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Abstract: The customer baseline load is an important reference for the industrial and commercial users to participate in the 

demand response project, and is affected by various factors such as the environment and user electricity usage. In order to 

improve the accuracy of the baseline load forecasting of industrial and commercial users, a demand response baseline load 

forecasting model based on time series and Kalman filter combination is proposed. The marginal contribution rate of the single 

forecasting model to the combined model is obtained by the Shapley value method, then gets optimal prediction results. The case 

results show that the Kalman filter model has higher prediction accuracy in the period of stable load fluctuation, and the ARMA 

model has higher prediction accuracy in the period of large load fluctuation, and the combined prediction model combines the 

advantages of both models and reduces the single model is affected by the time factor in the prediction process, which improves 

the overall prediction accuracy and expands the scope of application. 
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1. Introduction 

Demand response (DR) is widely recognized as a key 

technology to improve the flexibility of power system and the 

reliability of power supply, which is also a more economical 

and environmentally friendly method than traditional ones. [1] 

As an effective means of power demand side management, 

replacing supply-side energy with user-side resources using 

price signals and incentive mechanisms to guide users to 

optimize power usage is of great significance in mitigating 

grid pressure and maintaining safe operation of the grid. At 

present, the research on DR are mainly divided into 

price-based DR and incentive-based DR. In price-based DR, 

users change their power consumption according to the price 

of electricity, which means, when the power system 

approaches the peak value, the price of electricity rises, and 

the user automatically reduces the demand for electricity or 

shifts it to off-peak hours, which serves to cut the peak and fill 

the valley, helping the power system to run stably; In the 

incentive-based DR, the user needs to sign a response contract 

with the DR implementing agency, and the DR implementing 

agency will reward and punish users according to the user's 

contract performance. [2] However, to evaluate the 

effectiveness of various DR projects, a key step is to 

determine the baseline load of users participating in the DR 

project. The baseline load provides a data reference for 

quantitative evaluation of the degree of user load reduction. It 

is the basis for DR implementation agencies to implement 

rewards and punishments for customers, and is a measure to 

evaluate the effectiveness of DR projects. 

The general definition of baseline load refers to the actual 

load of the user under the condition that the user does not 

perform the response during the demand response day. The 

user load reduction amount is calculated by using the baseline 

load and the actual load after the response is executed, [3-4] 

that is, the baseline load - the actual load = the load reduction 

amount. At present, a large number of foreign research on the 

baseline load, and due to the relative lag in demand response 

in China, the current focus is on short-term load forecasting of 

power, [5-7] And the researches on the baseline load mainly 

take a page from overseas researches, summarize the results 

and improve the existing methods. [8-10] Foreign calculation 

methods of user baseline load are relatively rich, [11-13] New 
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England ISO created a calculation method based on the user 

type, If the user has not previously participated in any 

requirements response items, the baseline load is calculated as 

an hourly average for the previous business day (except 

holidays and other event days). That is: Customer Baseline = 

(Sum Meter KW value for the hour)/5. If the user has 

previously been involved in a demand response project, the 

baseline load calculation formula is: new Baseline = Previous 

day Baseline*0.9 + current day metered kW*0.1. The new 

baseline load calculation formula avoids user speculation by 

assigning a weighted coefficient of the previous day and the 

same day; New York ISO established a baseline load 

calculation method for a recent demand response project, 

through selecting 5 days with the highest average daily load as 

reference data from historical data in the past ten days, and the 

prediction accuracy of the method is relatively low, but easy to 

operate, compared with other ISO, The California ISO 

calculates the 24-hour load on the event day by selecting the 

average of the three highest load days in the 10 days prior to 

the event date (excluding holidays and other event days); 

There is a similarity between PJM and New York ISO in 

baseline load calculation. They both use the load average of 

previous ten working days, but the selection of the first 5 Days 

of Load data method is different; The+90
o
F Average Day 

predict the baseline load of the demand response day by 

selecting a historical load value that exceeds a certain 

temperature, whose disadvantage is that if there are 

inadequate amounts of data exceeding a certain temperature, 

prediction accuracy will decline. 

Since the load of the power system exhibits a non-stationary 

fluctuation over a certain range with time, the 

above-mentioned baseline load calculation method is based on 

the average load value of the historical typical day, and is a 

smooth calculation method. Consequently, in order to improve 

the accuracy of baseline load forecasting of industrial and 

commercial users with non-stationary fluctuations, a demand 

response baseline load forecasting model based on time series 

and Kalman filter combination is proposed. The Kalman filter 

algorithm can solve the non-stationary stochastic process by 

using the recursive algorithm to establish the prediction 

equation and the update equation. By simulating the spatial 

state of the prediction system and performing feedback 

correction through the observations, the past and current states 

of the prediction system can be estimated effectively, and the 

accurate tracking of the dynamic system can be realized. At 

the same time, in the state of data loss, the time series contains 

various components that affect the system, accurately reflects 

the characteristics of the future development trend of the 

system, improves the weakness of Kalman filter tracking 

failure in the case of data loss, and obtains the optimal 

prediction result. 

2. Kalman Filter Model 

Kalman filter algorithm is proposed for the first time by 

Kalman in 1960, and the recursive method is used to solve 

the problem of linear filtering of data Kalman filter algorithm 

is an optimal estimation technique, [14] which can also 

estimate the past, present and future state of the target 

without the specific properties of the target model.  

The state model and observation model formula of Kalman 

filter algorithm are as follows: 

1 1k k kx Ax w− −= +                             (1) 

k k kz Hx v= +                               (2) 

Where the kx is the state value of the moment k , the kz is 

the observation value of the moment k , A is the state transfer 

matrix, H is the order of the Kalman gain matrix m n× , kw

and kv represents the target system process excitation noise 

and observation noise, And assume that they are independent 

of each other, normal distribution of white noise. 

( ) (0, )p w N Q∼
                          (3) 

( ) (0, )p v N R∼
                           (4) 

Where the covariance matrix Q  representing the process 

noise kw , R  represents the covariance matrix of the 

observed noise kv . 

The Kalman filter algorithm uses the feedback control 

method to estimate the state of the variable, calculates the 

current state variable and the error covariance estimate 

forward through the time update process, and constructs the 

priori estimation of the next time state. In the state updating 

process, the prior estimation and the new measurement value 

are combined to construct the updated posterior estimation by 

feedback. 

The time update equation is: 

1 1
ˆ ˆ

k k kx Ax w−
− −= +                          (5) 

1

T

k kP AP A Q−
−= +                         (6) 

Where ˆ
kx−

is the priori estimate of the system moment k ,
kP−

is the covariance of the priori estimation error. 

The status update equation is: 

1( )T T

k k kK P H HP H R− − −= +                 (7) 

ˆ ˆ ˆ( )k k k k kx x K z Hx− −= + −                    (8) 

( )k k kP I K H P−= −                       (9) 

Where the kK  is Kalman gain, I  is the unit matrix. In 

the process of State update, the predicted value ˆ
kx−

 and 
kp−

 

are obtained by using the time update equation, and the 

estimated value ˆ
kx  and error covariance kp  at time k  are 

obtained by combining the observation value kz as the input 

variable. 
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3. ARMA Model 

ARMA model is a basic linear time series model, which has 

been widely used in power load forecasting and is relatively 

mature. In the process of prediction, the ARMA model takes 

into account both historical data and the influence of random 

interference of historical data on the prediction results. [15] Its 

predictive model can be expressed as ARMA (p, q), which is: 

1 1 2 2

1 1 2 2

...

     ...

t t t p t p

t t q t q t

Y X X Xϕ ϕ ϕ
θ ε θ ε θ ε ε

− − −

− − −

= + + + −

− − − +
          (10) 

Where ( 1,2,3...... )
i

i pϕ =  is the autoregressive 

coefficient, ( 1,2,3......q)
i

iθ =  is the sliding average 

coefficient, t
ε is the white noise sequence. 

The ARMA Predictive modeling steps are as follows: 

Step 1: Verify whether the historical load data is stable; 

Step 2: If not smooth, the differential treatment is carried 

out, otherwise the order of the ARMA model is determined; 

Step 3: Using EVIEWS Software, the estimated parameters 

of the model are obtained. 

Step 4: Build the model and make prediction. 

4. Optimization Combination Prediction 

Model 

Kalman filtering is an optimal estimation technique. It uses 

the minimum mean square error as the criterion to perform 

mathematical recursive calculation. It uses the state at the 

previous moment of the system to obtain the optimal value at 

the next moment, which is suitable for the prediction of 

dynamic and discrete systems. The ARMA model considers 

the effects of multiple components on the system, and the 

trend of linear fitting systems is also applicable to the 

prediction of dynamic and discrete systems. Therefore, the 

two models have the characteristics of consistency and 

complementarity. 

 

Figure 1. Flow chart of combined prediction model. 

In view of the data loss caused by Kalman filtering’s failure 

to track the system, the prediction results are biased greatly 

and the ARMA model cannot fully consider the influence of 

various factors on the system in the prediction process. In this 

paper, the Kalman filter is combined with the ARMA model 

by the Shapley value method. The optimal combination 

prediction result is obtained by calculating the marginal 

contribution rate of the single model prediction result to the 
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combined model. The combined prediction model not only 

ensures that the combined model can achieve optimal 

prediction results, but also avoids the failure of data tracking 

missing Kalman filter target tracking, and brings time factors 

into the model. The calculation process of the combined 

forecasting model is: 1) calculating the Kalman filter 

prediction result; 2) calculating the ARMA model prediction 

result; 3) using the Shapley value method to calculate the 

marginal contribution rate of the single model to the combined 

prediction model, and obtaining the optimal prediction result. 

Figure 1 shows the combined forecasting model process. 

The Shapley Value method is a kind of equitable 

distribution of benefits according to the marginal contribution 

of individuals to the system. Assuming that the Kalman filter 

model and ARMA model are two independent individuals of 

the system, the prediction results are 1x , 2x , and they do not 

affect each other, and the marginal contribution rate to the 

system is 1K  and 2K , the optimal result of the system is X . 

Since there are only two individuals in the system, a linear 

combination is used to solve. [16] 

1 1 2 2

1 2 1

X K x K x

K K

= +
 + =

              (11) 

Where 1x and 2x are the vector of the dimension1 n× . 

Let the absolute error between the predicted and actual 

values of the i-th model is ite : 

it it it
e x Y= −                  (12) 

The absolute error between the combined predicted value 

and the actual value is te : 

1 1 2 2

2

   =

t t t t

i it

i

e X Y K x K x Y

k e

= − = + −

∑
         (13) 

The marginal contribution rate 1K  and 2K  are solved by 

finding absolute squared and minimum error: 
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    (14) 

The marginal contribution rate solution model: 

min min

.        U 1

T

T

f K EK

s t K

 =


=
               (15) 

In order to satisfy 1 2 1K K+ = , in the formula, the

[1,1]TU = , then Lagrange multiplier is used to solve the 

objective function, which: 

1

1 T

E U
K

U E U

−

−=                   (16) 

5. Case Study 

This paper uses the load data of industrial and commercial 

users in a certain area of Tokyo as a reference for verification 

(data from Tokyo Electric Power Company). Figure 2 shows 

the historical load of 24 hours per day for industrial and 

commercial users in the region from January 1 to 10, 2019 

(excluding holidays) data. 

 

Figure 2. Comparative analysis of historical load data. 

 

Figure 3. Comparison of prediction curves. 

From Figure 2, the load of industrial and commercial users 

in this area fluctuates greatly over time, and there is obvious 

peak and valley period. The traditional single prediction 

model is insufficient for such load characteristics. To verify 

the prediction accuracy of the combined prediction model, 

this paper uses MATLABR2016b and EVIEWS respectively 

obtain the prediction curve and relative error of the Kalman 
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filter model and the ARMA model, as shown in Figure 3 and 

Figure 4. Finally, the combined prediction results are 

obtained by the Shapley value method, as shown in Table 1. 

 

Figure 4. Relative error distribution. 

In the combined prediction model, the marginal 

contribution rate of the Kalman filter is 0.7015, and the 

marginal contribution rate of the ARMA model is 0.2985. 

This is because the average relative error of the Kalman filter 

prediction model is lower than that of the ARMA model. 

From the prediction results in Table 1, it can be concluded 

that the power consumption is relatively low and relatively 

stable during the period from 1 to 4 in the morning, and the 

relative error of the Kalman filter model is up to 0.0095, 

which is much smaller than the 0.0396 of the ARMA model. 

Similarly, between 10:00 to 15:00, the relative error of the 

Kalman filter model is much smaller than that of the ARMA 

model. Reflected in Figure 3, the relative error of the Kalman 

filter is in the low error band. During the period of 6-9, the 

user's power consumption gradually increases. The 

fluctuation characteristics are obvious. The highest relative 

error of the ARMA model is not much different from the 

Kalman filter model. However, the average relative error of 

the ARMA model is much smaller than the Kalman filter 

model. It is reflected in Figure 4. The relative error of the 

Kalman filter is in the high error band. The average relative 

error of the ARMA model is less than the Kalman filter 

model during the period of 15-24 points. After the 

combination, the relative error of the combined prediction 

model is small during the whole prediction process, and the 

overall relative error is in the middle and low error band. The 

influence of load fluctuation caused by time factor is large, 

and the average relative error is smaller than the single 

prediction model. 

Table 1. Evaluation information of expert linguistic variables. 

Predict point 

in time 

Measured 

values 

Kalman Filter 

Predictive Value 

Relative 

error 

ARMA Model 

Predictive value 

Relative 

error 

Combination Model 

Predictive values 

Relative 

error 

0 3213.6 - - - - - - 

1 3054.2 3025.0 0.0095 - - - - 

2 2980 2997.4 0.0058 3069.8 0.0301 3048.1 0.0228 

3 2943.4 2969.3 0.0088 3050.9 0.0365 3026.5 0.0282 

4 2972 2970.7 0.0004 3004.8 0.0110 2994.6 0.0076 

5 3189.6 3080.1 0.0343 3091.9 0.0306 3088.4 0.0317 

6 3694.4 3387.4 0.0830 3387.0 0.0832 3387.1 0.0831 

7 4073.6 3730.6 0.0841 3993.4 0.0196 3914.9 0.0389 

8 4310.6 4021.5 0.0670 4126.0 0.0428 4094.8 0.0500 

9 4346.4 4184.6 0.0372 4415.6 0.0159 4346.6 0. 0000 

10 4200.4 4192.1 0.001 4233.1 0.0077 4220.8 0.0048 

11 4079.8 4136.7 0.0139 4139.3 0.0145 4138.5 0.0143 

12 3887.4 4012.2 0.0321 4014.0 0.0325 4013.4 0.0324 

13 3925.4 3968.8 0.0110 3793.6 0.0335 3845.9 0.0202 

14 3916.4 3942.7 0.0067 4042.9 0.0323 4013.0 0.0246 

15 3957 3949.8 0.0018 3818.5 0.0350 3857.7 0.0250 

16 4183.2 4066.4 0.0278 4075.5 0.0257 4072.8 0.0263 

17 4442 4254.6 0.0421 4242.5 0.0449 4246.1 0.0440 

18 4463.2 4359.2 0.0232 4540.2 0.0172 4486.1 0.0051 

19 4395.2 4377.5 0.0040 4326.2 0.0156 4341.5 0.0122 

20 4298.6 4338.2 0.0092 4390.7 0.0214 4375.1 0.0177 

21 4137 4237.3 0.0242 4173.1 0.0087 4192.2 0.0133 

22 3915.8 4076.7 0.0411 4082.4 0.0425 4080.7 0.0421 

23 3649.4 3863.4 0.0586 3784.3 0.0369 3807.9 0.0434 

 
 

6. Conclusion 

In the actual type of electricity consumption, the 

residential electricity demand is relatively stable, and the 

space of participating in the demand response is small, while 

the industrial and commercial users generally use a large 

amount of electricity, and the electricity demand can be 

adjusted according to the real-time operation of the power 

grid. The key premise of the main participants, while 

evaluating the effectiveness of the demand response project 

implementation is to accurately predict the user's baseline 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0

1000

2000

3000

4000

5000

P
o
w

er
 l

o
ad

 v
al

u
e(

k
w

h
)

（ ）Time h

 Actual value

 Kalman filter prediction value

 ARMA model prediction value

 Combined model prediction value



76 Jun Dong and Shilin Nie:  Demand Response Baseline Load Forecasting Based on the Combination of  

Time Series and Kalman Filter 

load. In this paper, the Kalman filter and the ARMA model 

are combined with each other to avoid the problem of 

Kalman filter prediction in the period of stable load 

fluctuation, and the ARMA model has large prediction bias; 

in the period of large load fluctuation The Kalman filter 

predicts a large deviation, and the ARMA predicts more 

accurately. Therefore, the combined forecasting model 

reduces the influence of time factor causing large deviation 

of load forecasting without changing the advantages of the 

original single forecasting model, making up for the 

shortcomings of the single model and improving the overall 

prediction accuracy. The example verifies that the combined 

model is effective and feasible. 
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