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Abstract: This paper puts forward a novel approach for model inversion of leaf area index (LAI) of vegetation based on the 

integrated arithmetic of data assimilation and genetic-particle swarm algorithm (DAGS). The article expounds the design 

principle of electromagenetic wave radiative transfer model (ERTM) for vegetation canopies. On this basis, this study 

constructs the inversion model of LAI based on DAGS. Furthermore, this experiment realizes the model inversion of LAI with 

the aid of Remote Sensing (RS) multi-spectral data and biophysical component data of vegetation canopies, which are 

provided by the multispectral RS observation data set (MOD15A2). The bullet points of the text are summarized as follows. 

(1) The contribution proposes DAGS for LAI inversion. (2) The article discusses ERTM model for electromagenetic wave 

radiative transfer mechanism of vegetation canopies. (3) This text achieves LAI inversion with the help of RS multi-spectral 

data and biophysical component data of vegetation canopies supplied by MOD15A2. The experimental results demonstrate the 

validity and reliability of the model inversion of LAI by making use of DAGS. The proposed algorithm exploits a novel 

algorithmic pathway for the model inversion of LAI by means of RS multi-spectral data and biophysical component data of 

vegetation canopies. 
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1. Introduction 

Leaf area index (LAI) is an important biophysical 

parameter of vegetation canopies, and it is generally utilized 

to characterize the space-time distribution regularities of the 

earth's surface vegetation. LAI is also a critical parameter 

which is utilized to structure the parameter retrieval model of 

vegetation configuration by means of Remote Sensing (RS) 

multi-spectral data. Studies show that many physiological 

processes of vegetation ecosystem are closely related to LAI 

of vegetation. As one of the key structural canopy 

characteristics and biophysics values, LAI values influence 

the vegetation ecology parameters, such as photosynthesis, 

chlorophyll generation, nutrient cycle, carbon cycle, 

respiration, net primary production, evaporation and 

transpiration, waste decomposition, intercept and capture of 

precipitation, energy balance, and other ecological 

parameters. Furthermore, LAI is also an extremely important 

evaluating indicator for annual net primary productivity 

(NPP) of terrestrial vegetation, which is the net amount of 

carbon fixed by plant photosynthesis, so LAI is an important 

index in global climate ecology change. Therefore, it appears 

very important to obtain information about LAI of vegetation 

as well as its distribution situation in the local area to the 

region, and even the global scale in the end. Making use of 

LAI data obtained by the model inversion, the distribution 

regularities of vegetation ecosystem in the regional scale can 

be intensively lucubrated, and its research outcome can be 

further utilized to provide the basic data for the identification 

and classification of vegetation type, and for the 

regionalization and planning of the regional vegetation
 
with 

the aid of RS image (Dawson, et al 2010). LAI is defined as 

the area of the leaf projected on per square meter of the 

ground surface, measured in 2m  per 2m . Since LAI is 

closely related to the biophysical process of vegetation, so 

LAI is one of very important input parameters for the 
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ecological process simulation of vegetation (Gao, et al 2008). 

It plays extremely significant effect to accurately estimate the 

value of LAI in the research of the carbon cycle and energy 

circulation of vegetation, as well as in deliberation of the 

environmental impact assessment. LAI is also a very critical 

input parameter of the land vegetation ecosystem research, 

and the research of its retrieval approach is still a hot-issue of 

RS application study all along. From the point of 

methodological view, the extraction method of LAI is 

primarily divided into two broad categories, that is, the 

statistical model method and the retrieval approach of 

physical model (Gemmell 2008). Because the retrieval 

method based on the statistical model is insufficient in 

physical basis, so its reliability and universality are 

exceedingly terrible. Although the lookup table methods 

(LUT) and the nonparametric methods (NPM) are developed 

for the collection of LAI, but they are nonetheless essentially 

retrieval means of the physical model. Despite the fact that 

the nonparametric retrieval approach based on the physical 

model eliminates the drawbacks, but the retrieval result of the 

model is generally non-unique due to the morbidity of the 

inversion process (Gong, et al 2009). This paper discusses 

the algorithmic principle of LAI inversion with the physical 

model, and then, the article expounds the principle and the 

method of LAI inversion with DAGS. On the basis of the 

physical model of LAI inversion, this manuscript builds the 

electromagenetic wave radiative transfer model (ERTM) of 

vegetation canopies, and then, LAI of vegetation is retrieved 

with DAGS. The experimental results demonstrate the 

validity and reliability of LAI inversion with DAGS. The 

proposed algorithm opens up a novel algorithmic pathway for 

LAI inversion of vegetation by making use of RS multi-

spectral data and biophysical component data of vegetation 

canopies.  

Because traditional method for the model inversion of LAI 

is a statistical regression algorithm based on vegetation 

index, and it is very easily affected by various extrinsic 

factors, such as background value of soil elements, etc., so 

the algorithm is deficient in transportability. Therefore, this 

research pays particular emphasis on structuring ERTM that 

is used to describe the radiative transfer process of the 

electromagnetic wave within vegetation leaves. However, the 

model inversion of LAI based on ERTM is an opposite 

problem, and it possesses the uncertainty, that is, it 

dissatisfies the existence of the solution, the uniqueness of 

the solution, and the continuous dependence which the 

solution acts on the observed data (Goward, et al 2008). This 

is caused by two main reasons below: (1) a different model 

parameter can produce almost the same reflective spectral. 

For example, the spectral reflectance, which vegetation 

leaves are sparse and their leaves are horizontal distribution, 

is similar to the spectral reflectance which vegetation leaves 

are dense and their leaves are vertical distribution 

(Jacquemoud, et al 2006); (2) the reflectance simulated with 

the model as well as the observed reflectance there exists the 

uncertainty, respectively. The uncertainty in the reflectance of 

the model simulation comes predominantly from 

simplification of the scattering effect of vegetation canopies, 

and it derives principally from the idealization of the 

Lambert scattering supposition of vegetation canopies. 

However, the uncertainty of the observed reflectance comes 

primarily from RS transducer noise, and it derives chiefly 

from the noise produced by RS data pretreatment. Since the 

uncertainty of an opposing problem, so this will lead the 

solution of the model inversion to produce jumping in the 

parameter space. This means the solved solution is likely to 

be unevenly distributed in the whole parameter space, rather 

than converging at near the actual solution. For this purpose, 

PROSAIL model is used to simulate the hyper-spectral 

reflectance of vegetation leaves (Jacqumoud, et al 2009). In 

this case, LAI is supposed retaining at near an initial value for 

the inversion of numerical value of the reflectance model 

used for vegetation canopies. The research result shows that 

the less the value of LAI, the greater the leaf structure 

parameter N of vegetation, likewise the less the LAD (mean 

leaf inclined angle distributions) of vegetation canopies. The 

above conclusion explains, for the foliar reflectance of 

vegetation, that the influence of LAI and LAD is contrary to 

that of the foliar structure parameter N. Further research 

discovers that the combination of different parameters can 

correspond to almost similar spectra (Karami, et al 2012). 

Therefore, the morbid problem of the model inversion is still 

always existent, and so far it is still the bottle-neck issue of 

LAI model inversion of (Kimes 2007). In order to resolve the 

above problem, this article builds ERTM of vegetation 

canopies, and puts forward DAGS for the model inversion of 

LAI. Experimental result demonstrates the validity and 

stability of LAI inversion by employing DAGS. In this way, 

the uncertainty of LAI inversion is correspondingly reduced. 

Moreover, the retrieval precision of LAI is evidently 

improved (Kimes et al 2008).  

2. Algorithmic Principle of Data 

Assimilation Arithmetic (DAA) 

2.1. Data Assimilation Arithmetic (DAA) 

Algorithmic principle of DAA is summarized as follows.  

(1) According to an internal related model within the 

observed data, a predicted model of the unobserved data is 

built, and then it is regarded as an initial-estimate model of 

data.  

(2) An initialization processing is implemented for an 

updated initial-estimate model of data.  

(3) Next data are predicted with the model, and then a new 

forecasting model is built with the observed data.  

(4) A new forecasting model is regarded as an initial-

estimate model of next updated data, and then the resulting 

data are predicted with the model.  

(5) If all data are predicted, and then the algorithm is over. 

Otherwise the algorithm returns to step (1).  

The above cycling course is explained below: inserting 

observed data → updating initial-estimate model → 

initialization processing → model predicting → inserting 

observed data → updating initial-estimate model → 
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initialization processing → model forecasting,…, end. The 

beginning of each cycle in data assimilation arithmetic, the 

forecasting model is updated with the new observed data 

(Kuusk 2007). The update is principally divided into two 

modes, that is, one-dimensional assimilation and two-

dimensional assimilation. The one-dimensional assimilation 

is that the data obtained with the observation directly 

replaces the model predicted value that is most close to the 

observed data in accordance with the minimum distance 

algorithm. Such update mode is similarly defined as direct 

inserting of the observed data or direct updating of the 

forecast value. The two-dimensional assimilation is 

explained in the following. The forecasting model is regarded 

as an initial-estimate model, and the observed data are 

analyzed statistically, and then a forecast model of data is 

built according to the interrelation within data. Such update 

mode is likewise defined as indirect inserting of the observed 

data or indirect updating of the predicted value (Kuusk 

2006).  

2.2. Objective Function of the Data Assimilation System 

The objective function ( )( )jF y τ  of the data assimilation 

system is defined in the following. 

( )( ) ( ) ( ) ( ) ( )

( )( ) ( )( )

1

1
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1

2
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j j j j j
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j j j j j j j
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G L s x D G L s x

τ τ τ τ τ−

−

=

   ′ ′= − − +
   

   ′ ′− −      ∑
 (1) 

Where, ( )( )jF y τ  is the objective function; jτ  denotes 

moment j ; ( )jy τ  is the initial value of the state vector, and 

it is also a column matrix of the assimilated variable, and it 

denotes the initial state of the assimilation period j ; ( )jy τ′  

is the ambient field; C  is the covariance matrix of the error 

of the ambient field; jx′  is the observed value of the moment 

j , and it is a multi-dimensional vector of the observed data; 

L  is the model operator; js  is the  thj  observed parameter 

of L ; jG  is the observed operator; jD  is the covariance 

matrix of the error of the observation field.  

3. Algorithmic Principle of DAGS 

3.1. Data Assimilation Algorithm of Genetic-Particle 

Swarm 

Suppose that mV  is m-dimensional search space of the 

objective ( m  is number of assimilation variable), then there 

exists a population { }1 2, , , nξ ξ ξ ξ= ⋯  that consists of n  

particles, and the position of the particle j , 

{ }1 2, , ,j j j jmξ ξ ξ ξ= ⋯  indicates the  thj  solution of the 

algorithm. Each particle searches a new algorithmic solution 

by continually adjusting its own position jξ  (Liang, et al 

2008). The optimal solution (fitness degree of particle) that is 

searched by the particle j  is marked as jsq , and the optimal 

solution (colony fitness degree) that is searched in the k  

iteration by whole particle swarm is marked as ksq  

(Manevski, et al 2012). The velocity of the particle j  in the 

particle swarm is marked as { }1 2, , ,j j j jmU u u u= ⋯ . When 

both the two optimal solution jsq  and ksq  are found out, 

then the particle updates its own velocity with formula (2). 

Afterwards, the particle adjusts its own position with formula 

(3) (Mustafa, et al 2012).  

( ) ( ) ( )( )
( )( )

1 rand()

rand()

js js js js

ks js

u wu q

q

τ τ α ξ τ

β ξ τ

+ = + − +

−
    (2) 

( ) ( ) ( )1 1js js jsuξ τ ξ τ τ+ = + +               (3) 

Where, ( )jsu τ  is the s-dimensional velocity of particle j  

in the τ  iteration; ( )1jsu τ +  is the s-dimensional velocity of 

particle j in the 1τ +  iteration; ( )1jsξ τ +  is the s-

dimensional position of particle j in the 1τ +  iteration; w  is 

an inertia weighted constant; α  and β  are an accelerated 

parameter ascertained by the iteration, respectively; function 

rand() (0,1)∈  shows a random number between (0, 1).  

3.2. The Genetic-Iterative Optimization Algorithm of DAGS 

As previously discussed, the genetic-iterative optimization 

algorithm of DAGS for the model inversion of LAI is defined 

as follows.  

(1) Both the initial position and initial velocity of each 

particle in the particle population are respectively initialized 

in the search space.  

(2) Both the update velocity and update position of each 

particle are respectively calculated with formula (2) and 

formula (3).  

(3) Particle fitness degree jsq  of the particle j  is 

calculated ( 1,2, , )j n= ⋯ , and colony fitness degree ksq  of 

the particle j  is also calculated ( 1, 2, , )k l= ⋯ .  

(4) For the particle j ( 1,2, , )j n= ⋯ , if its current fitness 

degree is better than the fitness degree jsq  of its best position 

which it has been gone through, then the value of its current 

fitness degree is assigned to jsq .  

(5) For the particle j , both its particle fitness degree jsq  

( 1,2, , )j n= ⋯  and its colony fitness degree ksq  

( 1, 2, , )k l= ⋯  are respectively compared with the current 

best jsq  and ksq . If there exist better jsq  and ksq , then both 

the current jsq  and ksq  are respectively updated with better 

jsq  and ksq .  
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(6) The value of the fitness degree of each particle is 

ranked ordering from the greater value through the smaller 

one. For posterior particles in the sequence, the following 

interlacing operation and variation operation are 

implemented, and an original particle is substituted with a 

newly generated particle.  

(7) The interlacing operation is performed. The particles of 

the parent population are randomly mated processing. It is 

random to determine the crossing position for each pair of 

particles of the parent population. Then the new particles of 

the descendant population are generated by the interlacing 

operation.  

(8) The variation operation is carried out. A number

{ }1, 2, ,j m∈ ⋯  is selected randomly and discretionarily, 

and then the  thj  variable ijξ  of the particle iξ , whose 

variation is going to be generated, performs the variation 

operation with formula (4).  

rand ()( )ij ij jv jsξ ξ ξ ξ′ ′= + −                     (4) 

Where, function rand () (-1,1)′ ∈  indicates a random 

number among (-1, 1); jvξ  is the value of fitness degree of 

the particle j  before the variation; jsξ  is the value of colony 

fitness degree of the particle j  before the variation. Both the 

update velocity and update position of each particle are 

respectively calculated with formula (2) and formula (3). If 

the update velocity and update position of each particle are 

all optimal, then the algorithm is over. Otherwise the 

operation returns to step (2) and continues to iterate (Myneni, 

et al 2007).  

4. LAI Inversion Algorithm 

4.1. The Radiative Transfer Model of Vegetation Canopies 

Based on the above discussion, the radiative transfer 

model of vegetation canopies is defined as follows 

c s mρ ρ ρ ρ= + +                           (5) 

Where,  
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In formulas (5)-(11), ρ  represents reflectance of 

vegetation canopies; cρ  denotes the component of direct 

reflectance of vegetation canopies; sρ  means the component 

of direct reflectance of soil; mρ  indicates the multiple-

scattering reflectance component of vegetation-soil; 

( ), ,LG r r z′  shows the scattering phase-function of 

vegetation canopies; H  means the depth of vegetation; µ′  

and µ  are the cosine value of the zenith angle of the sun and 

the zenith angle of observation, respectively; ( )L zµ  is the 

volume density of the leaf area in the vegetation depth z ; r′  

and r  are the solar azimuth and the direction angle of 

observation, respectively; ( ), ,Q r r z′  is the void ratio 

between the solar direction and the observed direction in the 

vegetation depth z ; SOILR  expresses full-reflectance of soil; 

( ), ,SOIL r rρ ω′  is the bidirectional reflectance of soil; 0L  is

LAI  of the whole vegetation canopies; LS  and LS ′  are the 

leaf area of the direction of the solar zenith angle and the 

observed zenith angle, respectively; α  is the contained angle 

between the solar direction and the observed direction; Ll  is 

a parameter that indicates the ratio between the geometrical 

characteristic scale of vegetation canopies and the vegetation 

depth; γ , τ , and κ  are the reflection coefficient of 

vegetation canopies, transmission coefficient of vegetation 

canopies, and Fresnel refraction coefficient of the horny layer 

of vegetation canopies, respectively; ω  means the full-

reflectance of vegetation canopies.  

Soil reflectance SOILR  is a function of the reflected light 

wave length λ , and SOILR  is calculated from the following 

formula (Niemann, et al 2012).  

1 1 2 2 3 3 4 4( ) ( ) ( ) ( ) ( )SOILR w w w wλ γ λ γ λ γ λ γ λ= + + +    (12) 

Where, λ  is the wavelength; 1( )γ λ , 2 ( )γ λ , 3( )γ λ  and
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4 ( )γ λ  represent the basic function, respectively; 1w , 2w , 

3w  and 4w  denote the weighted coefficient, respectively. 

Since parameter ( )SOILR λ  is as soil reflectance of the nadir 

direction, so it is generally thoughtless of the directional 

information. The bidirectional distribution function of soil 

reflectance 1 2( , , , )rρ λ ϑ ϑ ϕ  can be expressed as the 

following formula. 

1 2
0 1

2
0 1 1 1 2 2 1 2

( )
( , , , )

( )

( ) ( ) cos ( )

SOIL
r

f

f f f

ρ λρ λ ϑ ϑ ϕ
ϑ

ϑ ϑ ϑ ϕ ϑ ϑ

= ×

 + + 

           (13) 

Where, 1 2( , , , )rρ λ ϑ ϑ ϕ  is the bidirectional distribution 

function of soil reflectance; 1ϑ , 2ϑ  and ϕ  mean the solar 

zenith angle, the observed zenith angle, and the observed 

azimuth angle, respectively. The modified function of 

radiation of the angle 1ϑ  in formula (13) is shown below. 

2
0 1 1

2
1 1 1

2
2 1 1

( ) 3.64 14.62

( ) 6.58 2.46

( ) 8.642 3.68

f

f

f

ϑ ϑ

ϑ ϑ
ϑ ϑ

 = −
 = −
 = −

                     (14) 

4.2. Structuring the Cost Function for LAI Inversion of 

Vegetation Canopies 

The cost function needed in LAI inversion should be first 

built. The cost function sets up the standard by which the 

model-simulation values of the retrieved parameters and RS 

observed values are arriving at an agreement. The cost 

function ( )J x of LAI inversion in this experiment is 

established in the following. 

2

0

1 1

( ) ( ) ( ) ( )

k L
i i i

s j

i j

J x w x x xρ ρ ρ
= =

 = − + ∑ ∑        (15) 

Where, ( )J x  is the retrieval cost function of the retrieved 

parameter x ; iw  means the weighted coefficient of the band 

i ; ( )i
s xρ  indicates the model-simulation reflectivity of the 

band i ; k  shows the simulated band number; 0 ( )i xρ  denotes 

the observed reflectivity of the band i ; ( )jxρ  expresses the 

reflectance of the retrieved parameter x  in the band j ; L

represents the observed band number.  

4.3. Building the Objective Function for LAI Inversion of 

Vegetation Canopies 

Supposing the observed data ov  and the parameter m  of 

LAI inversion subjecting to Gaussian normal distributions, 

and then the objective function ( )T m  of LAI inversion for 

vegetation canopies is defined in the following. 

( ) ( ) ( ) ( )1 11
( )

2

TT

c o U c o p V pT x v v B v v x x B x x− − = − − + − −  
 (16) 

Where, ( )T x  is the objective function of LAI inversion for 

vegetation canopies; cv  means the calculated value of the 

parameter; ov  indicates the observed value of the parameter; 

x  shows the retrieved parameter; px  expresses the prior 

estimation of the parameter; UB  is the covariance matrix of 

the observed data; VB  is the covariance matrix of the prior 

estimation of the parameter. 

4.4. LAI Inversion of Vegetation Canopies Based on DAGS 

This experiment constructs the following retrieval model 

for LAI model inversion of vegetation canopies based on the 

DAGS, and the inversion model ( )R x is defined as follows. 

( ) ( )1

1
0 0

1

( )

( ) ( ) ( ) ( )

T

B B

n
T

s i i s i i

i

R x x x B x x

x x Q x xρ ρ ρ ρ

−

−

=

= − − +

− −      ∑
     (17) 

Where, ( )R x  is the retrieved vector of LAI; i  means the 

retrieval moment; x  is the vector of the retrieved parameter 

vector at different retrieval moments, and it is described as 

the expanded vector; ix  is the  thi  component of x , and it 

means the retrieved parameter at the  thi  retrieval moments; 

Bx  is the priori knowledge of the retrieved parameters; B  is 

the covariance matrix of a priori error of the retrieved 

parameters; ( )s xρ  is the value of the simulated reflectance; 

0 ( )xρ  is the value of the observed reflectance; Q  is the error 

covariance matrix of ( )s xρ  and 0 ( )xρ . 

4.5. Data Processing for LAI Inversion of Vegetation 

Canopies 

After the minimum objective function is determined, the 

uncertainty for LAI inversion of vegetation canopies can be 

calculated with following formula. 

{ } { }min , maxi i i ix x xσ± ∩                  (18) 

Where, ix  and iσ  are normal mean and standard 

deviation of the   thi  retrieved parameter ix , respectively. 

In the above formula, when i ix σ≥ , then it assigns 

negative sign “-”, and when i ix σ< , then it assigns positive 

sign “+”; min ix  and max ix  are the lower bound and upper 

bound of the   thi  retrieved parameter ix , respectively. The 

predicted values and uncertainty of each relevant parameter 

for five vegetation types, such as broad-leaved forest, shrub 

forest, pasture, dense crops, and sparse crops, are calculated 

with the above formula, and the calculated results are 

shown in Table 1 to Table 3. In Table 1 to Table 3, N means 

LISP (leaf internal structure parameter); Cab denotes LCC 

(leaf chlorophyll a+b content); Cw shows LMC (leaf 

moisture content); Cm indicates LDMC (leaf dry matter 

content); Sl expresses LAHR (leaf area/crop height ratio); 

SRI (soil reflectance index) indicates soil reflectance index. 
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The signification of other parameters refers to the 

introduction of the text. Since soil reflectance in the 

vegetation canopy changes very little, so the parameter of 

soil reflectance, which is generated with the soil reflectance 

model, changes very slight among the vegetation types as 

well. Therefore, the predicted values and uncertainties of 

LMC are appropriately adjacent and coincident with the five 

vegetation types (See Table 1 to Table 3). 

Table 1. Predicted value of the sensitivity and component parameters for different vegetation types. 

Vegetation type LAI LAD N Cab Cw Cm Sl SRI 

Broad-leaved forest 0.72 65 1.56 48 0.26 0.12 0.06 0.62 

Shrub forest 0.84 54 1.65 46 0.78 0.43 0.03 0.76 

Pasture 1.64 58 1.72 48 0.24 0.15 0.04 0.66 

Dense crops 1.82 56 1.84 52 0.34 0.18 0.05 0.86 

Sparse crops 2.42 62 1.36 50 0.36 0.14 0.04 0.78 

Table 2. Predicted values and the uncertainties of the component parameters of the partial leaves for different vegetation types. 

Predicted value Uncertainty 

Vegetation type N LAD LAI N LAD LAI 

Broad-leaved forest 1.58 67 0.74 1.24-2.26 61-73 0.54-0.78 

Shrub forest 1.64 55 0.86 1.12-2.26 32-57 0.38-0.92 

Pasture 1.74 57 1.65 1.23-2.52 41-68 1.32-2.63 

Dense crops 1.84 56 1.82 1.35-2.64 45-66 1.24-3.26 

Sparse crops 1.36 62 2.42 1.18-2.45 42-76 1.26-3.65 

Table 3. Predicted values and the uncertainties of the biophysical component parameters of the partial leaves for different vegetation types. 

Predicted value Uncertainty 

Vegetation type Cm Cw SRI Cm Cw SRI 

Broad-leaved forest 0.12 0.26 0.62 0.06-0.24 0.14-0.56 0.38-0.76 

Shrub forest 0.43 0.78 0.76 0.23-0.76 0.26-0.84 0.42-0.89 

Pasture 0.15 0.24 0.36 0.01-0.16 0.06-0.32 0.18-0.52 

Dense crops 0.18 0.34 0.86 0.08-0.37 0.12-0.58 0.58-1.12 

Sparse crops 0.14 0.36 0.78 0.06-0.43 0.18-0.54 0.46-1.08 

 

5. The Experiments of LAI Inversion 

5.1. Data Set Description 

The proposed ERTM supposes the vegetation canopies to 

be uniformly distributed. In addition, the radiative transfer of 

ascending and descending of the light wave is evenly 

radiation process within the vegetation canopies. While the 

model is working, the required input parameter includes a 

series of the observed data enumerated as follows: 

reflectance ( )ρ λ  of vegetation canopies, transmittance ( )τ λ  

of vegetation canopies, LAI (leaf area index), LAD (mean leaf 

inclined angle distributions), soil reflectance ( )sρ λ , as well 

as horizontal visibility V  that is used to calculate the 

scattering component of the solar radiation. Furthermore, the 

spectral direction of vegetation radiation is simulated with a 

series of the observed parameters, such as the solar zenith 

angle ( )sθ � , the solar azimuth ( )sϕ � , the observed zenith 

angle ( )vθ � , the observed azimuth ( )vϕ � , and other 

parameters.  

For the range selection of the input parameters for LAI 

model inversion, this study consults biophysical parameter 

data of vegetation canopies, which are provided by the 

multispectral RS observation data set (MOD15A2). The 

experiment employs multi-spectral RS data of vegetation 

canopies as well as component parameter data of biophysics of 

vegetation canopies to implement the model inversion of LAI. 

This data set contains over 80 species of multi-spectral RS data 

of woody plants and herbaceous plants, including over 80 

species of multi-spectral RS data of leaf samples. These data 

reflect multi-spectral characteristics of vegetation canopies as 

well as the species diversity of vegetation. These data consist 

of a series of component parameters of vegetation leaves, such 

as internal structure, chlorophyll content, moisture content, and 

other component content of vegetation canopies. Therefore, the 

multi-spectral characteristics of vegetation canopies are 

provided with broad representativeness of various vegetation 

types (Nilson 2009). By making use of over 80 spectral data of 

vegetation leaves, the inversion of LAI is implemented in the 

experiment. Spectrums of vegetation canopies are regarded as 

the hemispherical reflectance and transmittance, and their 

wavelength ranges cover 550nm-2800nm, and their sampling 

intervals are 2nm as well. In order to reduce the errors, the 

mean value of the spectral data of four leaves in each category 

is adopted to represent the spectral data of the same category. 

For the sake of decreasing the noise level, the sampling 

intervals of the spectrums of vegetation canopies are 6nm.  

5.2. Analyses of the Sensitivity and Uncertainty of 

Parameters for LAI Inversion 

The model inversion of LAI in this experiment is achieved 

with the aforementioned DAGS as well as the algorithm 

given in formula (14)-(18). First of all, the cost function 

given by formula (15) is minimized with the iteration 

optimization algorithm. Then the minimum objective 
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function given by formula (16) is ascertained with the 

algorithm of the iteration optimization. Afterwards, LAI 

inversion is implemented with the algorithm given by 

formula (17). Finally, the uncertainty of the retrieval result is 

calculated with the algorithm given by formula (18). The 

uncertainties of the parameters that have not participated in 

the inversion are invariable. The most uncertain and most 

sensitive parameters are selected from the next group of the 

retrieved parameters according to the aforementioned DAGS. 

After that, the inversion of the second stage begins to come 

into effect, until the parameter value of the inversion is no 

longer changing (North 2006).  

5.2.1. Determining Sensitive Parameters for Different 

Vegetation Types 

Experimental results indicate, during the inversion model 

being performed, that the quantities of the retrieved 

parameters will be increased in an exponential way along 

with the size of the data sets that are generated by the 

retrieved parameters. In this case, more resources of a 

computer will be occupied, and a longer time will be 

consumed as well. Therefore, it is necessary for the model 

inversion of LAI to properly decrease the quantities of the 

retrieved parameters under the conditions which the retrieval 

precision is significantly ensured. In order to more accurately 

apply the established simulation model of vegetation leaves, 

it is requisite for LAI inversion to ascertain the change step-

length and the mobility scale of the needed parameters during 

the retrieval model being operated. After input parameters for 

LAI inversion are determined in accordance with a priori 

knowledge, the corresponding reflectance of vegetation 

canopies can be achieved by the retrieval model of vegetation 

canopies. If changing one parameter of them, and keeping 

other parameters unchanged, then another group of the 

reflectance of vegetation canopies can be again obtained as 

well. By adjusting the change step-length and the mobility 

scale of input parameters, it can make the mobility scale of 

input parameters become smaller as much as possible. In this 

way, this will be able to accurately simulate the actual spectra 

of vegetation canopies as much as possible. Thus, the 

simulated spectra and the actual spectra of vegetation 

canopies can be consistently matched as much as possible. In 

order to determine the influence extent of input parameters 

for the retrieval model, this paper introduces the concept of 

the sensitivity. By analysis of the sensibility of input 

parameters for the retrieval model, the change step-length 

and the mobility scale of input parameters are accurately 

determined. The analysis process of the parameter sensibility 

is summarized as follows. When the parameter change-range 

σ∆  is given, a change situation for simulated value ε∆  of 

the model output is investigated near a reference value 0σ . 

The analytical algorithm of the parameter sensibility is 

defined as follows. 
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Where, ε∆  is the simulated value of the model output; 

0i
σ  is the  thi reference value of 0σ ; iσ∆  is the change-

range of the  thi  parameter; M  is number of input 

parameter.  

In accordance with the above formula, the sensitivity of 

input parameter on each RS band is defined as follows.  
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Where, jV  denotes the sensitivity of the input parameter 

on band j ; N  is number of RS bands; 0( )jγ σ  is the 

reflectance vector of vegetation canopies at reference point 

vector 0σ ; 0( )jτ σ  is the transmissivity vector of vegetation 

canopies at reference point vector 0σ .  

When the sensitivity of each input parameter is calculated 

with the above formula, the parameter should be moved left 

to σ∆  from the reference point 0σ , and other parameters 

are fixed at the reference point 0σ . The determining process 

of sensitive parameters for different vegetation types is 

explained as follows. The spectral distribution range and the 

mean spectrum as well as their identification and 

classification results of different vegetation types is regarded 

as a priori knowledge of LAI inversion of (See Figure 1). 

Biophysical parameter data of vegetation canopies are 

consulted for the range selection of input parameters used for 

the retrieval model. Due to the difference of vegetation type 

and leaf structure, and the limitation of the quantities of the 

training samples, the measured values of biophysics of the 

fresh leaves in the data set are only regarded as the reference 

values of input parameters in the experiment. In this way, the 

step length of input parameters is appropriately reduced 

(Privette, et al 2006). Figure 2 is the distribution diagrams of 

the wavelength-sensitivity curve for biophysical component 

of vegetation canopies, which are produced by the above 

algorithm. The meaning of each symbol in Figure 2 is 

explained as follows: LMC means leaf moisture content of 

vegetation; LCC indicates leaf chlorophyll a+b content of 

vegetation; LDMC expresses leaf dry matter content of 

vegetation; LISP shows leaf internal structure parameter of 

vegetation. It can be seen from figure 2 that both the 

sensitivity curves of LDMC and LISP appear a minor 

fluctuant in the entire wavelength interval, and that the 

sensitivity curves of LMC present a major undulant in the 

entire wavelength interval. It can be further seen from figure 

2 that the wavelength range of sensitivity of LCC to spectral 

is among 1400-800nm. The sensitivity of the other three 

biophysical components is respectively much less than that of 

LCC in the interval, and the chlorophyll a+b content is no 

longer sensitive to the spectral in the interval of wavelength

800nmλ > . However, the sensibility of LMC is increased 

rapidly in the interval of the wavelength. Because the 
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maximum wavelength of the spectral of vegetation leaves is 

2800nm, so the sensibility of LMC can be likewise neglected. 

By the analysis of the distribution regularities of the 

wavelength-sensitivity curves for biophysical component of 

vegetation canopies, the sensitive input parameter is assigned 

with the major weighted coefficient according to the priori 

knowledge, and the insensitive input parameter is assigned 

with the minor weighted coefficient in accordance with the 

priori knowledge. However, the input parameter that can be 

ignored is subsequently assigned with the constant value 

according to a priori knowledge. In this way, the quantities of 

the retrieved parameters can be greatly decreased. 

Accordingly, during the inversion model is working, fewer 

resources of the computer will be occupied, and the 

calculating time will be correspondingly greatly shortened.  

 

Figure 1. Average spectral reflectance of different vegetation types. 

 

Figure 2. Distribution diagram of the wavelength-sensitivity curve for 

biophysical component of vegetation canopies. 

In order to reduce the uncertainty of LAI inversion, it is 

necessary to restrict the solution space of the parameters with 

prior knowledge. The sensitivity of the retrieved parameter can 

be calculated using the above formula, and the sensitive 

parameters will be selected for LAI inversion. By the 

calculation of the sensitivity of the retrieved parameter, it is a 

well known fact that the reflectance of vegetation canopies is 

varied with the sensibility of the different parameters. For 

example, the reflectance of vegetation canopies is sensitive to 

parameter LAI, to LAD, and LISP, etc. However, the 

reflectance of vegetation canopies is little sensitive to 

parameter LCC, to LMC, to LDMC, and LAHR, etc. 

Meanwhile, corresponding sensitive parameters of different 

vegetation type as well as their value range there exists a large 

difference as well. Therefore, by giving a prior knowledge for 

restricting the solution space, the retrieval precision of the 

parameters can be significantly improved during the parameter 

inversion is implemented. For this reason, first of all, the 

spectral distribution ranges and the mean spectral values of 

different vegetation types are statistically calculated by the 

consequences of the identification and classification of RS 

image (See Figure 1). Then the sensitivity of distinctive 

vegetation type is analyzed so that the sensitive parameters of 

diverse vegetation type are accurately determined. According 

to the aforementioned analytic results of the sensibility for 

vegetation parameters, the sensitive parameters that are 

selected from the different vegetation types as well as their 

value ranges of the uncertainties are calculated with the above 

algorithm (See Table 1 to Table 3).  

5.2.2. The Model Inversion of LAI 

Making use of the sampled multi-spectral data of 

vegetation canopies, LAI is retrieved with formula (5)-(20), 

and then values of LAI are optimized and calculated with the 

aforementioned DAGS in the experiment. Figure 3 shows the 

comparison of the measured LAI values with the retrieved 

LAI values of the model inversion. Where, the correlation 

coefficient is 0.86R = , the root-mean-square error is 

0.24RMSE = . It can be seen from Figure 3, from the 

perspective of probability and statistics analysis, that when 

LAI value <3, then the retrieved LAI value with the model is 

appropriately adjacent and coincident with the measured one, 

and there is a little difference between them, and that when 

LAI value >3, then the retrieved LAI value with the model is 

generally less than the measured one. The experimental 

results indicate that when LAI value >3, then the reflectance 

of vegetation canopies is no longer sensitive to LAI. The 

above conclusion is strictly coincident with the research 

result of the predecessors (Piwowar 2011).  

Besides, the priori knowledge, such as spectral distribution 

range and the value of the mean spectral of different vegetation 

type, as well as the identification and classification results of 

the spectral, is set up as the predicted value of the prior 

knowledge for LAI inversion, and on this basis, LAI inversion 

is implemented perfectly. Changing regularity of the 

percentage of the absolute value of the difference between the 

retrieval result and its actual value for its true value along with 

the noise is as shown in Figure 4. In Figure 4, the horizontal 

ordinate is the percentage ζ  of the noise level, and the vertical 

ordinate is the percentageη of deviation of LAI inversion. It 

can be seen from Figure 4, under the condition of the 

percentage (3,70)ζ ∈  of the noise level, that the percentage 
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of the retrieved deviation of LAI is shown at ( 15,4)η ∈ − . In 

addition, it can be also seen from Figure 4 that when 3ζ → , 

2η → , then η  is converged to the point (3, 2)P , and that 

when 70ζ → , 15η → − , then η  is converged to the point 

(70, 15)Q −  as well. When the percentage of the noise level ζ
is located in the interval (3,70) , the maximum value and 

minimum value of the percentage η  of deviation of LAI 

inversion are  4Max η = ,  15Min η = − , respectively (See 

Figure 4). As a consequence, it is not difficult to conclude that 

the retrieval precision of LAI can be significantly improved by 

employing multi-spectral RS data of vegetation canopies in the 

framework of DAGS for LAI inversion. By making use of the 

proposed algorithm to perform the model inversion of LAI, the 

mean value of the retrieved result is appropriately adjacent and 

coincident with the truth-value, that is, the deviation of the 

inversion is in a permitted range.  

 

Figure 3. Comparison of the measured LAI values with the retrieved LAI 

values. 

 

Figure 4. The relative deviation of LAI retrieval results for different 

vegetation types. 

6. Analyses and Discussions 

As stated above, if LAI value >3, then the reflectance of 

vegetation canopies is no longer responsive to LAI. The 

conclusion is strictly coincident with the research result of 

the predecessors. Furthermore, research results show that 

LAD (mean leaf inclined angle distributions) of vegetation 

canopies is closely related to LAI. If the value range of LAD 

is greater than the actual range, then it will cause the 

retrieved value of LAI getting a little greater. Otherwise, if 

the setting range of LAD is less than the actual range, then it 

will cause the retrieved value of LAI getting a little less. 

Meanwhile, the value of the determined parameter basically 

represents the mean value of the parameters of vegetation 

type, and it cannot completely represent all value of 

vegetation parameters of the vegetation type. Therefore, 

when the LAI whose LAI value is greater than 3 is retrieved, 

it is obviously important to accurately determine LAD of 

vegetation canopies (Sellers 2007).  

As mentioned above, RS multi-spectral data of vegetation 

canopies, which cannot be directly observed, are predicted 

with DAGS, and biophysics component data of vegetation 

canopies, which are omitted with observation, can be also 

forecasted in the experiment. When the unknown data are 

forecast and prognosticated, the system itself can be also 

optimized at the same time. Accordingly, an interrelated 

model between the observed data and the simulated data is 

likewise built, so that the data simulated with the model are 

more objective and more accurate. The proposed algorithm 

eliminates the imperfection of the traditional approach for 

LAI inversion of vegetation canopies. In addition, the 

proposed algorithm simplifies the optimal iterative process of 

LAI inversion for different vegetation type, and quickens the 

convergent velocity of the optimal solution of the system. 

Consequently, the optimal iterative velocity of the model 

inversion of LAI can be considerably expedited, and the 

retrieval precision of LAI will be significantly improved as 

well (Suits 2008).  

 As discussed previously, adjusting the change step-length 

and mobility scale of the input parameters not only makes the 

change step-length and mobility scale of input parameters 

become smaller as much as possible, but also simulates the 

actual spectral of vegetation canopies as accurately as 

possible. In this way, the simulated spectral and actual 

spectral can be consistently matched as much as possible. In 

sensibility analysis, a sensitive parameter is assigned with a 

major weighted coefficient, and an insensitive and negligible 

parameter is assigned to a minimum weighted coefficient or 

the constant value. Consequently, the quantities of the 

retrieved parameters can be decreased greatly, and a less 

resource of the computer will be occupied, and the 

computation time of the parameter inversion will be likewise 

considerably shortened (Verhoef 2006).  

Moreover, the knowledge of the spectral distribution range, 

the mean spectrum of different vegetation types, and the 

identification and classification results of the spectral is set 

up as a priori knowledge of LAI inversion. On this basis, the 

model inversion of LAI is implemented with DAGS. 

Furthermore, research result demonstrates that LAD of 

vegetation canopies is closely related to LAI. If the value 

range of LAD is greater, then it will result in value of the 
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retrieved LAI getting a slightly greater, and vice versa. When 

LAI value is less than 3, then LAI value of the model 

inversion is appropriately adjacent and coincident with 

actually measured one. When LAI value is greater than 3, 

then LAI value of the model inversion is generally less than 

actually measured one, and the reflectance of vegetation 

canopies is no longer responsive to LAI. Since the value of 

the retrieved parameter only represents the average value of 

the parameters for the vegetation type, and it cannot 

completely represent all value of the parameters of the 

vegetation type, so when LAI whose LAI value is greater than 

3 is retrieved, it is thoroughly significant to accurately 

ascertain the value of LAD for vegetation canopies 

(Veroustraete, et al 2006).  

By the comparison of the simulated spectral with the 

actual spectral, it illustrates that the key to accurately retrieve 

LAI relies on improving the simulated precision of the model. 

In other words, it is essential for the precise inversion of LAI 

to accurately simulate LAI of vegetation canopies with the 

model. The above conclusion is obtained from LAI inversion 

of the level leaves of vegetation. However, this experiment 

validates that the same conclusion applies to LAI inversion of 

the level canopies of vegetation. The research indicates that it 

is necessary for the widespread inversion of LAI to achieve a 

balance between the complexity and the accuracy of the 

retrieved model. The more precise the descriptive model for 

the parameter state of vegetation canopies, the more 

complicated its own configuration will be, such as the three-

dimensional ray-tracing model, as a result, the more the 

model parameters involved. However, the more complicated 

the model, the more strenuous the model inversion. It is 

conceivable that, if a complicated retrieval model of 

vegetation leaves is coupled with an intricate retrieval model 

of vegetation canopies, then the inversion of LAI is 

synthetically implemented, the difficulty of the inversion can 

be enormously increased. The proposed DAGS for the model 

inversion of LAI can be not only utilized to solve relatively 

simple optimizing problems, but also to solve moderately 

complicated optimizing problems, such as the inversion of 

biophysical component parameters of vegetation canopies by 

the aid of RS data of the hyper-spectral and multi-angle. The 

experimental result indicates that the proposed algorithm is 

an effective way to solve the inversion of the complicated 

model. The retrieval model of LAI is the inversion based on a 

definite condition, and different retrieval model possesses its 

adaptive vegetation types. For instance, both the coniferous 

forest and the broad-leaved forest are provided respectively 

with the distinctive canopy structure and reflectance 

characteristics of vegetation canopies, so the established 

model of the leaf reflectance is correspondingly different. 

Consequently, when the inversion of LAI is performed in the 

extensive range, it is necessary for the inversion of LAI to 

synthetically utilize the model of the canopy reflectance, 

which is suitable for the application in different vegetation 

type. Meanwhile, when the model inversion is implemented, 

it is also an incentive for LAI inversion of distinctive 

vegetation type to further research on the determination 

method of the value range for the sensitive parameters. 

Moreover, it has vital significance for decreasing the 

uncertainty of the parameter inversion to accurately ascertain 

the value range of the sensitive parameters for different 

vegetation type.  

7. Conclusions 

By making use of DAGS, this paper simulates the spectral 

reflectance of vegetation canopies, and sets up the 

component parameter of vegetation to be retained round an 

initial value, and then to achieve the model inversion of LAI. 

Experimental result shows that the less the value of LAI, then 

the greater the leaf structure parameter N of vegetation, and 

also the less the LAD of vegetation as well. This conclusion 

explains that the influence which LAI and LAD act on the 

reflectance of vegetation canopies is contrary to that of LISP, 

respectively. Further research discovers that the combination 

of different parameters can correspond to almost similar 

spectral. Therefore, the morbid problem of the model 

inversion is still existent, and so far it is still the bottle-neck 

issue of the model inversion research. Since both the 

traditional retrieval approach of LAI as well as the inversion 

method based on a priori knowledge is correspondingly 

limited to the parameter inversion of a certain specific RS 

observed moment, so the retrieval result is provided with 

greater uncertainty. The proposed DAGS of LAI inversion not 

only inherits the advantages of the retrieval approach based 

on a priori knowledge, but also expands the retrieval 

parameters in time-space. Meanwhile, by introducing 

dynamic parameters of the model, the interrelations among 

the inversion parameters of different retrieval moments are 

effectively restricted. Thereby, the retrieval efficiency and the 

reliability are evidently improved. By taking advantage of 

DAGS, this article achieves the model inversion of LAI, and 

ensures the reliability for the value range of the uncertainty 

of the retrieved parameters, and guarantees the accuracy of a 

priori knowledge for LAI inversion. This means that the 

inversion of LAI is the retrieval based on a priori knowledge. 

By the accumulation of a priori knowledge, the uncertainty of 

the retrieved parameter is gradually decreased, and the 

connotation of the priori knowledge for LAI is accordingly 

enriched. For multi-spectral RS data of different vegetation 

type, the richer the priori knowledge of LAI is, the higher the 

accuracy of LAI inversion will be. By making use of a priori 

knowledge of LAI for different vegetation type, the solution 

space of the retrieved parameters is strictly restricted. As a 

result, the uncertainty of the retrieved parameters can be 

reduced so that the reliability of LAI inversion is significantly 

improved. Since different vegetation type possesses disparate 

canopy configuration and reflectance characteristics, so when 

LAI inversion of is implemented, it is especially necessary for 

the model inversion of LAI to synthetically utilize the 

reflectance model of different vegetation type. The important 

conclusion to be drawn from this discussion is that the 

uncertainty of LAI inversion can be greatly reduced by means 

of precisely determining the value range of sensitive 
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parameters for diverse vegetation type.  

All mentioned above tell us that it is of great importance 

for decreasing the uncertainty of the retrieved parameter to 

precisely determine the value range of sensitive parameters 

for different vegetation type. However, one thing we have to 

notice is that it is critical for the model inversion of LAI to 

accumulate the priori knowledge of LAI retrieval, such as the 

know-how of the identification and recognition of different 

vegetation type by making use of RS multi-spectral data. 

Considering the possible reasons, it is rational for us to 

conclude that the proposed DAGS is relatively optimal for 

the model inversion of LAI. In a word, the proposed DAGS 

of the model inversion of LAI inherits the benefits of the 

traditional retrieval way based on a priori knowledge, and 

introduces the sensitive parameters in time-space so as to 

improve the retrieved accuracy of LAI. There is no doubt 

that, as discussed above, the proposed algorithm opens up a 

novel algorithmic pathway for the model inversion of LAI 

with the aid of DAGS.  

 

References 

[1] Dawson T. P., North P. R. J., Plummer S. E. 2010. Forest 
ecosystem chlorophyll content: Implications for remotely 
sensed estimates of net primary productivity. International 
Journal of Remote Sensing, 24(3): 611-617. 

[2] GaoYan-hua, Chen Liang-fu, Liu Qin-huo. 2008. Research on 
remote sensing model for FPAR absorbed by chlorophyll. 
Journal of Remote Sensing, 10(5), 798-803. 

[3] Gemmell F. 2008. An investigation of terrain effects on the 
inversion of a forest reflectance model. Remote Sensing of 
Environment, 65(16), 155-169. 

[4] Gong P., Wang S. X., Liang S. 2009. Inverting a canopy 
reflectance model using a neural network. International 
Journal of Remote Sensing, 20(4), 111-122. 

[5] Goward S. N., Huemmrich K. F. 2008. Vegetation canopy 
PAR absorptance and the normalized difference vegetation 
index: An assessment using the SAIL model. Remote Sensing 
of Environment, 39: 119-140. 

[6] Jacquemoud S., Baret F. 2006. Prospect：a model of leaf 
optical properties spectra. Remote Sensing of Environment, 
8(6), 75-91. 

[7] Jacqumoud S., Ustin S. L., Verdebout J., Schmuck G., 
Andreoli G., Hos-good. 2009. Estimating leaf biochemistry 
using the PROSPECT leaf optical properties mode. Remote 
Sensing of Environment, 56(6): 194-202.  

[8] Karami A., Yazdi M., and Mercier G. 2012. Compression of 
hyperspectral images using discrete wavelet transform and 
tucker decomposition. IEEE Journal of selected topics in 
applied Earth observations and remote sensing. 5(2), 444-
452. 

[9] Kimes, D. S. 2007. Remote sensing of Row Crop Structure 
and component Temperatures Using Directional Radiometric 
Temperatures Using Directional Radiometric Temperatures 
and Inversion Techniques. Remote Sensing of Environment, 
6(8), 33-55. 

[10] Kimes, D. S., Kirchner J. A. 2008. Directional Radiometric 
Measurements of Row-crop Temperatures. International 
Journal of Remote sensing, 2(6), 299-311. 

[11] Kuusk A. 2007. A fast invertible canopy reflectance model. 
Remote Sensing of Environment, 51(12), 342-350. 

[12] Kuusk A. 2006. A multispectral canopy reflectance model. 
Remote Sensing of Environment, 50(10), 75-82. 

[13] Liang S., Strahler A. H. 2008. An analytic BRDF model of 
canopy radiative transfer and its inversion. IEEE Transactions 
on Geoscience and Remote Sensing, 31(5), 1081-1092. 

[14] Manevski K., Manakos I., Petropoulos G. P., and Kalaitzidis 
C. 2012. Spectral discrimination of Mediterranean maquis and 
phrygana vegetation: Results from a case study in Greece. 
IEEE Journal of selected topics in applied Earth observations 
and remote sensing. 5(2), 604-612. 

[15] Mustafa Yaseen T., Stein Alfred, Tolpekin Valentyn A., and 
Laake Patrick E. Van. 2012. Improving forest growth 
estimates using a Bayesian network approach. 
Photogrammetry Engineering & Remote Sensing. 78(1), 45-
50. 

[16] Myneni R. B., Nemani R. R., Running S. W. 2007. Estimation 
of global leaf area index and absorbed par using radiative 
transfer models. IEEE Transactions on Geoscience and 
Remote Sensing, 35(6), 1380-1393. 

[17] Niemann K. O., Quinn G., Goodenough D. G., Visintini F., 
and Loos R. 2012. Addressing the effects of canopy structure 
on the remote sensing of foliar chemistry of a 3-dimensional 
radiometrically porous surface. IEEE Journal of selected 
topics in applied Earth observations and remote sensing. 5(2), 
584-592. 

[18] Nilson, K. A. 2009. A reflectance model for the Homogeneous 
plant canopy and its inversion. Remote Sensing of 
Environment, 4(6), 157-167. 

[19] North P. R. J. 2006. Three-dimensional forest light interaction 
model using a Monte-Carlo method. IEEE Transaction on 
Geoscience and Remote Sensing, 12(8), 946-956. 

[20] Privette J. L., Emery W. J., & Myneni R. B. 2006. Invertibility 
of a 1-D discrete ordinates canopy Reflectance model. Remote 
Sensing of Environment, 12(6), 89-105. 

[21] Piwowar J. M. 2011. An environmental normal of vegetation 
vigour for the northern great plains. IEEE Journal of selected 
topics in applied Earth observations and remote sensing. 4(2), 
292-298. 

[22] Sellers P. J. 2007. Canopy reflectance, photosynthesis, and 
transpiration. International Journal of Remote Sensing, 6: 335-
372. 

[23] Suits G. H. 2008. The calculation of the directional reflectance 
of a vegetative canopy. Remote Sensing of Environment, 
6(10), 117-125. 

[24] Verhoef W. 2006. Light scattering by leaf layers with 
application to canopy reflectance modeling：the SAIL model. 
Remote Sensing of Environment, 8(6), 125-141. 

[25] Veroustraete F., Patyn J., & Myneni R. B. 2006. Estimating 
Net Ecosystem Exchange of Carbon Using the Normalized 
Difference Vegetation Index and an Ecosystem Model. 
Remote Sensing of Environment, 10(4), 115-130. 


