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Abstract: Prestressed concrete poles nowadays are widely used in supporting the catenary cables of train systems. 

Compared to their importance to the functionality of the train system, this type of structures have not yet received adequate 

attention from researchers. We have started tracing the changes in the dynamic behavior of these poles caused by the train 

passing and the degradation of the materials over a long-time period. In this aim, we installed a structural monitoring system 

on three of them along one of the high-speed train tracks in Germany. The efficient analysis of the recorded measurements by 

this system requires a well-known data covering the real material properties of the given structures considering uncertainties of 

the different parameters. In this paper, we inversely identify the material properties of the poles using deterministic and 

probabilistic approaches based on the experimental measurements of a full-scale structure and Finite Elements Models. In the 

deterministic approach, the parameters are identified using the simplex optimization algorithm. Uncertainty of the identified 

parameters is quantified using a Markov Estimator. In the probabilistic approach, Bayesian inference is utilized for better 

estimation of the probability distribution of the parameters. Both approaches are suitable for the estimation of mean values of 

the parameters. The Bayesian method, even though computationally more demanding, is additionally suitable for determining 

the probability distributions and quantifying the uncertainties of the identified parameters and the correlations between each 

pair of them. The results show the efficiency of each approach to identify the parameters of the poles. For a rough estimation of 

the mean values, we recommend the deterministic approach as a simple tool. Conversely, the Bayesian approach is 

recommended for more detailed and accurate estimation. 

Keywords: Bayesian Inference, Optimization, Markov Estimator, Parameter Identification, Inverse Problem,  

Prestressed Concrete Catenary Poles 

 

1. Introduction 

The catenary systems of electric trains are suspended by 

structural members, called poles, installed at equal-spaced 

distances along the train-track. They play a vital role in the 

entire train system, as any damage to one of these members 

leads to diffeculties in the functionality of the whole system. 

These poles are mainly affected by a combination of 

several actions. Besides, the static actions, seasonal ambient 

temperature, and the wind effects; trains passing near the 

poles causes a transient excitation. Due to this transient 

excitation, the poles often vibrate in a complex form. There 

are mainly three sources of such transient vibrations. First, 

The vibrations are transmitted from waving of the catenary 

cables due to the interaction between them and the 

pantograph of the train. Second, the vibration are caused by 

the air pressure wave generated by trains. Third, the 

vibrations that travel through the foundation caused by the 

interaction between the train wheels and the sub-base of the 

track. 
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Each of these transient excitation have been separately 

well-studied by many researchers. In the case of train-

induced ground vibrations, some research focuses on the 

nature of the waves that are transmitted through the soil and 

how to use them to detect the train speed [1, 2]. Other 

research studies the effect of train-induced vibrations on the 

adjacent buildings, but not the poles that carry the catenary 

system. In addition, due to the collapse of some of the noise 

protection walls, Ampunant et al. investigate the effect of the 

aerodynamic pressure loads on them when high-speed trains 

are passing by [3]. The interaction of the train’s pantograph 

and the catenary cables are investigated for various types of 

pantographs and different train types and speeds. Some of 

these studies replace the pole by fixed connections in the 

numerical model, where others assume some stiffness by 

using elastic springs to simulate the connections [4, 5]. This 

is valid to study the behavior of the catenary as an isolated 

system without taking the actual interaction between it and 

the poles. Pombo et al. provide a detailed model of the 

catenary system, including the poles themselves. However, 

they study changes in the behavior of the catenary cables 

without addressing the effects on the poles [6]. 

Currently, the poles have not received adequate attention, 

given their importance to the entire train system. This means 

that further research and investigations are needed to detect 

the actual behavior of the poles and their interaction with the 

catenary system and surrounding soil. 

The high-strength, prestressed concrete poles have been 

recently used in the catenary systems. They replace the 

classical poles, namely, the timber and steel ones because 

they are more feasible and supposed to have a longer service 

life. Thousands of this type of the poles carry the catenary 

system of the new high-speed train tracks and the electric 

transmission lines in Germany. Working with the prestressed 

concrete poles increases the complexity of tracing the 

behavior of the poles along the high-speed train tracks. The 

properties of the pole change visibly over time due to 

different effects, i.e., degradation of concrete because of 

shrinkage, creep, and fatigue; and the increase in prestressing 

losses. This, besides the high importance of the poles to the 

whole catenary system, increases the necessity to trace the 

behavior of the poles under various actions, i.e., the static, 

environmental, and dynamic actions; considering the long-

term changes in the material of the pole. In this aim, we 

installed a Structural Health Monitoring (SHM) system on 

three poles along the high-speed train track. 

Having the actual values of the material properties is 

necessary for analysis and validation processes of the output 

of the monitoring system. In this case study, the only 

available information is the characteristic properties derived 

from the datasheet of the structure. Besides, a set of 

experiments were conducted on full-scale poles in the 

laboratory to verify the material properties of the structure at 

the service situation. In this paper, we describe the parameter 

identification process as a first and essential step for 

detecting the behavior of the given structures. We inversely 

identify the parameters of the poles using the available 

experimental measurements and a numerical model 

considering the different sources of uncertainty. Parameters 

are identified using two different approaches: the 

deterministic approach through minimizing the least square 

errors using a nonlinear optimization algorithm; and the 

probabilistic approach using Bayesian inference. To assure 

the quality of the identified parameters, we compared the 

convenience of the applied approaches. In the deterministic 

approach, the covariance matrix is derived by applying the 

Markov estimator, but in the case of the probabilistic 

approach, it is implicitly included in the Bayesian updating 

process. 

2. Methodology 

2.1. Problem and Formulation 

The parameter identification requires solving the inverse 

problem using the experimental measurements, called 

observation, and the output of the numerical model 

considering the noise errors [7, 8]. We regard the problem 

d = �(m) + �,                                 (1) 

where d is the set of observations,	d = {�
, ��, … , ��}�; � is 

the number of observations; m  is the vector of model 

parameters, m = {�
, ��, … ,��}� ; �  is the number of 

parameters of the model m; � is the noise of measurements, 

� = (�
, … , ��) ; �  represents the chosen model. Assuming 

that data d are given and m needs to be identified, the System 

in Eq. 1 needs to be inverted. Different methods are available 

for solving such inverse Problem. In this paper, we choose 

two different approaches: The deterministic approach based 

on minimizing the least square errors, and the probabilistic 

approach based on Bayesian inference. 

When comparing the results of the selected approaches, we 

shall keep in mind that the probability has a different 

interpretation in each approach. Markov estimator, as a 

frequentist approach, uses the confidence intervals (CIs). For 

a selected confidence interval, let us say 95%, this means that 

when repeating the event many times, 95% of the cases of the 

computed confidence interval will contain the real value of 

the parameter. On the other hand, the Bayesian approach uses 

a credible region (CRs). It means that for the observed data 

of the events, there is a 95% probability that the real value of 

the parameter lies within the credible region [9]. 

2.2. Deterministic Approach 

In this approach, we solve the inverse problems using the 

least-squares concept by minimizing the residuals between 

the model predictions and the observations to get the most 

probable solution. The residuals are weighted by the variance 

of the observations ���  for considering the effect of the 

uncertainties in the measurements [10]. 

min
�

��(�)� !"
�
�

�
                                 (2) 

Mean values of the parameters are identified by solving 
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the Eq. 2 using the simplex algorithm, according to Nelder-

Mead [11]. However, the covariance matrix of the parameters 

can be evaluated by the estimation of the confidence intervals 

by linearization �# $(m) of the nonlinear relation between the 

parameters and the observation at the optimal point, or the 

so-called Markov Estimator [12], see Eq. 3. The confidence 

of the parameters is proportional to the entries on the main 

diagonal of the so-called information matrix % or sensitivity 

matrix. Then, the higher the value of % , higher is the 

confidence. 

%:= ∑ 	�
�(
 �#$(m)�)�
�#$(m),                     (3) 

where ) is the covariance matrix of the observations. It can 

also be estimated by the inverse of the information matrix 

%�
 , and applying Cramer-Rao-Inequality the so-called 

variance-covariance matrix. 

* ⪰ ,∑ 	�
�(
 �#$(m)�)�
�#$(m)-�
,                 (4) 

then, the confidence intervals of the parameters are 

proportional to the diagonal entities *��  of the covariance 

matrix * . In Eq. 4 the sign ′ ⪰ ′ is understood in terms of 

positive definiteness. Then, the probability that 

|m�
01234 −m�

3678940:| ≤ <*��=��(1 − ?), @ = 1,… , �	 (5) 

is larger than (1 − ?), where =��(1 − ?)	denotes the (1 − ?) 
of the =�� probability distribution. The smaller the right-hand 

side of the Eq. 5, the more reliable the identified parameter 

can be assumed. 

2.3. Bayesian Approach 

The Bayesian approach considers all parameters as random 

variables and describes them as probability distributions. One 

of the advantages of using this approach is to identify the 

parameters in the form of probability distributions that reflect 

the uncertainty of the estimated parameters and concurrently, 

incorporates any available prior information of the 

considered problem [10, 13]. 

The Bayesian approach is based on Bayes’ rule which is 

the conditional probability of the model parameters given the 

observations [14]. 

A(m|d) = B(C|�)⋅8(�)
8(C) = E�
 ⋅ F(d|m) ⋅ G(m),										(6) 

where G(m) , F(d|m)  and G(d)  are the so-called Prior, 

Likelihood and Evidence, respectively. Supposing the 

parameters in Eq. 6 are continuous. 

E = G(d) = H F(d|m) ⋅ G(m)	�mI
�I ,                (7) 

where E  is a constant that normalizes the posterior 

distribution to have an integral of one in the model space. As 

a result, Eq. 6 can be written as a statement of proportionality 

[7]. 

A(m|d) ∝ F(d|m) ⋅ G(m)                               (8) 

The prior distribution G(m)  includes all available 

information or the current knowledge about the parameters 

before incorporating the observations. We assume the errors 

of the observation d� 	to be independent and normally 

distributed with zero expected value and standard deviation 

�� , i.e., �� ∼ L(0, ��) . The likelihood function F(d|m) ≡
	O(m|d) for the complete data set in consequence follows the 

normal distribution, i.e., O(m|d) ∼ L(�(m), �) . For more 

efficiency of the Bayesian updating method, the process is 

applied consequently in	 steps P = 1,… , L , where L  is the 

total number of different tests in the experimental set. In each 

step, one set of the experimental measurements is used. At 

the first step, the preselected prior is used to update the 

model, while in each of the following steps, the posterior of 

the previous step forms the prior for the current step. By this, 

we write the likelihood of each step of model updating as 

follows 

OQ(mQRdQ) = 

∏ 	TU
"VW!"

U(√�Y)TU
Z
�∑ 	TU

"VW
([(\"

U)]^"
U)_

_(`"
U)_ ,           (9) 

where dQ = {�
Q , ��Q, … , ��U
Q }� is the vector of the 

observations; mQ = {�

Q , ��

Q , … ,��U
Q }�  is the vector of the 

parameters; σQ = {σ
Q , … , σ�U
Q }  is the standard deviations of 

the observations dQ; �Q 	is the number of observations dQ; �Q 	
is the number of the parameters of the model mQ. 

The posterior distribution A(m|d)	can be estimated based 

on the sampling technique in terms of the Markov Chain 

Monte Carlo (MCMC) method [15, 16]. In this study, the 

Transitional Markov Chain Monte Carlo (TMCMC) 

algorithm is implemented as it is a recommended tool. It is 

usually considered for solving the problems with high-

dimensional PDFs, multi-modal PDFs, very peaked PDFs, 

and others. Besides, it is suitable for parameters which are 

highly correlated [17]. 

3. Case Study 

3.1. Dimensions and Materials 

The poles are made from high-strength prestressed 

concrete. They are 10 m in height with tapered, hollow 

circular sections. The outer diameter at the bottom end is 

400 mm and reduces linearly to 250 mm at the top of the 

pole. The spinning method is used in the production 

resulting in a variation of the wall thickness. The pole is 

made of high-strength concrete of grade C80/95. 

Furthermore, the cross-section incorporates ten strands 

that are prestressed initially with a total force of 

approximately 680 kN. The strands are distributed equally 

throughout the perimeter. The nominal material properties 

and the geometry of the structure are extracted from the 

datasheet provided by the manufacturer and summarized 

in Table 1 and Table 2. 
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Figure 1. Experimental setup (vibration test). 

 

Figure 2. Experimental setup (bending test). 

Table 1. The nominal dimensions of the poles. 

Dimensions and Materials Nominal value 

Length, L [m] 10 

Outer diameter at the bottom, dbot [mm] 400 

Outer diameter at the top, dtop [mm] 250 

Wall thickness at the bottom, tbot [mm] 62 

Wall thickness at the top, ttop [mm] 52 

Table 2. The nominal properties of materials of the poles. 

Dimensions and Materials Nominal value 

Concrete grade C80/95 

Prestressing strands 7/16” St 1680/1880 

Number of strands, n 10 

Area of the strand, APT [mm2] 70 

Prestressing initial stress, �b� [MPa] 975 

3.2. Experimental Programme 

A set of experimental tests was conducted at the Bauhaus-

University Weimar within the DFG research training group 

1462. In the frame of this work, two types of experiments 

were selected. The first test is a vibration test from which 

system identification is achieved. The second test is a 3-point 

bending test, which represents both linear and non-linear 

behavior of the structure. 

3.2.1. Vibration Test 

A pole was tested using a vibration test in the free-free 

setup by hanging it in a horizontal position using two ropes, 

as shown in Figure 1 A set of twelve sensors were attached to 

the pole in order to measure the acceleration in both 

horizontal and vertical directions. Two of the sensors were 

fixed to the top end of the pole, and considered as reference 

sensors while the rest were configured in two measurement 

setups to increase the quantity and quality of the identified 

mode shapes and natural frequencies. 

Moreover, an appropriate impact hammer was used to 

excite the structure in three positions, horizontally and 

vertically for each. The process was repeated for each sensor-

setup. In the first sensor-setup, the sensors were attached 

with an in-between distance of 2 m. Then, these sensors were 

moved 1 m to form the second measuring setup, as shown in 

Figure 1 However, more details about the setup and the 

results of this test can be found [18]. The natural frequencies 

of the first fifth mode shape in the horizontal and vertical 

direction were calculated using the Stochastic Subspace 

Identification (SSI) method through MACEC toolbox [19]. 

The results of the vibration test are summarized in Table 3. 

Table 3. The results of the vibration test in vertical (v) and horizontal (h) 

directions. 

Mode shape Natural frequency [Hz] 

1-h 15.56 

1-v 15.59 

2-h 41.17 

2-v 42.67 

3-h 81.09 

3-v 81.72 

4-h 131.58 

4-v 131.69 

5-h 192.68 

5-v 192.43 

3.2.2. 3-Point Bending Test 

A displacement-based 3-point bending test was conducted 

to the same pole in a simply-supported setup in the horizontal 

position. The supports were located at 1.5 m from both ends, 

see Figure 2 The displacements were applied in steps at the 

mid-span until the pole was crushed. 

During the test, the deflection and load were recorded 
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continuously in the middle and quarters of the 7 m span, i.e., 

at points P1, P2, and P3 shown in Figure 2 The load-

displacement curve at point P1 is displayed in Figure 3, 

where non-linear behavior of the pole is evident. The spun-

cast concrete pole behaves linearly up to a force of 25 kN, 

corresponding to a mid-displacement of 8 mm. Along with 

the cracking in the center region of the concrete pole, the 

stiffness of the pole decreases, leading to higher deformations 

for load levels above the linear range. The maximum load 

was 81 kN corresponding to deflection of 110 mm at the mid-

span (namely, at point P1). This corresponds to the failure 

point of the pole, where the concrete at the most upper fiber 

at mid-span failed under compression. 

 

Figure 3. The load-displacement curve at point P1. 

3.3. Finite Element Model 

Finite Element Models (FEM), corresponding to each 

experimental test, are playing the role of the models �(m) as 

used in Eq 1 to Eq. 4. In this aim, we build a fully-detailed 

FEM model to simulate each of the experimental tests. 

The concrete material is simulated using volume elements, 

and the prestressing strands are simulated using 3D truss 

elements with two nodes and three degrees of freedom at 

each node. 

The concrete constitutive model is carefully built to match 

both linear and nonlinear behavior of the concrete. The 

selected model covers the softening and hardening behavior 

of the concrete in tension and compression, respectively. The 

model has the advantage of simulating the material in the 

post-cracking phase, which is mainly required for simulation 

pole in the 3-point bending test [20]. 

The stress-strain curves of concrete in compression and 

tension are derived from the Fib Model Code 2010 [21]. The 

concrete in compression follows a parabolic curve until the 

material attains F37 corresponding to a concrete strain of �3. 
Then, it is followed by strain softening up till the concrete 

reaches a crushing strain �39 of 3.1%. 

Besides, the behavior of concrete in tension is considered 

as linear until the mean tensile strength of concrete F347  is 

reached. Then, it reduces linearly to the maximum tensile 

strain of the concrete. 

The constitutive model of the steel follows the elastic-

plastic behavior to cover the expected behavior during the 3-

point bending test. 

3.4. Results 

The deterministic and Bayesian approaches are 

implemented to identify the parameters of the given 

structure. 

The vector of parameters is built from five parameters 

m = {�b� , F37, �3 , c3 , F347, d3}�, where �b� is the initial strain 

of the prestressing; F37  is the compression strength of the 

concrete; �3 is the concrete strain at maximum compressive 

stress; c3  is the concrete modulus of elasticity; F347  is the 

concrete tensile strength; and d3 is the concrete density. The 

parameters are bounded during the identification process 

depending on the available datasheet and the engineering 

prejudgment based on the values recommended by FIB 

Model Code 2010 [21] as shown in Table 4. These values are 

used to define uniform priors. 

Table 4. The upper and lower binderies of the selected parameters. 

Parameter Boundaries 

Prestressing initial strain, �b� [‰] 2.7 – 3.7 

Concrete compressive strength,	F37 [MPa] 80 – 120 

Concrete strain at maximum compressive stress,	�3 [‰] 2.5 – 3.0 

Concrete Modulus of Elasticity,	c3 	[GPa] 43 – 53 

Concrete tensile strength,	F347 [MPa] 4.0 – 6.0 

Concrete density,	d3[g cm−3] 2.1 – 2.5 

For the selected case study, two measurement sets are 

considered as observations d� , such as, @ = 1, 2 . The 

observations d
 of the vibration test are formed from the first 

ten natural frequencies of the structure. On the other hand, 

the load-deflection curves at mid-span and quarters of the 

span are considered as the observations d�  of the bending 

test. 

3.4.1. Results of the Deterministic Approach 

For the implementation of the deterministic approach, we 

assume the probability distribution of the identified 

parameters as a normal distribution. The parameters are 

estimated to 95% confidence level (? = 0.05). The results of 

this approach are summarized in Table 5. 

Table 5. Summary of the identified parameters (deterministic approach). 

Parameter Mean value Standard deviation [%] 

�b� [‰] 3.16 2.82 

F37 [MPa] 105.08 1.19 

�3 [‰] 2.70 0.60 

c3 	[GPa] 48.19 3.05 

F347 [MPa] 5.07 0.25 

d3[g cm−3] 2.27 2.04 

3.4.2. Results of the Bayesian Approach 

The histograms in Figure 4 shows the distributions of the 

identified parameters using the Bayesian approach. 

Additionally, the correlations between each pair of the 
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parameters are shown in the scatter plots on the same figure. 

The parameters c3 	and d3 	are well-correlated, as shown in the 

sub-plots because of the natural frequencies are proportional to 

the square root of the ratio between the stiffness and the mass. 

Moreover, a negative correlation between F347 	and �b� can 

be seen. This is also understandable from the engineering 

point of view, as increasing the prestressing stresses raises 

the load corresponding to the first crack and hence decreases 

the inferred tensile strength of the concrete as a solution of 

the inverse problem. Supplementary, to get an overview of 

the whole applied process, the mean values, and the standard 

deviations are listed in Table 6. 

Table 6. Summary of the identified parameters (Bayesian approach). 

Parameter Mean value Standard deviation [%] 

�b� [‰] 3.16 0.03 

F37 [MPa] 105.36 1.36 

�3 [‰] 2.73 0.04 

c3 	[GPa] 48.06 0.32 

F347 [MPa] 5.11 0.11 

d3[g cm−3] 2.32 0.04 

4. Discussion 

In Figure 5 we show a comparison between the results of 

the applied approaches. A perfect match can be recognized in 

the mean values of the identified parameters except for the 

mean values of the concrete density d3  and the concrete 

tensile strength F347 	where a small bias of 3%	 and 2%	

respectively appeared. 

However, the variance of the identified parameters differs 

considerably and has no specific trend, but in most cases, the 

variances in the Bayesian approach have higher values. From 

our point of view, it is expected to have such a difference 

between the results of deterministic and Bayesian 

approaches. This is because of the Markov estimator is based 

on the concept of the deterministic parameter identification. 

It may get stuck in the local minima of the cost function 

mainly in the case of noisy data or unidentifiable parameters. 

This causes the bias of the mean values comparing to 

Bayesian results. 

Besides, the Markov estimator evaluates the uncertainty of 

the parameters based on local sensitivity at the optimized 

solution. This leads to considerable deviations of the variance 

values between the two approaches. 

Considering the complexity and the computational efforts, 

we conclude that Markov estimator can be implemented 

mainly to have the mean values and, to some limits, an 

indicator of the uncertainty of the parameters. The results of 

Markov estimator match the results of the Bayesian approach 

to an acceptable tolerance, which makes Markov estimator as 

a fast and straightforward tool to have an approximation of 

the solution. 

The Bayesian approach, in comparison, needs more efforts, 

but it can precisely draw the probability distributions of the 

identified parameters revealing some essential characteristics 

of its distributional behavior. Besides, the Bayesian approach 

gives a good overview of the correlation between parameters, 

which leads to a better understanding of the studying 

problem. 

In the validation step, the mean values of the identified 

parameters by the Bayesian approach are used as input for 

the FEM models. However, the results of the FEM are 

compared with the corresponding observations. In the case of 

the bending test, the results of the finite element are plotted 

against the hysteresis loops of the force-deflection derived 

from the measurements. Figures 6, 7, and 8 show the 

agreement between the experimental measurements of the 3-

point bending test, which were measured at the mid-span and 

quarters, and the FEM using the identified parameter. 

Furthermore, the first five natural frequencies in the 

horizontal and vertical direction, according to the test setup, 

are derived from the FEM model using the inferred 

parameters as listed in Table 7. These results show that the 

FEM model using the inferred parameters conforms with the 

experimental observations of the vibration test to an 

acceptable accuracy. 

Table 7. Validation of the results - vibration test in vertical (v) and 

horizontal (h) directions. 

Mode shape Natural frequency [Hz] Tolerance [%] 

1-h 15.37 1.22 

1-v 15.54 0.13 

2-h 41.65 1.23 

2-v 42.09 1.36 

3-h 80.35 0.92 

3-v 81.16 0.69 

4-h 130.48 0.84 

4-v 131.76 0.05 

5-h 191.04 0.85 

5-v 192.83 0.21 

Finally, we compare the inferred parameters with the 

conventional values of the concrete properties that are 

specified by the different engineering standards. In this place, 

we utilize the equations of the Fib Model Code 2010 [21], 

which specifies the concrete properties based on the 

compressive strength of the concrete F37. For this sake, we 

use the identified mean values of the F37 from Table 6. The 

calculated properties show that the inferred parameters are in 

line with the recommended values of the given model code 

with relatively acceptable tolerance, as shown in Table 8. 

Table 8. The concrete properties based on the recommendation the Fib 

Model code [21] and the identified F37. 

Parameter Value The difference [%] 

F37 [MPa] 105.36 ---- 

�3 [‰] 2.90 6.20 

c3 	[GPa] 47.10 3.10 

F347 [MPa] 5.18 1.40 
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Figure 4. The scatter plots and the histograms of the posterior distributions (Bayesian approach). 

 

Figure 5. The distributions of the identified parameters (Markov estimator vs. Bayesian). 
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Figure 6. Validation of the results – 3-point bending test at P1. 

 

Figure 7. Validation of the results – 3-point bending test at P2. 

 

Figure 8. Validation of the results – 3-point bending test at P3. 

5. Conclusion 

In this paper, we achieved the preliminary step for 

analyzing the measurements of the structural monitoring 

system. This system is attached to the prestressed concrete 

catenary poles located along the high-speed train track in 

Germany. Through this step, we identified the material 

properties of the poles to be utilized later as priors in the 

assessment and validation steps of the SHM system. The 

identification process is attained using deterministic and 

probabilistic approaches. In the first one, Markov Estimator 

is involved in quantifying the uncertainty of the identified 

parameters using the deterministic approach. Bayesian 

inference is implemented to identify the parameters in the 

case of the probabilistic approach. In this approach, the 

uncertainty of the parameters can be easily identified by 

calculating the statistical moments of the parameter’s 

distributions. 

Both approaches estimated the mean values of the 

parameters to an acceptable tolerance. However, the 

Bayesian approach estimates the variances of the identified 

parameters in a more effective and accurate manner. 

Moreover, it describes the correlation between the different 

parameters, and then, we recommend implementing it when 

the parameters’ uncertainty is the main subject of interest. In 

the validation step, a perfect agreement is achieved when 

using the mean values of the inferred parameters as inputs for 

the numerical model and compare the results to the 

experimental observations. 

In addition, we verify that the inferred properties of the 

concrete are in line with the recommended values of the Fib 

Model Code 2010 for the same compressive strength. The 

considerable deviation between the inferred parameters and 

the nominal ones pays our attention to the importance of the 

PI process before conducting any study on the existing 

structures. This emphasizes our argumentation at the 

beginning of this paper and lays the foundations for more 

appropriate implementation of the subsequent phases of the 

current case study. 

Based on the recent results, we are going in the future step 

to trace the changes in the dynamical behavior of catenary 

poles on-site using Signal Processing, Operational Modal 

Analysis method, and Model Updating. 
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