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Abstract: One dimensional steady gradually varied flow in open channels is of academic and practical importance. Ita been 

studied for various applications and in various contexts since the 19
th

 Century. There several classes of gradually varied flow; 

i.e., one or more dimensions, steady and transient flows. Gradually varied flow may occur in several channel geometries 

comprising rectangular, trapezoidal, parabolic bottom surfaces and diverse configurations: simple channels, compound 

channels, and channel networks. The wide rectangular channel case is of particular interest in its own right, as well as serving 

as a validation benchmark for transient, and multiple dimensional gradually varied flow, the latter normally solved by 

numerical techniques and therefore requiring calibration. In this paper, a new exact analytical and easy to compute solution is 

developed. It is shown that this solution possesses the ease of computation as an advantage in comparison with existent exact 

solutions reported in the literature. As this solution involves a multiple valued function, it is consistent with the nonuniqueness 

propert of the intial value problem of one dimensional steady gradually varied flow. 
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1. Introduction 

Gradually varied flow (GVF) in open channels has been 

studied since the 19th Centuty, both for its academic and 

practical importance. GVF constitutes one of the the major 

types of fluid flow in open channels; cf. [1-3]. An extensive 

literature exists on various classes of GVF; e.g., transient, 

steady, one dimensional, two dimensional, three dimensional, 

and combinations thereof, as well sediment transport effects 

and fluid kinetic conversion to electrical power; cf. [4-6] for 

recent work on open channel work. 

This paper is concerned with one class of GVF; i.e., one 

dimensional steady GVF. This class of GVF is important 

both in its own right in that it provides a good representation 

of some open channel flows in practice, as well as 

constituting a benchmark for the validation of models of 

more complex GVF classes involving transient and multiple 

dimensional characteristics, where numerical methods are 

required [7]. The contribution of the work reported in this 

paper is that a new exact analytical and easy to compute 

solution is developed for one dimensional steady GVF, 

where channel wall and bottom friction is defined by the 

Manning equation [8]. 

The paper is organised as follows. After the Introduction 

Section, the differential equation of one dimensional steady 

GVF is presented in Section 2, along with a review of 

existent exact analytical solutions. This is followed, in 

Section 3, with the development of the new exact analytical 

solution which constitutes the contribution of this work. The 

paper is concluded in Section 4 with a comparison of the 

solution presented in this paper with existent exact solutions 

reported in the literature, as well as providing suggestions for 

future research in this area.  

2. One Dimensional Steady State GVF in 

Wide Open Channels 

One dimensional steady GVF may be described by the 
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ordinary differential equation as [1-3] 

dh/dx = (IS – IE)/(1 – Fr
2
)                          (1) 

notation employed in Eq. (1) and the rest of the paper being 

provided in Appendix 1. The friction slope, IE, depends on 

the channel geometry and the physical characteristics of the 

channel side walls and bottom surface. There are two major 

constitutive equations for IE [9]: the Chezy and the Manning 

equations, whose respective applicability in practice is 

compared in [9]. In this work, the following assumptions are 

made: 

1) Constant fluid volumetric flow rate; 

2) The Manning equation is assumed for the channel 

friction, in view of the general consensus in research work 

that the Manning equation provides better agreement with 

experiment than the Chezy equation;  

3) A wide open channel is considered; i.e., fluid level is 

very small in comparison with channel width.  

Prior to development of the new exact solution, the one 

dimensional steady equation of gradually varied flow in an 

open channel is put into adequate form for solution 

development. As stated in the last paragraph, the one 

dimensional steady GVF equation in an open channel may be 

written as 

dh/dx = (IS – IE)/(1 – Fr
2
)                       (1) 

For a wide rectangular channel of uniform cross section, b 

>> h. Then, the hydraulic radius for a wide channel may be 

written as  

Rhy = bh/(b + 2h) ≅ h                         (2) 

By definition of the Froude number, may be written as  

Fr
2
 = v

2
/(gh)                              (3) 

The mass balance may be written as 

v = q/h                                   (4) 

Using Eq. (4), then Eq. (3) may be rewritten as 

Fr
2
 = q

2
/(gh

3
)                             (5) 

The Manning equation for the friction slope may be 

written as [1] 

IE = n
2
 Q

2
 P

4/3
/A

10/3
                       (6) 

and as A = b h, Eq.(6) may be rewritten as 

IE = n
2
 Q

2
 P

4/3
/(h

10/3
 b

10/3
)                  (7) 

which may be conveniently rewritten as 

IE = C1 h
-10/3

                             (8) 

where 

C1 = n
2
 Q

2
 P

4/3
/b

10/3
                       (9) 

Using Eqs. (5) and (7), Eq.(1), may be rewritten as  

dh/dx=(IS – C1 h
-10/3

/(1–C2 h
-3

)              (10) 

where 

C2 = q
2
/g                         (11) 

Eq. (10) is the starting point for the development of the 

new exact solution. 

3. New Exact Solution Development 

In the development of the exact solution of Eq. (10) to be 

presented in this subsection, either x or h may considered as 

the dependent variable, and the other as the independent 

variable. Since the right side of Eq. (10) is already written as 

a function of h, x is chosen as the dependent variable. Thus, 

Equation (10) may be rewritten as 

dx = ((1 – C2 h
-3

)/(IS – C1 – h
-10/3

)) dh             (12) 

and separating the two terms on the right side of Eq. (12), we 

obtain 

dx=dh/(IS–C1h
-10/3

)–C2 h
-3

 dh/(I
S
 h

3
 – C1)          (13) 

Integration of Eq. (13) yields 

∫dx=∫ dh/(IS – C1h
-10/3

) –∫C2 h
-3

 dh/(IS h
3
 – C1) + C0   (14) 

where in Equation (14), there are three indefinite integrals 

and C0 is a constant of integration. For convenience, Eq. (14) 

may be rewitten as 

∫ dx = C1-1 ∫ dh/(K1 – h
-10/3

) – K2 ∫ h
-3

 dh/(K1 – h
-10/3

) + C0 (15) 

The indefinite integrals on the right side of Eq. (15) may 

be evaluated as described in the next two subsections. 

3.1. First Definite Integral Evaluation 

Recognising the equivalence of C1-1∫ dh/(K1 – h
-10/3

) in Eq. 

(15) and ∫ dy/(a
3
 – y

3
) in Eq. (A.2.1), given in Appendix 2, 

which is based on [10], and putting a = K1
1/3

 and y = h
-10/9

, 

Eq. (15) is obtained 

C1-1 ∫ dh/((K1
1/3

)
3
 – (h

10/9
)

3
) = C1-1/(6K1

2/3
) 

ln ((K12/3+K11/3h-10/9+h-20/9)/ 

(K1
1/3

–h
-10/9

)
2
)+ 

((C1/K1
2/3

 √3)) arctan 

((2 h
-10/9

 + K1
1/3

)/ 

(K1
1/3

 √3))                                   (16) 

3.2. Second Definite Integral Evaluation 

Multiplying the numerator and the denominator by -h
10/3

, 

the second definite integral in Eq. (15) may be rewritten as 

K2 ∫ h
1/3

 dh/(K1 h
10/3

 – 1)                       (17) 

and recognising the equivalence of the indefinite integral (17) 
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and ∫ ym
 (ay

n
 + b)

p
 in Eq.(A2.2), given in Appendix 2, which 

is based on [10], and putting y = h, a = K1, b = -1, p = -1, m = 

1/3, n = 10/3, w = ay
n
 + b, indefinite integral (17) may be 

rewitten as 

K2 ∫ h
1/3

 dh/(K1 h
10/3

 – 1) = K2/K1 (1 – 2 h
2
) ∫ dh/(K1 h

19/3
 – h

3
)                                                 (18)

Recognising the equivalence of ∫ dh/(K1 h
19/3

 – h
3
) and ∫ dy/(y(ay

n
 + b), and using Eq. (A2.3) with y = h

3
, b = -1, n = 10/3, a 

= K1, we may write 

∫ dh/(h
3
 (K1h

10/3
 – 1) = -3/10 ln| h10

/(K1 h
10

 – 1)|, 

and the right side of Eq. (18) may be rewritten as 

K2/K1 (1- 2h
2
) ∫dh/K1 h

10/3
–h

3
) = K2/K1(1–2h

2
)– 3/10ln|h10/(K1h

10
–1)|                                         (19) 

3.3. Final Form of New Exact Solution 

Using Eq. (16) and (19) in Eq. (15), the final form of the 

new exact solution may be writtten a 

x = f1(h) + f2(h) + C0                          (20) 

where f1(h) and f2(h) are given by Eqs. (16) and (19), 

respectively. 

4. Conclusion 

It may be observed from Eq. (20), along with Eqs. (16) and 

(19) that the exact solution developed in this work is easy to 

compute. The only existent exact solutions in the literature 

for one dimensional steady GVF in wide open channels are 

those developed in [8, 9]. In order to facilitate comparison 

with the exact solution developed in this paper (Eqs. (15), 

(16), and (19)), the aforesaid solutions are transcribed in full 

in Appendices 3 and 4. There are two points which 

distinguish the exact solution presented in this paper from the 

exact solutions presented in [11] and [12]. The exact solution 

presented in this paper is the sum of four explicit algebraic 

terms (Eqs. (16) and (19)) which are easy to compute. The 

exact solutions presented in [8] and [9] involve the sum of a 

significantly larger number of explicit algebraic terms; cf. 

Eqs. (A3.1) - (A3.2) in Appendix 3 and Equation (A4.2) in 

Appendix 4. This distinguishing feature means that the 

determination of the constant parameter in each of the three 

exact solutions by applying initial conditions may be much 

more complicated in the solutions presented in [11] and [12] 

in comparison with that presented in this paper. 

All three exact solutions, those presented in [11] and [12] 

and that presented in this paper, possess terms which include 

the function arctan, which is a multiple valued function. This 

is in full accordance with the nonuniqueness of the solution 

of the initial value problem of the one dimensional steady 

GVF equation, in view of the fact that the aforesaid problem 

does not satisfy the Lipschitz condition; cf. [13]. 

In practice, as is the case with natural rivers and estuaries, 

channel width varies along its length. A natural extension of 

the work reported in this paper is the search for exact 

solutions to the one dimensional steady GVF equation for a 

rectangular open channel with varying width with length 

along the channel. Another research direction of importance 

in practice is the the consideration of one dimensional steady 

GVF in recatngular open channels with varying volumetric 

flowrate due to rainfall and seepage.  
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Appendix 

Appendix 1. Notation 

A – channel cross sectional area 

b – channel width 

C0, C1, C2, K1, K2 – constants 

f1, f2 – functions 

Fr – Froude number 

h – fluid level 

g – gravitational acceleration 

IE – friction slope 

IS – channel slope 

n – Manning friction coefficient 

P - channel wetted perimeter 

q – fluid volumetric flowrate per unit channel width 

Q – fluid volumetric flowrate 

Rhy – channel hydraulic radius 

v – fluid velocity 

x – longitudenal distance  

Appendix 2. Indefinite Integral Formulae 

Indefinite integral formulae are presented, employing [10] 

as a basis. 

1. From [7], Section T2.1.1-6, p.1131, Eq. (1) may be 

written as 

∫ dx/(a
3
 – y

3
) = 1/(6a

2
) ln((a

2
 + ay + y

2
) + 1/(a

2√3) arctan ((2y + a)/(a√3)).                               (A2.1) 

2. From [7], section T2.1.2-6, p.1136, Eq. (8) may be 

written as ∫xm
 (ay

n
 + c)

p
 dy = 1/(a(m +np + 1)) 
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(y
m-n

+1 w
p+1

 – c(m-n+1)∫ym-n
 w

p
 dy),             (A2.2) 

where w = ay
n
 + c. 

3. From [7], section T2, 1.2-6, p.1136, Eq. (1) may be 

written as 

∫dx/(x(ax
n
 + c)) = (1/(c

n
)) ln|y/(ay

n
 + c)|.     (A2.3) 

Appendix 3. Venutelli [8] Exact Solution 

The exact solution developed in [7] is presented in the 

notation employed therein. 

x=yn/S0 (η - 3F + 3ηc3G) + constant,                 (A3.1) 

where 

F=α1(arctanf1 + arctanf4)-α2(arctanf2 + arctanf3) + (1/40) (β1(ln|z1|-
ln|z4|-β2(ln|z2|-ln|z3|))-(1/10) (ln|η1/3 - 1| - ln|η1/3 + 1|),    (A3.2) 

G=α2(arctanf1–arctanf4)-α1(arctanf2–arctanf3) + 

(1/40)(β2(ln|z1|+ln|z4|)+β1 (ln|z2|+ln|z3|)) – (1/10) (ln|η1/3
 – 1| 

+ ln|η1/3
 + 1|),                      (A3.3) 

α1, 2 = (1/10) ((1/2) (5 +/-√5), 

β1, 2 = 1 -/+√5, 

f1, 4 = 2(2/(5-√5) (η1/3-/+(1/4)β2), 

f2, 3 = 2(2/(5-√5) (η1/3+/-(1/4)β1), 

z1, 4 = 1 +/-(1/2)β2η1/3
 + η2/3

, 

z2, 3 = 1 -/+(1/2)β1η1/3
 + η2/3

. 

Appendix 4. Vatankhah [9] Exact Solution 

The exact solution developed in [8] is presented in the 

notation employed therein. 

- S0 x/y = I(η,δ) = constant,                (A4.1) 

where 

I(η,δ) = -1/η3
 + (3/10) (δ-1)ln|1-η| + 

(3/10) (δ+1)ln(1+η)+(3/40) (A+-δA-) ln(2η2
+ηA-+2) + 

(3/40) (A--δA+)ln(2η2
+ηA++2) - 

(3/40) (A++δA-)ln(2η2
-ηA-+2) -  

(3/40) (A-+δA+)ln(2η2
-ηA++2) + 

(3/20) (B--δB+) arctan((4η+A-)/B+) - 

(3/20) (B++δB-) arctan((4η+A+)/B-) + 

(3/20) (B-+δB+) arctan((4η-A-)/B+) -  

(3/20) (B+-δB-) arctan((4η-A+)/B-), (A4.2) 

where 

A+ = 1+√5, 

A- = 1-√5, 

B+ = √(10+2√5), 

B- = √(10-2√5)  
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