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Abstract: The spatial distribution of soil organic matter (SOM) has a close connection with topography. To understand the 

effects of topographic synergy effects in traditional geostatistic methods, the influence of topography is considered in SOM 

geostatistic studies by combining geographic unit zoning and spatial prediction. We explored the changes in the SOM 

distribution between that obtained using spatial interpolation integrated with 13 different classical topographic units and 

determined using global interpolation with 6485 random soil samples obtained from Zhongxiang City, Hubei Province, China. 

The steps are as follows. At first, the terrain factors were calculated from the digital elevation data (DEM) and the topographic 

units were precisely divided into 13 different classical types more subtly by integrating the terrain factors. The regions were 

divided, which was based on terrain classification rules formed by the distribution of terrain factors in different landforms. 

Secondly, soil samples were collected in different topographic types, and the distribution of SOM for each sample set in different 

topographic units was generated by ordinary Kriging. Then, the corresponding results of interpolation for each sample set were 

segmented based on topographic unit region, and combining the result in each region, the spatial distribution of SOM based on 

topographic unit was obtained. Finally, verification and comparison with the accuracy of each SOM distributions were performed, 

which were obtained by using topography based geostatistics and traditional global geostatistics, respectively. Our results 

indicated that more accurate SOM spatial distributions can be obtained using the proposed method, especially in regions with 

gentle topography, such as ridge, shoulder, summit, toe slope (north/northeast side), and low-lying terrain units. 
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1. Introduction 

Understanding the spatial variability of soil organic matter 

(SOM) is critical for studying soil composition and fertility 

characteristics. SOM has high spatial heterogeneity at both 

small and large scales and varies with time [1]. Determining 

the spatial variability of SOM can assist in exploring the role 

of SOM in soil quality [2], soil and water conservation [3], soil 

fertility [4] and the sustainable development of agroforestry 

[5]. Many authors have studied the spatial distribution of SOM 

[6-8]. Chen et al. [9] inverted the spatial distribution of SOM 

content based on ordinary Kriging with varying local means. 

Zhang et al. [10] predicted the spatial variability of SOM 

using terrain indices and categorical variables as auxiliary 

information. Dai et al. [11] predicted the spatial distribution of 

SOM on the Tibetan plateau based on a neural network model 

integrated with geostatistics. Guo et al. [12] predicted soil 

organic matter for rubber plantation at regional scale by using 

random forest plus residuals kriging approach. Mirzaee et al. 

[13] predicted SOM content by using remote sensing data as 

an auxiliary variable. All of the proposed methods have been 

shown to effectively improve the predictive accuracy SOM 

spatial distributions. Therefore, auxiliary information can be 

used to assist geostatistic theory, which may improve the 

predictions of SOM distributions. 

When exploring SOM spatial distributions using traditional 
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geostatistics, the synergy between terrain factors and the spatial 

redistribution of SOM are often ignored. Several previous 

studies have indicated that the spatial variability of SOM is 

dependent on terrain conditions, soil type, cultivation and 

management, and land use factors [14, 15]. Previously, research 

has been conducted to understand the effect of landforms on the 

spatial variability of soil properties [16]. Umali analyzed the 

effects of topography on the spatial variability of total organic 

carbon, electrical conductivity, pH and the coarse fraction in an 

apple orchard. In Umali’s study, the terrain parameters had 

varying effects on the soil property distributions. The complex 

effects of topography on the spatial prediction of SOM must be 

simplified. A method for dividing the study area into 

topographic units was chosen. However, in traditional terrain 

classification methods, the division criteria for topographic 

units are not clearly specified; additionally, the scale of 

geomorphic types is too large because traditional terrain 

classification methods are based on a single index value, such 

as elevation. Accurate and reasonable topographic unit zoning 

can play an important role in studying the spatial distribution of 

soil properties [17]. Wei et al. [18] combined elevation grading 

and slope steepness grading to categorize geomorphic units, 

providing a basis for separating terrain units using a 

multidimensional quantitative index. Tian et al. [19] provided a 

digital elevation model (DEM)-based topographic unit diversity 

index by integrating several terrain parameters, including 

elevation, slope, slope position, slope aspect, flow 

accumulation and water information. This method has definite 

division criteria for topographic units and can categorize typical 

landform units in a more precise manner. 

The impact of topographic synergy on the spatial 

redistribution of SOM requires additional examination. A new 

method is proposed in this paper based on topographic units to 

determine the spatial distribution of SOM based on data 

obtained from Zhongxiang City, China. Topographic effects 

on the spatial variability of SOM were considered, providing 

an example of how SOM distributions can be more precisely 

rendered using more accurate terrain partitioning, by 

separately analyzing the SOM distribution in each 

topographic unit, and by combining the readings. The 

proposed method is called geostatistics based on topographic 

units (GeoTU). The comparison method is called geostatistics 

based on global scale (GeoGS). 

2. Materials and Methods 

2.1. Description of the Study Area 

The study area is located in Zhongxiang City, Hubei 

Province, China (30°42′–31°36′ N, 112°07′–113°00′ E). The 

area is located in the mid-latitudes, which is part of the 

northern subtropical monsoon climate region. For the past 10 

years, the average annual temperature has been 15.9°C; the 

average annual rainfall has been 1496.8 mm. The region is 

hilly and located in central Hubei Province. The region is also 

located within the middle reach of the Hanjiang River. The 

river divides Zhongxiang City into two parts, i.e., eastern and 

western sides. The topography varies from plains in the central 

portion of the region to hilly mountains in the east and west, 

resulting in a saddle-shaped terrain. The soil parent material 

primarily consists of quaternary clay and alluvial deposits. 

A total of 6485 random samples were collected from 2005 

to 2006 (Figure 1). The sampling interval varied for different 

terrain conditions. Sampling was conducted for all 

topographic units and soil types except two portions: (a) a 

portion of the mountain area was not sampled due to 

accessibility issues and no global positioning system (GPS) 

signal and (b) no samples were collected to preserve the 

ecological environment in the eastern part of Zhongxiang City, 

which is where Dakou national forest is located. The 

resolution of the DEM was 30 m. The data set was provided by 

International Scientific and Technical Data Mirror Site, 

Computer Network Information Center, Chinese Academy of 

Sciences [20]. Additionally, the SOM content was determined 

from the samples using the potassium dichromate - sulfuric 

acid solution - bath oil method [21]. 

 

Figure 1. Map of the study area. 

2.2. Topographic Unit Division and Sample Partitioning 

Large study areas can be divided into subzones based on 

terrain units, although a specific range of precision is required. 

Then, each subzone can be analyzed according to the degree of 

complexity of the sampling strategy. A systematic evaluation of 

the soil nutrient spatial distributions in each subzone can be 

performed. In this study, the results were ultimately merged with 

a global map to ensure the precision of each region. 

Terrain factors exhibit different spatial characteristics and 

environmental effects in the spatial distribution pattern of soil 

attributes. Therefore, these factors are often used as a 

comprehensive index to measure the effects of the soil 

environment [22, 23] In this study, the following four terrain 

factors were chosen: (a) slope (β), (b) aspect (α), (c) 

topographic wetness index (TWI), and (d) topographic 

position index (TPI); the results were analyzed using ArcGIS 

version 9.3 based on the aforementioned 30 m resolution 

DEM. The topographic position index depends on the size of 

the neighborhood analysis window [24], which was improved 

using the inverse distance weighted method for more reliable 
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results [19]. The underlying principle of this method is 

expressed in the following equation: 

n
i*

i=1 i

1 TPI
=TPI

n d
∑               (1) 

Here, TPI* is the improved TPI, n is the number of times 

used to choose a different annular sliding window size to 

calculate the TPI for the same unit, TPIi represents the 

calculation of TPI at time i, and di is the average distance 

between every cell in the chosen annular sliding window and 

the target cell for calculating the TPI at time i. 

 

Figure 2. Indicators of the topographic partitioning units. 

Terrain factors have specific distribution regularities in 

different topographic conditions. The study area can be 

divided into distinct topographic units based on the fact that 

the combination of terrain factors and the range of their value 

for each topographic unit are different. However, the types of 

natural topographic units are diverse and complex. 13 terrain 

types were selected to represent the conditions observed in the 

subject area based on representative, comprehensiveness and 

feasibility principles. Each terrain unit type was divided 

according to the classification rules shown in figure 2, which 

was performed using the raster calculator tool in ArcGIS. The 

classification criteria of slopes were based on the method 

presented in Anbalagan [25]. The aspect was divided into 

south / southwest and north / northeast, based on how the 

orientation of individual mountain ranges and the sunlight 

direction. The TPI values were determined based on the 

method proposed by Weiss [24]. According to the TWI 

algorithm [26], the grading standards of the Palmer drought 

severity index [27, 28] and the actual study area, the TPI 

values were divided by a boundary value of 2.5. 

Zhongxiang City was divided into 13 terrain units 

according to the classification rules shown in figure 2. The 

results depicted in figure 3 show the 13 terrain unit zones. 

Areas not covered by the 13 zones, such as low-lying terrain 

units, were identified as Other Areas (see figure 3). 
 

Figure 3. Map of the topographic partitioning units. 
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Sampling point sets were divided based on the corresponding 

terrain unit range. The statistical characteristics of the sample sets 

in each landform unit are shown in Table 1. The table shows that 

the wet plain zone represents the largest terrain unit in the study 

area; the dry plain unit has the second largest area. The smallest 

region is represented by the steep slope unit (south / southwest 

side). The ranges, means, and standard deviations (SDs) of the 

SOM contents in the different terrain units were similar. Subtle 

differences were found in the SOM distribution in each terrain 

unit according to the kurtosis and skewness statistics. 

Table 1. Descriptive statistics of the SOM contents in each topographic partitioning unit. 

Topographic 

partitioning unit 
Area ratio 

Sample 

number 
Kurtosis Skewness 

SOM content (g * kg-1) 

Minimum Maximum Range Average SD 

Dry plain 22.69% 1268 -0.31 0.37 5.00 60.00 55.00 26.42 10.10 

Wet plain 39.62% 3590 -0.12 0.48 5.00 60.00 55.00 24.54 9.61 

Ridge 4.53% 169 -0.51 0.43 6.42 51.50 45.08 24.91 9.93 

Shoulder 2.45% 170 0.27 0.74 6.70 60.00 53.30 25.72 11.06 

Summit 5.23% 154 1.11 0.63 5.00 60.00 55.00 24.53 9.72 

Back slopea 5.20% 176 -0.42 0.36 5.00 60.00 55.00 27.39 11.76 

Back slopeb 3.99% 167 -0.01 0.47 5.00 58.90 53.90 26.28 10.14 

Toe slopea 2.74% 127 -0.01 0.67 7.96 60.00 52.04 27.97 11.95 

Toe slopeb 3.58% 93 -0.62 0.22 5.00 54.40 49.40 27.34 11.68 

Steep slopea 1.22% 73 -0.41 0.48 7.30 60.00 52.70 26.44 12.07 

Steep slopeb 0.68% 99 0.40 0.56 5.00 60.00 55.00 28.43 11.98 

Foot slope 6.74% 302 -0.30 0.29 6.19 60.00 53.81 31.49 11.23 

Low-lying 1.32% 97 0.99 0.78 5.60 59.20 53.60 24.40 9.80 

Entire region 100.00% 6485 -0.04 0.51 5.00 60.00 55.00 25.58 10.20 

Note: The area ratio is the ratio of the landform unit area to the total study area; SD represents the standard deviation. a) North / northeast side of a terrain unit. b) 

South / southwest side of a terrain unit. 

The SOM spatial distributions in different terrain units were 

analyzed using the global autocorrelation method. Because the 

size of each landform unit and the number of samples were 

different in each unit, the instability of the intrinsic variance 

contained in the SOM contents may not be consistent with the 

stability or intrinsic hypotheses indicated in spatial 

autocorrelation analysis, which can induce errors, as predicted 

by Moran's I. Therefore, the SOM distribution may deviate 

from the real situation due to the sampling design or the 

combined solution. These influences can be eliminated by 

standardizing the SOM distributions using global 

autocorrelation analysis [29]. 

The partial autocorrelation plots for the global data and the 

individual units are shown in Figure 4. Autocorrelations should be 

near zero for randomness, which is the case in this study (Figure 4). 

Therefore, the randomness assumption is acceptable. The partial 

autocorrelation plots reveal some autocorrelation at lag 1, lag 5, lag 

8, lag 9, and lag 16 for the global data, although there was at most 

one autocorrelation for each individual unit. Therefore, all 

observations were retained for the subsequent analysis. 
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Figure 4. Autocorrelation plots for the global data and individual units. 

2.3. SOM Prediction Based on Landform Units 

It is well known that the similarity of soil information is 

related to the similarity of the spatial attributions of individual 

characteristics (and vice versa). More specifically, the terrain 

conditions within similar terrain units are comparable; the 

spatially differences in similar terrain units are also smaller. 

The terrain effects on SOM spatial distributions are consistent. 

However, if the terrain conditions are different in different 

terrain units, the spatial differences in terrain factors are larger. 

The terrain effects on SOM spatial distributions are distinct 

[30]. Therefore, it is inappropriate to interpolate soil landscape 

relationships on a global scale. The area can be classified into 

different landform units based on terrain conditions. Then, soil 

landscape relationships and the spatial distribution of soil 

nutrients within each topographic unit can be separately 

analyzed. 

The SOM distribution in each terrain unit was individually 

predicted using ordinary kriging with only the samples in the 

unit. Then, the predictions for the sampling points were 

clipped according to the corresponding landform unit region. 

The highest predictive accuracy around a sample in the same 

terrain unit was retained. After repeating the same procedure 

in each terrain unit, the spatial distribution plots for each 

terrain unit were stitched into a global map. 

Differences between the measured values and the predicted 

values in each terrain unit were evaluated using the 

root-mean-square error (RMSE) and correlation coefficient 

values. The validation samples in each terrain unit constituted 

5% of the samples in the corresponding terrain unit. The 

RMSE of each method was calculated using the predicted 

value and the measured value at the validation sample’s site. 

3 Results and Discussion 

3.1. Spatial Autocorrelation Analysis of SOM 

The spatial autocorrelations of the SOM contents in the 13 

terrain units and the entire region were calculated using the 

spatial statistics module in the ArcGIS 9.3. The significance 

tests for global Moran’s I of the SOM content in each 

topographic partition unit are summarized in Table 2. 

Table 2. Significance tests for global Moran’s I of the SOM content in each 

topographic partition unit. 

Topographic partitioning unit Moran’s I Z score P value 

Dry plain 0.28 33.79 <0.001 

Wet plain 0.24 73.80 <0.001 

Ridge 0.28 8.04 <0.001 

Shoulder 0.32 9.53 <0.001 

Summit 0.17 4.64 <0.001 

Back slopea 0.30 8.46 <0.001 

Back slopeb 0.21 5.99 <0.001 

Toe slopea 0.33 7.00 <0.001 

Toe slopeb 0.29 4.66 <0.001 

Steep slopea 0.28 3.80 <0.001 

Steep slopeb 0.20 3.54 <0.001 

Foot slope 0.36 13.06 <0.001 

Low-lying 0.25 4.30 <0.001 

Entire region 0.34 131.21 <0.001 

Note: The Z score is a multiple of the standard deviation. The P value 

represents the probability. Z is associated with P; when |Z| > 1.96, P<0.05, i.e., 

the confidence level exceeds 95%. 

The global Moran's I values of the SOM content in each 

landform unit are positive, and the P values are less than 0.001. 

Therefore, the county-scale SOM distribution in each 

landform unit is not random. Instead, the distributions exhibit 
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significant spatial aggregation. The aggregation effects of the 

SOM contents are different in different landform unit regions. 

A significant positive correlation was found between the SOM 

spatial distribution and the landform unit type, which is 

indicated by both the Moran’s I and P values (see Table 2). The 

highest spatial aggregation of the SOM contents was found in 

the foot slope area, while the lowest aggregation was found in 

the steep slope area. These results provide further evidence 

that the study area can be divided into multiple subzones 

according to each terrain unit, which can increase the 

precision of the county-scale SOM spatial distributions. 

Moreover, the aforementioned findings suggest that the study 

are can be used to explore SOM distributions under different 

terrain conditions. 

3.2. Analysis of the SOM Predictions 

The ordinary kriging prediction method was used to predict 

the SOM spatial distributions in each terrain unit. The SOM 

spatial distribution within each topographic unit was then 

stitched into a global map. The results are shown in Figure 5a. 

The results shown in Figure 5b were obtained using GeoGS. 

Five subzones were chosen as examples to present a close-up 

version of the maps in the transition zones; the zones were 

separately marked. Additionally, these maps clearly depict the 

differences in the SOM distributions predicted using the 

GeoTU method compared to the GeoGS method. 

 

(a) 

 

(b) 

Figure 5. SOM spatial distribution based on individual topographic 

partitioning units (a) and the entire region (b). 

Figure 5 shows that the predictions produced by both 

methods exhibit similar spatial variations, although 

differences between the two methods exist at the county scale. 

The depth of detail is consistent with the distribution rule for 

the terrain units. The boundaries in the GeoTU method were 

smooth and changed gradually. The boundaries in the 

global-scale prediction results were coarse and changed 

abruptly; areas with the same SOM content were very large. 

The SOM contents predicted using the GeoTU method were 

11.26 g•kg
-1

–50.09 g•kg
-1

; the range was found to be 7.43 

g•kg
-1

– 64.39 g•kg
-1

 for the GeoGS method. To compare the 

differences between the two methods, a statistical analysis was 

conducted; the results are explained in the following section. 

3.3. Comparison and Verification of the SOM Spatial 

Prediction Accuracy 

A statistical analysis was conducted to determine the 

root-mean-square error (RMSE) of the measured versus 

predicted values; the results for the two methods are shown in 

Table 3. The deviations between the predicted (using the two 

methods) and measured values were evident in the RMSEs. 

However, the degree of similarity was very high, and the 

correlation coefficient of the GeoTU method was smaller than 

that of the GeoGS method by an average of 0.15. The 

correlation between two methods was 0.75. This result shows 

that the predicted and measured values were not exactly the 

same, although they were very similar. 

Table 3. Accuracy tests for the SOM spatial distributions based on the GeoTU and GeoGS predictions. 

Topographic partitioning unit Sampling Density RMSEGeoTU RMSEGeoGS RGeoTU RGeoGS 

Dry plain 1.27 8.81 8.04 0.61** 0.67** 

Wet plain 2.05 7.46 7.06 0.56** 0.61** 

Ridge 0.85 5.79 6.81 0.92** 0.86** 

Shoulder 1.57 8.66 10.29 0.90** 0.85** 

Summit 0.67 6.55 7.08 0.80* 0.76* 
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Topographic partitioning unit Sampling Density RMSEGeoTU RMSEGeoGS RGeoTU RGeoGS 

Back slope a 0.77 11.04 10.45 -0.12 0.08 

Back slope b 0.95 10.81 9.04 -0.16 0.46 

Toe slope 1.05 6.85 7.31 0.86* 0.85* 

Toe slopeb 0.59 9.30 8.09 0.56 0.69 

Steep slopea 1.35 22.27 17.93 -0.02 0.05 

Steep slopeb 3.32 9.08 6.94 0.87 0.88 

Foot slope 1.02 10.57 8.78 0.51* 0.68** 

Low-lying 1.67 5.02 8.01 0.58 -0.01 

Entire region 1.47 8.20 7.65 0.58** 0.65** 

Note: The sampling density is the average number of sampling points per square kilometer; * represents significant correlations at the 0.05 level; ** represents 

significant positive correlations at the 0.01 level. 

In high rugged terrain units, the predicted SOM spatial 

distributions based on the individual terrain units do not exhibit 

large differences compared with the global predictions for the 

same terrain units. The results in ridge, shoulder, summit, toe 

slope (north/northeast side), and low-lying areas exhibited better 

results using the GeoTU method than the GeoGS method, with a 

16.39% lower RMSE on average. This improvement was found 

in regions in which the local topography was relatively flat, such 

as near the tops of mountains and near valleys. The 

corresponding SOM content was either relatively high or low 

compared to common values; therefore, the prediction accuracy 

for the range in SOM contents in the edge was relatively high. In 

the remaining units, the RMSE was approximately 1.51 higher 

for the GeoTU method than the GeoGS method. Although the 

RMSE was slightly higher, a strong degree of similarity was 

observed between the two methods in these terrain units; the 

correlation between the predictions was 0.93. The SOM 

prediction accuracy based on the GeoTU method was similar to 

the accuracy of the GeoGS method because the corresponding 

terrain region was in the transitional zone, where the 

corresponding SOM content was near the middle of its range and 

the pattern variations were not clear. However, these aspects 

rendered the prediction prone to errors. Regardless of the 

prediction method used, some inherent errors existed in the 

spatial predictions due to interpolation effects. 

In summary, the GeoTU method, dividing large study areas 

into subzones based on 13 terrain units by using specific 

indicators of topographic partition units, was put forward for the 

first time. It is feasible to use this method when specific ranges of 

precision are required. Each subzone can be subsequently 

examined according to the degree of complexity of the sampling 

strategy. Moreover, a systematic examination of the spatial 

distribution of soil nutrients in each subzone can be performed. 

Eventually, the results can be merged into a global map to ensure 

the precision in each region. For terrain units in which the local 

topography is flat, the prediction accuracy of the SOM spatial 

distribution can be improved after using the GeoTU method. In 

addition, the SOM predictions obtained using the terrain 

unit-based method were found to be similar to the global 

prediction results in some regions, although the former approach 

provides additional spatial details. Wen et al. [31] compared four 

interpolations or predictive methods including ordinary kriging, 

regression kriging, ordinary kriging integrated with land-use type 

and a soil land inference model (SoLIM) to predict soil organic 

carbon (SOC) of Loess Plateau, which only considered that the 

global relationships. GeoTU might be a new method to predict 

soil organic matter in such areas with complex hilly-gully terrain 

and various land-use types. 

The purpose of this paper is to improve the prediction accuracy 

of SOM spatial distributions. In addition, the sampling density, 

considered as an impact factor, was discussed below. When the 

sample points were divided into subsets according to the terrain 

units, the sampling point spacing within a unit area changed. The 

negative correlation between the sampling density and the RMSE 

exhibited a very weak significance level. The correlation values 

for the predictions based on individual terrain units and the global 

predictions were -0.03 and -0.11, respectively. The positive 

correlation between the sampling density and the correlation 

coefficients exhibited a very weak significance level. The 

correlation values for the predictions based on individual terrain 

units and the global predictions were 0.28 and 0.12, respectively. 

The positive and negative correlations corresponded well with 

the actual relationships. If the sampling number per unit area 

were to be increased, the predicted spatial distributions of the soil 

properties in the region would better reflect the actual 

distributions. Furthermore, the correlation between the sampling 

density and the prediction accuracy of the two methods is very 

small, although some differences are evident. The impact of the 

sampling density on the prediction accuracy based on individual 

terrain units is considerable. The prediction accuracy for the 

global predictions is small. Changes in accuracy for the two 

prediction methods are partially related to the sampling density, 

although the sampling density is not the dominant factor affecting 

changes in accuracy. Determining the specific factors is a topic 

for future research. Furthermore, the prediction accuracy at 

junctions between terrain units and improving the division of 

terrain units requires additional attention. 

4. Conclusions 

In this paper, a method called GeoTU is proposed that 

incorporates the effects of the terrain factors in SOM distribution 

predictions. The method was used to divide the study area into 13 

different topographic units according to the specific indicators of 

classification; the spatial distribution of each unit was separately 

analyzed. Each SOM distribution obtained using the two methods 

for each terrain unit resulted in different accuracies throughout the 

13 studied terrain units. The average of the precision in the ridge, 

shoulder, summit, toe slope (north/northeast side), and low-lying 

terrain units was 16.39% higher than that of other method. 
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However, the prediction accuracy for other terrain types was 

comparable to the global prediction method. The mean Pearson 

correlation coefficient was 0.75. 

The results presented herein demonstrate that predictions 

with the GeoTU method are more accurate than spatial 

interpolation at a global scale. When interpolations are 

performed on a global scale, complex soil landscape 

relationships are not accurately captured, although the GeoTU 

method can resolve these deficiencies. Lydia et al. [32] 

discussed the application of ordinary kriging in mapping Soil 

Organic Carbon (SOC) in Zambia. The area of Lusaka 

Province belongs to Agroecological Zone II of Zambia, where 

the terrain is flat. Their results could be better convinced if 

they considered this situation. Bameri et al. [33] presented the 

relationships between the spatial variability of SOC and the 

topographic features by using geostatistical methods. Their 

result showed that the Mean Error and RMSE of cokriging are 

relatively lower than those kriging and IDW methods. We 

could probably attempt more different interpolation 

approaches based on topographic units to improve prediction 

accuracy of SOM and produce higher-quality soil information 

products. 
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