosen as a small integer, 

while other studies have shown by Monte Carlo that q = 1 is 

an acceptable choice. Then, we choose q=1. Contrary to the 

classic R/S statistic, the limit distribution of the modified R/S 

is known and the statistic V defined by: 

TQ
V

T
=
ɶ

                                    (3) 

converges to the extent of a Brownian bridge on the unit 

interval. It is therefore possible to perform a statistical test of 

the null hypothesis of short persistence against the alternative 

hypothesis of long-term persistence by referring to the table 

of critical values provided by [23]. 

3.3. Aggregated Variance Method 

The method of aggregated variance is based on the 

aggregation of the time series into several blocks ( )m
kY  of 

size m: 

( )

1 ( 1)

1
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k
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k = 1, 2,..., T/m is the block sequence number. T is the 

number of observations. 

Different values are selected for the parameter m, {mi, i ≥ 

1} such as 1i

i

m
C

m

+ = where C is a constant that depends only 

on the lengths of the time series and the desired number of 

points. Then, one calculates the variance
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The procedure is repeated for successive values of m and 

one has ( ) 2 2( ) .
m HV Y C m −≈  where C is a constant. 

A regression of log ( )
( )

m
V Y  on log (m) is a straight line 

with slope 2H-2, which provides an estimator of H. 

3.4. Aggregated Standard Deviation (ASD) 

To apply ASD method, we need to assess the standard 

deviation at several time scales. It has several advantages 

such as (1) easy understandability and transparency that 

enables better perception of the behavior and does not hide 

its implications, (2) simplicity and minimal parameterization 

(it does not involve any other concept than standard 

deviation), which enables a probabilistic description of the 

concepts it uses and hence a statistical framework of 

estimation and testing, and (3) appropriateness, in terms of 

producing estimates within the interval (0, 1) [31]. 

Let Xi be a stationary process on discrete time i (referring 

to days here) with standard deviation σ and let 

( )
1( .... ) /k

i i i kX X X k− += + +                    (6) 

be the aggregated process at time scale k, with standard 

deviation σ
(k)

. 

The LTP is expressed by elementary scaling process: 

( )

1

k

Hk

σσ −=                                 (7) 

Equation (6) corresponds to a stochastic process in discrete 

time and termed Hurst-Kolmogorov process (HK). Its 

continuous time form is [1, 33]: 

1
( ) ( )

H
k a a

k
σ σ

−
 =  
 

                          (8) 

where a is any time scale, σ (a) is the standard deviation at 

scale a, and both a and k have units of time. To determine H, 

we use the algorithm by [2], which by construction ensures 

appropriate estimates H. For comparisons, we add another 
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common stochastic process; the simple Markov process or, in 

discrete time i, the autoregressive process of order 1 (AR 

(1)), which is the most example of short term-persistence 

(STP). It exhibits dependence expressed at scale 1 as 

xi = ρ xi – 1 + vi                             (9) 

where ρ stands for the lag-one autocorrelation coefficient (–1 

< ρ < 1) and vi (i = 1, 2, …) are independent, identically 

distributed, random variables. In this case the standard 

deviation is given by [6, 32]: 

(1)
( )

2

1 2 (1 )

1 (1 )

k
k

k k

σ ρ ρ ρσ
ρ ρ

+ −= −
− −

                 (10)
. 

Table 1 presents the results of the estimation of H with the 

four (04) methods described above. 

Table 1. H and ρ values obtained for different methods. 

Data R/S Modified R/S Aggregated variance ADS method Markov 

Béterou rainfall H=0.67 H=0.65; V=3.82 H=0.66 H=0.63 ρ=0.224 

Savè rainfall H=0.67 H=0.65; V=4.43 H=0.64 H=0.65 ρ=0.386 

Bonou rainfall H=0.69 H=0.67; V=4.74 H=0.64 H=0.67 ρ=0.412 

Flow at Bétérou H=0.72 H=0.62; V=11.24 H=0.74 H=0.84 ρ=0.991 

Flow at Savè H=0.72 H=0.63; V=9.23 H=0.76 H=0.88 ρ=0.988 

Flow at Bonou H=0.73 H=0.65; V=10.89 H=0.75 H=0.87 ρ=0.998 

Lower temp at Savè H=0.79 H=0.70; V=24.41 H=0.83 H=0.90 ρ=0.654 

Upper temp at Savè H=0.73 H=0.68; V=12.05 H=0.72 H=0.86 ρ=0.806 

Mean temp at Savè H=0.74 H=0.66; V=17.41 H=0.93 H=0.87 ρ=0.802 

Lower temp at Bohicon H=0.78 H=0.72; V=25.58 H=0.84 H=0.90 ρ=0.691 

Upper temp at Bohicon H=0.73 H=0.67; V=9.45 H=0.91 H=0.86 ρ=0.776 

Mean temp at Bohicon H=0.74 H=0.66; V=16.72 H=0.93 H=0.89 ρ=0.815 

temp = temperature 

These results show that, for all investigated methods, H 

values are superior to 0.5. This means that the time series 

seem to indicate a LTP behavior. 

To determine whether the estimated H values are 

significantly higher than 0.5 (i.e. if the time series have a 

long-term dependence), the statistic V is compared to the 

critical values provided by [23] which in the case of one 

sided test is around 1.620 and 1.747 responsively for 5% and 

10% significance level. The values of the statistic V are 

between 3.82 and 25.58. We therefore conclude that the time 

series exhibit LTP behavior. 

The H values for the three time series of rainfall (Bétérou, 

Savè, Bonou) are in the same order of magnitude, whatever 

the method used. In fact, in the Ouémé at Bétérou basin, H 

values vary from 0.67 (R/S method) to 0.63 (ADS method) 

with an average of 0.65. In the Ouémé at Savè basin the 

values of H vary from 0.67 (R/S method) to 0.64 (aggregate 

variance method) with an average of 0.65. In the Ouémé at 

Bonou basin, H ranges from 0.69 (R/S) to 0.64 (aggregate 

variance method) with an average of 0.67. The lag-one 

correlation coefficients are also low and are of the order of 

0.224 in the Ouémé at Bétérou basin, 0.386 in the Ouémé at 

Savè basin and 0.412 in the Ouémé at Bonou basin. In 

summary, the daily rainfall exhibit LTP behaviors. But the 

intensity of these behaviors are low (low values of H). 

Therefore, these time series undergo a small change and this 

is consistent with the low fluctuations of moving averages 

shown in Fig. 3b. Regarding the flow, it can be noticed that 

the H values obtained with the modified R/S method are 

significantly lower than those obtained from the other 

methods. This can be explained by the fact that the modified 

R/S method is not sensitive to the STP characteristic of these 

series (ρ close to 1 in the three series). 

At the hydrometric station of Bétérou, the values of H are 

between 0.84 (ADS method) and 0.62 (Modified R/S 

method) with an average of 0.73. This average is equal to 

0.77 when we don’t take into account the value of Modified 

R/S method. 

At the hydrometric station of Savè, the values of H range 

from 0.88 (ADS method) to 0.63 (Modified R/S method) 

with an average of 0.74. This average rises to 0.79 when the 

Modified R/S method is not taken into account. The values of 

H range from 0.87 (ADS method) to 0.65 (Modified R/S 

method) at high STP. The insensitivity to STP of the 

Modified R/S method can therefore explain the low values of 

H obtained by this method compared to the other three 

methods. 

In summary, the H values for the river flow series are quite 

high and ρ values are very close to 1. Therefore, these time 

series exhibit strong LTP and STP behaviors. The strong LTP 

can be justified by the large fluctuations of moving averages 

shown in Fig. 3a. When we consider only the ADS method, 

H values (0.86 for Bétérou, 0.88 for Savè and 0.87 for 

Bonou) are equivalent to those obtained on the annual series 

of the Nile flow rates, i.e. 0.87 by [1], 0.89 by [2] and [34] 

for a time series of 849 years and 0.85 by [35] for a time 

series of 131 years by using the same method. On the other 

side, in Boeoticos Kephisos Basin in Greece, the H 

coefficient was estimated to 0.79 for the annual flows of 95 

years [1]. 

In the case of temperatures, it can be noticed that the H 

values with the R/S method are also significantly lower than 

those obtained from the other methods. Since ρ values are 

also higher (between 0.654 and 0.815), then the series have a 

high STP. The insensitivity to STP of the Modified R/S 

method can therefore explain the low values of H obtained by 
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this method compared to the other three methods. 

For both considered stations, the H values are almost 

identical for the same kind of series. In general, the average 

values of H are 0.80 for the daily mean temperatures and 

0.77 for the maximum of daily temperatures. It is equal to 

0.81 for the minimum of daily temperatures. When one 

abandons the modified R/S method, then averages are 0.85 

for the daily mean temperatures, 0.84 for the minimum of 

daily temperatures and 0.80 for the maximum of daily 

temperatures. 

The H values given by the ADS method are also in the 

same order of magnitude as those given by the annual 

temperatures series [6, 32]. 

4. Prediction with SSS 

The climacogram, which is the logarithmic plot of 

standard deviation (σ
(k)

) vs scale (k), provides very 

information on the behavior of process. Thus, to construct the 

empirical climacogram we calculate an averaged time series 

for each scale (k = 1, 2, 3,..., n/10) and then calculate the 

sample estimate of the standard deviation σ (k). In a purely 

random process, the climacogram would be a straight line 

with slope – 0.5, as implied by the classical statistical law: 

( )k

k

σσ =                                  (11) 

But in real-world processes, the slope is different from – 

0.5, it is equal to H – 1, where H represents the Hurst 

coefficient. This slope corresponds to the scaling law in 

equation (7). 

Fig. 4 presents the empirical climacograms of time series. 

The slopes of climacograms are not constant. They vary with 

the time scale (Table 2). For three time series of runoff, when 

k is between 1 and 10, the average of climacograms slope is - 

0.008. The value of the Hurst coefficient is then 0.99. For 

values of k ranging from 11 to 30, the slope of climacograms 

decreases to an average of - 0.04, which corresponds to H = 

0.96. k is from 31 to 100, the average slope of climacograms is 

- 0.20 and corresponds to a value of 0.80 for H. When k is 

between 101 and 365, the average slope of climacograms is -0 

84 and H is equal to 0.16. Finally when k is greater than 365, 

the slope rises to -0.33 and the Hurst coefficient value is 0.77. 

In summary, when k is between 1 and 100 and when k is 

greater than 365, the time series of runoff present a LTP 

behavior (H>0.5), while when k is between 101 and 365 the 

time series have an anti-persistent behavior (H<0.5). 

The climacograms of rainfall show also several slopes. 

When k is between 1 and 7, the average of climacograms 

slope is -0.24. The H value is then 0.76. For k equal 8 to 70, 

the average slope of climacograms becomes higher (-0.097) 

and the Hurst coefficient is 0.90. For k between 71 and 160, 

the average of climacograms slope down to - 0.35 which 

corresponds to H equal to 0.65. For k values between 161 

and 365 days, the slope of climacograms is abnormally low (-

1.87). The value of the slope does not allow us to determine 

H. When k is greater than 365, the slope of climacograms is - 

0.49 and H is equal to 0.5. 

Table 2. Variation of H and slope of climacograms with time scale. 

k values 1-10 11-30 31-100 101-365 366-1862 

Runoff at Bétérou 
S=-0.011 S=-0.055 S=-0.23 S=-0.88 S=-0.28 

H=0.99 H=0.94 H=0.77 H=0.12 H=0.72 

Runoff at Savè 
S=-0.011 S=-0.044 S=-0.2 S=-0.79 S=-0.32 

H=0.99 H=0.96 H=0.80 H=0.21 H=0.68 

Runoff at Bonou 
S=-0.0028 S=-0.031 S=-0.17 S=-0.86 S=-0.39 

H=0.99 H=0.97 H=0.83 H=0.14 H=0.61 

k values 1-7 8-70 71-160 161-365 366-1862 

Rainfall at Bétérou 
S=-0.27 S=-0.1 S=-0.36 

S=-1.87 
S=-0.5 

H=0.73 H=0.90 H=0.64 H=0.5 

Rainfall at Savè 
S=-0.23 S=-0.097 S=-0.35 

S=-1.93 
S=-0.5 

H=0.77 H=0.90 H=0.65 H=0.5 

Rainfall at Bonou 
S=-0.22 S=-0.094 S=-0.34 

S=-1.83 
S=-0.5 

H=0.78 H=0.90 H=0.66 H=0.5 

k values 1-70 71-365 366-1862 
  

Tmin at Savè 
S=-0.12 S=-0.37 S=-0.1 

  H=0.88 H=0.63 H=0.90 

Tmin at Bohicon 
S=-0.11 S=-0.38 S=-0.092 

  H=0.89 H=0.62 H=0.90 

k values 1-70 71-160 161-365 366-1862 
 

Tmax at Savè 
S=-0.044 S=-0.32 

S=-1.69 
S=-0.25 

 H=0.96 H=0.68 H=0.75 

Tmax at Bohicon 
S=-0.048 S=-0.33 

S=-1.88 
S=-0.38 

 H=0.95 H=0.67 H=0.62 

Tmean at Savè 
S=-0.055 S=-0.31 

S=-1.18 
S=-0.16 

 H=0.95 H=0.69 H=0.84 

Tmean at Bohicon 
S=-0.056 S=-0.32 

S=-1.28 
S=-0.19 

 H=0.94 H=0.68 H=0.81 

S=slope of climacograms; 
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In summary, the rainfall series exhibit LTP behavior when 

k is less than 161 days but when k is greater than 365 days, 

the rainfall series are Gaussian (H=0.5). 

The climacograms of the daily minimum temperatures 

series have three levels of varying slopes. When k is from 1 

to 70, the average slope of climacograms is - 0.11. The Hurst 

coefficient is then 0.89. For k between 71 and 365, the slope 

is - 0.375 which gives H = 0.63. When k is greater than 365 

days the slope is - 0.096, and the value of H is equal to 0.90. 

Therefore, one can conclude that, whatever the value of k, 

the average temperature series have a LTP behavior. The 

climacograms of the series of maximum and mean of daily 

temperatures reveal 4 different slopes. The first slope is 

obtained for k between 1 and 70. They vary from - 0.044 to - 

0.056 with an average of - 0.05. The Hurst coefficient is 

equal to 0.95. The second slope is obtained when k is 

between 71 and 160 and they vary from - 0.33 to - 0.31 with 

an average of - 0.32. Then, the Hurst coefficient is equal to 

0.68. The third slopes vary from - 1.18 to - 1.88 with an 

average of - 1.51. As it has been noticed in the daily rainfall, 

this slope doesn’t allow the determination of the Hurst 

coefficient. The last slope is obtained when k>0, and varies 

from - 0.16 to -0.38 with an average of - 0.25. In such a case 

H is equal to 0.75. 
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Fig. 4. Empirical climacograms (scatter), White noise climacogram (green line), Markov climacogram (blue line) and HK climacogram (line). 
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Fig. 5. Empirical climacograms (scatter), Periodc process with white noise (green line), Periodic process with Hurst-Kolmogorov (red line). 

The above analysis shows that the slope of climacograms 

varies with the time scale contrary to the assumption of 

classical statistic that the slope is constant and equal to - 0.5. 

For some time series (such as rainfall, mean and maximum of 

temperatures), where k is between 161 and 365, the slope of 

climacograms is outside the interval (-1, 0). Therefore, H is 

not between (0, 1). It appears necessary to wonder whether 

only the stochastic appearance is enough to model 

hydroclimatic phenomena. 

It can be noticed that the empirical climacograms show a 

rate of periodic processes. This appears to be consistent with 

the fact that for most hydrometeorological processes are 

cyclical with a period of one year. To improve the results 

obtained with the fitting of empirical climacograms by HK 

model, we decided to model the series as cyclostationary one 

[1]. Equation (12) describes a periodic process with white 

noise: 

( )

1/2

( ) 2sin
k b k

a c
k T

T
σ

 
  = +    

  

                 (12) 

Where T is the period of the process, a and b are 

parameters and sinc (x) is the cardinal sinus of x and is equal 

to: 

sin( )
sin ( )

x
c x

x

π
π

=                             (13)
 

When 

k T= , 2sin 0
k

c
T

  = 
 

then 1/2( )T bσ =  and 

( )

1/2

( )2
( ) 2sin

T
k k

a c
k T

T

σσ
 

  = +    
  

               (14) 

The periodic component of equation (14) is more 

deterministic than stochastic. Thus, integrating the HK 

behavior to periodic model, we get the periodic process with 

Hurst-Kolmogorov model whose equation is: 

( )

1/2

( )2
( ) 2

(2 2 )
sin

T
k

H

k
a c

Tk
T

σσ −

 
  = +  

  
 

            (15) 

Hurst-Kolmogorov behavior is consistent with all series 

(Fig. 5). 

Table 3 presents the uncertainties ( ( )nσ ) related to each 

model. It appears from this table that the uncertainties 

related to Hurst - Kolmogorov and periodic models are 

higher than those related to the model of classical statistic 

(i.e. white noise). But the periodic model reduces 

significantly the uncertainties than Hurst-Kolmogorov 

model. Since the periodic model takes into account the 

stochastic component and the deterministic component, 

then taking into account both components appear to be a 

better approach to reducing uncertainties in the context of 

climate change. 
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Table 3. Estimation of uncertainties. 

Data P béterou P savè P bonou Q bétérou Q savè Q bonou 
Tmean 

Savè 

Tmin 

Savvè 

Tmax 

Savè 

Tmean 

Bohicon 

Tmin 

Bohicon 

Tmax 

Bohicon 

S 6.456 5.233 4.693 104.459 245.244 290.503 1.996 1.546 3.086 1.894 1.499 2.752 

( )σ n
 (1) 0.047 0.038 0.034 0.765 1.796 2.128 0.014 0.011 0.022 0.013 0.010 0.020 

( )σ n
 (2) 0.169 0.203 0.150 26.370 75.366 80.915 0.556 0.578 0.779 0.642 0.508 0.694 

( )σ n
 (3) 0.123 0.110 0.116 12.509 32.786 34.134 0.267 0.282 0.271 0.233 0.306 0.202 

(1)=Classical model, (2)=Hurst-Kolmogorov model, (3)=periodic model, P=rainfall, Q=runoff, T=temperature 

5. Conclusion 

Climate change is a reality and is as old as the world. In 

accordance with the studies of past climate, the climate has 

always changed and at any time scale. Climate change is 

related to the Hurst’s phenomenon and corresponds to a 

simple scaling stochastic process. Daily series studied here 

seem to correspond to a process having both a noise 

component and a deterministic component. The inclusion of 

these two components appears to be a better approach to 

reducing uncertainties in the context of climate change. 

 

References 

[1] Koutsoyiannis, D., 2013a. Hydrology and change, 
Hydrological Sciences Journal, 58: 6, 1177–1197. 

[2] Koutsoyiannis, D., 2003. Climate change, the Hurst 
phenomenon, and hydrological statistics. Hydrological 
Sciences Journal, 48 (1), 3–24. 

[3] Koutsoyiannis, D., 2010. HESS Opinions “A random walk on 
water”. Hydrology and Earth System Sciences, 14, 585 601. 

[4] Von Storch, H., von Storch, J-S. & Müller, P. (2001) Noise in 
the climate system—ubiquitous, constitutive and concealing. 
In: Mathematics Unlimited—2001 and Beyond (ed. by B. 
Engquist & W. Schmid). Springer, Berlin, Germany. 

[5] Hurst, H. E., 1951. Long term storage capacities of reservoirs. 
Transactions of the American Society of Civil Engineers, 116, 
776–808. 

[6] Koutsoyiannis, D., 2002. The Hurst phenomenon and 
fractional Gaussian noise made easy. Hydrological Sciences 
Journal, 47 (4), 573–595. 

[7] Koutsoyiannis, D., 2011a. Hurst-Kolmogorov dynamics as a 
result of extremal entropy production. Physica A: Statistical 
Mechanics and its Applications, 390 (8), 1424–1432. 

[8] Koutsoyiannis, D., 2011b. Hurst-Kolmogorov dynamics and 
uncertainty. Journal of the American Water Resources 
Association, 47 (3), 481–495. 

[9] Mesa, O. J. & Poveda, G. (1993) The Hurst effect: the scale of 
fluctuation approach. Water Resour. Res. 29 (12), 3995– 4002. 

[10] Haslett, J. & Raftery, A. E. (1989) Space–time modelling with 
long-memory dependence: assessing Ireland’s wind power 
resource. Appl. Statist. 38 (1), 1–50. 

[11] Bloomfield, P. (1992) Trends in global temperature. Clim. 
Change 21, 1–16. 

[12] Eltahir, E. A. B. (1996) El Niño and the natural variability in 
the flow of the Nile River. Water Resour. Res. 32 (1) 131–137. 

[13] Radziejewski, M. & Kundzewicz, Z. W. (1997) Fractal 
analysis of flow of the river Warta. J. Hydrol. 200, 280–294. 

[14] Montanari, A., Rosso, R. & Taqqu, M. S. (1997) Fractionally 
differenced ARIMA models applied to hydrologic time series. 
Water Resour. Res. 33 (5), 1035–1044. 

[15] Stephenson, D. B., Pavan, V. & Bojariu, R. (2000) Is the 
North Atlantic Oscillation a random walk? Int. J. Climatol. 20, 
1–18. 

[16] Klemeš, V., 1974. The Hurst phenomenon: a puzzle? Water 
Resources Research, 10 (4), 675–688. 

[17] Le Barbé L., Alé G., Millet B., Texier H., Borel Y. (1993). 
Monographie des ressources en eaux superficielles de la 
République du BENIN. Paris, ORSTOM, 540 pages. 

[18] Totin V. S. H., Boko M., Ogouwale E., 2002. Dynamique de la 
mousson Ouest africaine, régime hydrologique et gestion de 
l’eau dans le bassin supérieur de l’Ouémé. LECREDE, 12 
pages. 

[19] Biao I. E., Gaba C., Alamou A. E. and Afouda A., 2015. 
Influence of the uncertainties related to the Random 
Component of Rainfall Inflow in the Ouémé River Basin 
(Benin, West Africa). International Journal of Current 
Engineering and Technology. Vol 3, N°3. 

[20] Mandelbrot B. B. et Wallis J. (1968). Noah, Joseph and 
Operational Hydrology. Water Resources Research, vol 4, pp. 
909-918. 

[21] Beran, J., 1994. Statistics for long-memory processes. New 
York: Chapman and Hall. 

[22] Taqqu M. S., Teverovsky V. et Willinger W., 1995. 
"Estimators for Long-Range Dependence: An Empirical 
Study", Preprint, Boston University. 

[23] Lo A. W., 1991. Long-term memory in stock market prices. 
Econometrica, vol. 59, No. 5, 1279-1313. 

[24] Mandelbrot B. B. et Wallis J. (1969). "Robustness of the 
Rescaled Range R/S in the Measurement of Noncyclic Long-
Run Statistical Dependence", Water Resources Research, vol. 
5, pp. 967-988. 

[25] Mandelbrot, B. B., 1972. "Statistical Methodology for Non 
Periodic Cycles: From the Covariance to R/S Analysis", 
Annals of Economic and Social Measurement, vol. 1, pp. 259-
290. 

[26] Mandelbrot, B. B. et Taqqu, M. S., 1979. "Robust R/S 
Analysis of Long-Run Serial Correlation". Bulletin of the 
International StatisticalInstitute, vol. 48, pp 69-104. 



 Hydrology 2016; 4(4): 35-45 45 

 

[27] Davies, R. B. and Harte, D. S., 1987. “Tests for Hurst effect”, 
Biometrika, 74, 95 − 101. 

[28] Mandelbrot, B. B., 1973. "Le problème de la réalité des cycles 
lents et le syndrome de Joseph". Economie Appliquée, vol. 26, 
pp. 349-365. 

[29] Newey, W. and West, K.., 1987. A simple positive definite, 
heteroscedasticity and autocorrelation consistent covariance 
matrix. Econometrica, vol 55, pp. 703-705. 

[30] Lo, A., And Mackinlay, C., 1989. “The Size and Power of the 
Variance Ratio Test in Finite Samples: A Monte Carlo 
Investigation,”, Journal of Econometrics, 40, 203 − 238. 

[31] Andrews, D., 1991. "Heteroskedasticity and Autocorrelation 
Consistent Covariance Matrix Estimation", Econometrica, vol. 
59, pp. 817-858. 

[32] Koutsoyiannis, D. and Montanari, A., 2007. Statistical 
analysis of hydroclimatic time series: uncertainty and insights. 
Water Resources Research, 43 (5), W05429, doi: 
10.1029/2006WR005592. 

[33] Koutsoyiannis, D., 2013b. Encolpion of stochastics: 
fundamentals of stochastic processes [online]. Athens: 
National Technical University of Athens. Available from: 
http://itia.ntua.gr/1317/ [Accessed 6 May 2013]. 

[34] Tyralis, H., and D. Koutsoyiannis, 2010. Simultaneous 
estimation of the parameters of the Hurst- Kolmogorov 
stochastic process, Stochastic Environmental Research & Risk 
Assessment, DOI: 10.1007/s00477-010-0408- 

[35] Koutsoyiannis, D., Yao, H., and Georgakakos, A., 2008. 
Medium-range flow prediction for the Nile: a comparison of 
stochastic and deterministic methods. Hydrological Sciences 
Journal, 53 (1), 142–164. 

 


