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Abstract: In mathematics, the creation and definition of new concepts is the first step in opening up a new field of research. 

Traditionally this step originated from intuition by a process of observation, analysis and abstraction. This article will show a 

general method by which most of the common notions of number theory, geometry, topology, etc., can be introduced in one 

and the same particular way. Therefore, we only need some of the tools of naïve set theory: a set of terms to which we apply an 

equivalence relation. This equivalence relation induces a partition of the terms with which we can consequently associate new 

concepts. By using this method’s ‘machine’ in an abstract way on arbitrary sets of terms we can create new notions at will, as 

we will show in this article, for instance, for bidecimal numbers of different kinds. The fact that we reverse the usual procedure 

of intuition before abstraction, doesn’t mean that we only create esoteric objects without any meaning. On the contrary, their 

abstract nature precisely provides our imagination with many possibilities for several interpretations in models in which they 

become useful. So, for example, we can use our bidecimal numbers to define elementary transformations on a cylinder or on a 

pile of tori. 

Keywords: Equivalence Relation, Partition, Mapping, Model, Bidecimal Number of the First Kind,  

Bidecimal Number of the Second Kind 

 

1. Introduction 

Many mathematical concepts went through a long process 

before they got their modern abstract definition. For a long 

time, numbers, points, lines and surfaces, born out of intuition, 

were tools rather than well described notions. From the 

moment when they became basic elements on which theories 

could be built, it was necessary to reflect more deeply on their 

nature. Although number theory and geometry have been 

developed continuously through the ages, the abstract view of 

numbers and points is rather recent. It is a remarkable fact that 

fruitful knowledge can be brought about from basic concepts 

that are not clearly specified. One prime example is the history 

of the calculus. 

Since the second half of the nineteenth century, set theory 

was created for several purposes and after the Bourbaki 

group of mathematicians in France had reorganized the 

whole structure of mathematics taking it as a base, natural 

numbers can nowadays be regarded as cardinals of finite sets 

and points as formalistic elements in axiomatic relations. 

In this article we will show how we can use the notions of 

equivalence relation, partition and mapping for building a 

‘machine’ that can produce mathematical notions. First, we 

will give some examples of well-known concepts, such as 

natural numbers, integer numbers, rational numbers, real 

numbers, etc. Then we will use this ‘machine’ for creating 

totally new concepts in an abstract way, for example 

bidecimal numbers of different kinds. Then we will give 

some concrete models that represent these new objects and 

wherein they become useful. So we will proceed in an 

opposite way to how concepts in general usually appear: 

abstraction before intuition! 

2. Equivalence Relations, Partitions and 

Mappings 

Instead of repeating all the definitions regarding these 

notions, we illustrate them in the following example. Let V 

be a set of coloured objects as follows (Figure 1): 
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Figure 1. Set of coloured objects. 

The human mind can observe properties that some of these 

objects have in common, e.g.: 

 

We say that the expression ‘has the same shape as’ defines 

a relation R in the set V and we mark the above relations in a 

short way as:  

 

To express these relations in the Venn diagram of the set V 

we draw an arrow from 

 

The whole picture of the relation R is then given by figure 

2: 

 

Figure 2. R: ‘has the same shape as’. 

Since for each object x in V we have x R x, we say that R is 

reflexive. 

Since for every two objects x, y of V we have: if x R y then 

also y R x, we say that R is symmetric. 

Since for each three objects x, y, z of V we have: if x R y 

and y R z then also x R z, we say that R is transitive. 

A relation R that is simultaneously reflexive, symmetric and 

transitive, is called an equivalence relation. So R=‘has the 

same shape as’ is an equivalence relation in V. 

As we can see, the equivalence relation R connects the 

objects with the same shape in subsets of V. All these subsets 

form a partition of the set V. Each object of V belongs 

precisely to one and only one of these subsets, called 

equivalence classes. 

We can now attribute names or symbols to the equivalence 

classes and represent them in a new set M, e.g. (Figure 3): 

 

Figure 3. Terms, partition, model. 

The set T=V is the set of terms. Equivalent terms are 

classified in a same subset of T. These subsets form the 

partition P of T (sometimes noticed as T/R). The names 

assigned to the equivalence classes of P give a set M of new 

notions. 

The function f is a surjective mapping from T onto P. The 

function b is a bijective mapping from P onto M. So the 

composition g of f and b also is a surjective mapping from T 

onto M. 

We now use this three-step ‘machine’, equivalence 

relation, partition and mapping, for creating mathematical 

concepts. All we need is a set of terms and an equivalence 

relation on these terms. Later on we will show that we can 

start from a partition of a set as well as from a surjective 

mapping of a set onto another to define new notions. 

3. Examples of Well-known Concepts 

3.1. Natural Numbers as Cardinals 

Let us choose as set of terms T a set of finite sets, e.g. the 

set of non-empty subsets of {a, b, c}, and let the equivalence 

relation R=’have the same number of elements’. Two sets A 

and B have the same number of elements if and only if there 

exists a bijection from A onto B (Figure 4). 

 

Figure 4. Natural Numbers as Cardinals. 

3.2. Integer Numbers 

Let us choose as set of terms T the product set � � �={(a, 
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b) | a, b ∈ �} and let the equivalence relation R be: 

(a, b) R (c, d) ⇔ a + d=b + c. 

E.g. (5, 3) R (6, 4) because 5 + 4=3 + 6 and also (5, 3) R 

(2, 0) because 5 + 0=3 + 2 

(4, 7) R (1, 4) because 4 + 4=7 + 1 and also (4, 7) R (0, 3) 

because 4 + 3=7 + 0 

(2, 2) R (9, 9) because 2 + 9=2 + 9 and also (2, 2) R (0, 0) 

because 2 + 0=2 + 0 

It is easy to prove that R is an equivalence relation: 

for every (a, b): (a, b) R (a, b) because a + b=b + a, so R is 

reflexive 

for every (a, b) and (c, d): (a, b) R (c, d) ⇒ a + d=b + c ⇒ c 

+ b=d + a ⇒ (c, d) R (a, b), so R is symmetric 

for every (a, b), (c, d) and (e, f): (a, b) R (c, d) and (c, d) R (e, 

f) ⇒ a + d=b + c and c + f=d + e ⇒ a + d + c + f=b + c + d + 

e=(a + f) + (d + c)=(b + e) + (d + c) ⇒ a + f=b + e ⇒ (a, b) R 

(e, f), so R is transitive. 

Then (5, 3), (6, 4) and (2, 0) are in the same equivalence 

class; (4, 7), (1, 4) and (0, 3) are in the same equivalence 

class; (2, 2), (9, 9) and (0, 0) are in the same equivalence 

class; etc. 

 

Figure 5. Representation of integers. 

We map the class that contains (2, 0) onto 2, the class that 

contains (0, 3) onto –3, the class that contains (0, 0) onto 0, 

etc. The set of all the images M under this mapping is the set 

of the integer numbers ℤ.  

If we represent � � � as points in the first quadrant of 

a cartesian coordinate system then we can see that the 

elements of the equivalence class which contains (x, y) 

are on a line through (x, y) and parallel to the first 

bisector of the coordinate system (Figure 5). This is 

obvious, for if (x, y) R (x1, y1) then x + y1=y + x1 and thus 

x – y=x1 – y1. This means that x – y is constant for every 

(x, y) in the same equivalence class. Let x – y=z, this is 

the equation of a line parallel to the first bisector of the 

cartesian coordinate system. If y=0 the element (x, 0) is 

on the x-axis and x=z is the abscissa of the intersection 

point of the line with equation x – y=z and the line with 

equation y=0 (the x-axis). We map that class onto the 

abscissa z on the x-axis. 

3.3. Rational Numbers 

Let us choose as set of terms T the product set ℤ � ℤ0={(a, 

b) | a, b ∈ ℤ and b ≠ 0} and let the equivalence relation R be: 

(a, b) R (c, d) ⇔ ad=bc. 

E.g. (6, 3) R (8, 4) because 6 �	4=3 �	8 and also (6, 3) R 

(2, 1) because 6 �	1=3 �	2 

(2, –7) R (–4, 14) because 2 �	14=(–7)	�	(–4) and also 

(2,–7) R (–2, 7) because 2 �	7=(–7)	�	(–2) 

(5, 5) R (–4, –4) because 5 �	(–4)=5 �	(–4) and also (5, 5) 

R (1, 1) because 5 �	1=5 �	1 

 

Figure 6. Representation of rational numbers. 

We can prove that R is an equivalence relation in the same 

way as for R in the section on integer numbers, but now 

using the properties of multiplication instead of addition. 
Then (6, 3), (8, 4) and (2, 1) are in the same equivalence 

class; (2, –7), (–4, 14) and (–2, 7) are in the same equivalence 

class; (5, 5), (–4, –4) and (1, 1) are in the same equivalence 

class; etc. We map the class that contains (x, y) on 
�

�
	or x/y. In 

particular 6/3=2/1=2 and 2/(–7)=–2/7. The set M is in this 

case the set of rational numbers ℚ. 

If we represent ℤ � ℤ0 as points in a cartesian coordinate 

system, then we can see that the elements of an equivalence 

class which contains (x, y) are on a line, different from the y-

axis, through (x, y) and the origin (0, 0) (Figure 6). This is 

obvious, for if (x, y) R (x1, y1) then xy1=yx1 and thus x/y=x1/y1. 

This means that x/y is constant for every (x, y) in the same 

equivalence class. Let x/y=q then y=(1/q)x and this is the 

equation of a line through the origin (0, 0). If y=1 the point 

with coordinate (x, 1) is on the line through the point (0, 1) 

and parallel with the x-axis and x=q=the abscissa of the 

intersection point of the lines with equation y=(1/q)x and 

y=1. We map that class on the abscissa q on the line with 

equation y=1. 
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3.4. Real Numbers 

In higher education we can choose as set of terms T, the 

set of Cauchy sequences (fundamental sequences) 	
ℚ� and 

as equivalence relation R: 

< an > R < bn > ⇔ < an – bn > is a zero-sequence. 

A ‘Cauchy sequence’ is an infinite sequence of rational 

numbers of which the absolute difference of the progressing 

terms becomes less than any strict positive rational number. A 

zero-sequence is a rational sequence that converges to 0. 

With our ‘machine’ (Figure 7): 

 

Figure 7. Real numbers as classes of fundamental sequences. 

The overscored sequences in 	
ℚ�/	
  represent the 

equivalence classes of those sequences. 

For secondary school pupils we can keep it simpler by 

choosing as the set of terms the set of decimal expressions, 

either finite or infinite. E.g. 3.427, 38.33333… or 

1.41421356…. 

With such a decimal term, we can define a unique point on 

a calibrated line. E.g. with 3.427=3.427000… we can 

associate an infinite sequence of closed intervals: [3, 4], [3.4, 

3.5], [3.42, 3.43], [3.427, 3.428], [3.4270, 3.4271], [3.42700, 

3.42701], …. The intersection of this set of intervals is not 

empty because of the (intuitive) continuity of the line (there 

are no holes in a straight line). The uniqueness of the number 

determined by this sequence of closed intervals can be shown 

by the fact that any other number sooner or later is no longer 

included in the degressive intervals. That means that the 

intersection is a singleton. For the example given, the unique 

point that belongs to every successive interval is 

3.427000…=3.427. 

If we consider the decimal expression 3.426999…, the 

sequence of associated intervals is: [3, 4], [3.4, 3.5], [3.42, 

3.43], [3.426, 3.427], [3.4269, 3.4270], [3.4299, 

3.42700], …. The only point that belongs to all these 

intervals is also 3.427000…=3.427. 

For this set of terms we define the equivalence relation R 

as follows: 

x R y ⇔ x defines the same point as y 

It is trivial that R is an equivalence relation. 

So: 3.427000… R 3.426999…, 1.8000… R 1.7999… and 

1.7999… R 1.8 

We prefer to represent each class by one of its decimal 

terms that does not end in an infinite sequence of zeros or 

nines. The set M now is the set of real numbers �. 

The machine shows (Figure 8): 

 

Figure 8. Real numbers as classes of decimal expressions. 

3.5. Real Numbers Modulo 1 (Decapitated Real Numbers) 

Now we choose the real numbers themselves as terms and 

define another equivalence relation on them in order to 

obtain a new concept. 

So T=� and x R y ⇔ x – y is an integer. 

E.g. 7.3459 R 2.3459 because 7.3459 – 2.3459=5 and 5 is 

an integer, 0.666… R 1.666… because 0.666… –1,666…=–1 

and –1 is an integer and 2.157 R –1.843 because 2.157 – (–

1.843)=2.157 + 1.843=4 and 4 is an integer. 

In the case of the negative numbers we can use the 

logarithmic notation: –1,843=–2 + 0.157=2�.157 Where 2�=–2 

is the (negative) index and 0.157 the (positive) mantissa. 

Then it is clear that using these logarithmic notations we 

can define the equivalence relation R also as follows: x R y 

⇔ x and y have the same mantissa. 

With this definition it is obvious that R is an equivalence 

relation. 

 

Figure 9. Representation of real numbers modulo 1. 

Two equivalent terms differ only by their index. We map the 

equivalence class of 7.3459 onto its mantissa 0.3459 and the 

class of –1.843=2� .157 onto its mantissa 0.157. The set of 

integer numbers is itself an equivalence class that is mapped 

onto 0. The new set M of decapitated real numbers is therefore 

the half-open interval [0, 1]. We can curve up this interval to a 

circle (Figure 9). Every decapitated real number corresponds to 

just one point on this circle and with respect to a chosen origin 

on the circle marked by 0, it also corresponds to a rotation. 

From that point of view the additional group of decapitated 

real numbers modulo 1 has many other isomorphic models as 

different ‘costumes’; for example, the composition group of 
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rotations around the centre of the circle; the additional group of 

oriented angles modulo 360°; the multiplicative group of 

complex numbers with modulus 1, etc. 

With these isomorphisms we can copy each property of the 

group [0, 1], + into the other representations. E.g. each 

decapitated real number has two halves, because if r is a 

solution of the equation 2x=a, then r + 0.5 also is a solution, 

since 2 (r + 0.5)=2r +1=a + 1=a + 0 (modulo 1)=a. So each 

rotation has two roots for the composition, each oriented 

angle has two halves modulo 360° and each complex number 

modulo 1 has two square roots. 

4. Some Other Examples 

4.1. Parallel Lines to a Fixed Line A of the Plane 

The set of terms are the points of the plane. 

The equivalence relation R: a R b ⇔ a and b belong to a 

line parallel to A. 

The set of equivalence classes is the set of all lines parallel 

to A (we call it ‘the direction of A’), and can be represented 

by the points of a line not parallel to A. 

4.2. Directions of the Plane 

The set of terms is the set of all straight lines of the plane. 

The equivalence relation R: A R B ⇔ A is parallel to B. 

The classes are the directions of the plane. 

The classes can be represented by the set of all lines 

through one and the same point. 

4.3. Lengths in the Plane 

The set of terms is the set of all segments of all the lines in 

the plane. 

The equivalence relation R: [a, b] R [c, d] ⇔ there exists 

an isometry that maps [a, b] onto [c, d]. The classes are all 

possible lengths of segments in the plane. The classes can be 

represented by the points on a calibrated line. 

4.4. The Integer Numbers Modulo n Where n Is a Natural 

Number 

The set of terms are all the integer numbers. 

The equivalence relation R: a R b ⇔ a and b have the 

same remainder when divided by n. 

The set of equivalence classes is the set of all the natural 

numbers less than n, i.e. ℤn. 

4.5. Starting from a Transformation Group G of a Set V 

The set of terms is (some particular) subsets of V 

The equivalence relation R: A R B ⇔ there exists a 

transformation f in G that maps A onto B. 

Since in a transformation group we have the identity 

mapping as a neutral element, R is reflexive. 

Since in a transformation group every element has an 

inverse, R is symmetric. 

Since for every two transformations f and g in the group 

the composition of f and g is also an element of the group, R 

is transitive. 

Hence R is for any transformation group G an equivalence 

relation. (See example 4.3 as a particular case) 

4.6. Starting from a Subgroup S,∗ of a Group G, ∗ 

The set of terms is G 

The equivalence relation R: a R b ⇔ there exists an 

element s of S so that a∗s=b. 

Since S contains the neutral element, R is reflexive. 

Since every element of S has an inverse in S, R is 

symmetric. 

Since for every two elements s and t in S, s∗t is also an 

element of S, R is transitive. 

In fact examples 4.1 and 4.4 can be regarded as such. 

In example 4.1 we consider the vector group G,+ of the 

plane and as subgroup the group A0, + of the line through the 

origin. 

In example 4.4 we consider the group ℤ,+ of the integers 

and as subgroup the group nℤ,+ of all the integer multiples of 

n. 

5. New Concepts Starting from a 

Partition of a Set or from a Mapping 

onto Another Set 

Our ‘machine’ has three components: an equivalence 

relation R in a set of terms; the partition P resulting from this 

equivalence relation; the mapping onto a representation of 

the classes of this partition. 

In the sections above, we started from the equivalence 

relation and deduced from that the other two components. We 

can however start from any of the three components and 

deduce therefrom the other two. 

When we start from a partition P of the set of terms T we 

can define the equivalence relation R by: x R y ⇔ x and y 

belong to the same class of the partition P. 

When we start from a mapping g of the set of terms onto a 

representation set M we can define the equivalence relation R 

by: x R y ⇔ x and y have the same image under g. 

So there is no priority among the three steps. No argument 

anymore between Plato, who claimed the priority of the set 

M as universal ‘ideas’, Aristoteles who considered the 

equivalence relation produced by the observing mind as the 

first step, and the nominalists who consider the name giving 

mapping g as essential. Mathematics clears up these different 

philosophical points of views. 

6. Notions in Daily Life 

In daily life we learn some notions in a similar way. A 

farmer can distinguish his animals as belonging to different 

species in three different ways. He can observe the common 

anatomic properties of horses, cows, pigs, rabbits, etc. and 

classify them using these resemblances and thus setting up an 

equivalence relation. Or else he can put them in different 

stables, which might make it easier for him to keep sight of 
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the partition. But the easiest way, which would work for 

foreigners as well, would be to hang a medallion around their 

neck with their name on it. The farmer wouldn’t give a damn 

whether he’s considered a Platonist, an Aristotelian or a 

nominalist. Farmers are at times wiser than philosophers. 

7. The Birth of Bidecimal Numbers 

Now we will show how fruitful the ‘machine’ can be for 

creating new notions in an abstract way. As an example we 

will choose as terms ‘bidecimal’ expressions, finite or 

infinite. 

Examples: 305.41.2879 

…431.25.8666… 

… 999.135�����.4700… where 135�����=–135 

In itself such a number is just a superficial appearance 

without any meaning. To link them to concepts, we have to 

define an equivalence relation. Depending on our inspiration, 

we can even do this in different ways. Thus by using the 

same terms, we can however create several different 

concepts. We will restrict ourselves to two different versions. 

7.1. Bidecimal Numbers of the First Kind 

Definition 1 

We look at the bidecimal term as being composed of two 

parts: the part before the first point we consider as a 

decapitated real number, i.e. as an element of the interval [0, 

1], and the part remaining behind the first point as an 

ordinary real number, i.e. an element of �. 

Thus 

… b2b1. z. a1a2... is equivalent to … b2’b1’. z’. a1’a2’… 

if and only if 

0. b1b2...=0. b1’b2’... (in [0, 1]) 

and z. a1a2...=z’. a1’a2’… (in �) 

Hence equivalent bidecimal terms of this first kind will 

determine equal objects of the first kind. 

Examples: 

13.27.99…9…=13.28.00…0… 

…9…99.15.34=…0…00.15.34 

…9…9936.13����.99…9…=46.	12����.00…0… 

We seek a useful representation for these objects. A line 

segment, closed at the left edge and open at the right, is a 

good model for the interval [0, 1] and a calibrated line is a 

good model for ℝ. So in first instance we can represent such 

an object as a point on an infinite strip, closed on the left and 

open on the right. This infinite strip represents the set-

theoretical product of [0, 1] with ℝ, i.e. [0, 1] � ℝ, resulting 

in the first model (Figure 10, left). 

In the second instance, we can however curve that strip 

and make the open edge match the closed one, resulting in a 

cylinder-shaped surface. That gives a second representation 

(Figure 10, right). Thereby the first component, i.e. a 

decapitated real number, determines a rotation along a 

parallel circle. The second component, i.e. a real number, 

determines a shift parallel to the axis of rotation. The 

composition of that rotation and that shift we call a screwing, 

which is just an elementary transformation of that cylinder 

(mapping between points of the cylinder). Each point on the 

cylinder then determines, respective to the fixed origin, a 

screwing which in itself represents a bidecimal of the first 

kind. 

 

Figure 10. Representation of bidecimal numbers of the first kind. 

These bidecimals of the first kind can also be regarded as a 

representation of the product group of [0, 1], + and ℝ,+. In 

this product group we can induce an addition operation, 

working on the two different components. 

When calculating in this group of bidecimals of the first 

kind, one result is that there are two different halves for each 

bidecimal. 

Example: 

2a=...33.2.13 ⟺ a=...661.1.065 or a=...666.1.065 

since 2 ⋅ 0.166…=0.33… and 2 ⋅ 0.666…=1.33…=0.33… (in 

[0, 1]) 

and 2 ⋅ 1.065=2.13 (in ℝ) 

This also implies that each screwing has two different 

square roots (Figure 11): 

 

Figure 11. Representation of the two different halves of...33.2.13 

7.2. Bidecimal Numbers of the Second Kind 

Definition 2 

This time we consider the bidecimal terms as consisting of 

three different components: the part before the first point as a 

decapitated real number, the part between both points as an 

integer number, and the part behind the second point again as 

a decapitated real number. 

Thus:... b2b1. z. a1a2... is equivalent to... b2’b1’. z’. a1’a2’... 

if and only if 

0. b1b2...=0. b1’b2’... (in [0, 1]) 

and z=z' (in ℤ) 

and 0. a1a2...=0. a1’a2’... (in [0, 1]) 

Equivalent terms of this second kind determine equal 

objects of this second kind. 

Examples: 

13. 27. 99…9…=13. 27. 00…0… 
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…9…99. 13����. 99…9…=0. 13����. 00…0… 

We will show some models representing these numbers as 

well. The integer component can be represented by a point on 

a calibrated vertical line. The two other components can be 

represented by a point in a half-open rectangle with these 

components as sides. A bidecimal number of the second kind 

then corresponds to a point on a ‘floor’ of a building that 

consists of parallel rectangles of which the sides have length 

1. E.g. …33.1.66… determines a point on the floor of rank 1 

(Figure 12). 

 

Figure 12. First representation of...33.1.66... 

If we curve the rectangle so that one open edge matches 

the opposite closed edge, the result is a cylinder. If we then 

make the remaining edges match, we get a torus (like a tube 

for a vehicle tyre). Then the bidecimals of the second kind 

are represented by a pile of tori (Figure13). On this pile the 

first component (decapitated real number) determines a 

rotation along a parallel circle. The second component 

(integer number) determines a shift to a floor of the pile. And 

the third component (decapitated real number) determines a 

rotation along a meridian circle. The composition of these 

three mappings is an elementary transformation of the pile of 

tori (mapping between points of the pile). The order of the 

mappings in this composition is arbitrary. So we get a second 

representation: 

 

Figure 13. Second representation of...33.1.66... 

These bidecimal numbers of the second kind can be 

regarded as a representation of the product group of three 

groups: [0, 1], + and [0, 1], + and �, +. When calculating in 

this product group by operating on each of the three 

components we get the astonishing result that a bidecimal 

number of the second kind with an even integer component 

has four different halves and one with an odd integer 

component has none! That also means that an elementary 

transformation of the torus-building has four square roots 

when located on a ‘floor’ of even rank and none if it is 

located on a ‘floor’ of odd rank. 

Example: 2x=723.4.183 ⇔ x=5361.2.0915 

or x=5366.2.0915 

or x=5361.2.5915 

or x=5366.2.5915 

The half of an odd integer number is not an integer number 

anymore. 

This shows that by using the technique of classification of 

equivalent terms we can create concepts at will in an abstract 

way. 

The artificial creatures that result can be employed by our 

imagination in meaningful contexts in which they can be 

integrated in a useful way. In the course of history lots of 

mathematical concepts have been created in this way, and 

often only much later did they get a useful interpretation and 

application. 

8. Maximal Number of New Concepts 

Related to a Finite Set 

Because every possible equivalence relation on a set T 

corresponds to a particular partition of T and vice versa, we 

can solve the problem of the maximal number of notions 

related to a set T by counting the number of possible 

partitions of T. 

There is a recursive relation between the number of 

partitions in i classes of a set with n + 1 elements and the 

number of partitions of a set with n elements in respectively i 

– 1 and i classes. So we can calculate the number of 

partitions of a set with n elements starting from a set with one 

element {a}, that has only one partition {{a}}, and a set with 

two elements {a, b} that has two partitions, namely {{a, b}} 

and {{a}, {b}}. 

If we use the notation P(i, n) for the number of partitions 

in i classes of a set with n elements then the recursive 

formula is: 

P(i, n + 1)=P(i – 1, n) + i	∙	P(i, n). 

This formula is easy to prove: Let T be a set with n 

elements and let x ∉ T, then we can construct a partition P of 

T ∪ {x} in i classes in two steps starting from a partition of T: 

a. let P be a partition of T in i – 1 classes, then P ∪{{x}} 

is a partition of T ∪ {x} in i classes, the number of such 

partitions is: P(i – 1, n) 

b. let P be a partition of T with i classes then we get a 

partition of T ∪  {x} in i classes by adding x to one 

particular class of P at one time. Since P has i classes, 

the number of such partitions is: i	∙	P(i, n). 

c. So all together, the number of partitions of T ∪ {x} in i 

classes is: P(i – 1, n) + i	∙	P(i, n). 

With this formula we can set up the table in figure 14: 
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Figure 14. Recursive table for the number of partitions. 

E.g. P(4, 7)=P(3, 6) + 4 ∙ P(4, 6)=90 + 4 ∙ 65=350 

For finding the total number of partitions of a set with n 

elements we have to add all the terms of the n-th row. For 

example, for the set of the six coloured objects we started with: 

1 + 31 + 90 + 65 + 15 + 1=203 

Instead of using the blocks for building various attractive 

constructions, a child could make more interesting use of 

them by partitioning them and finding the 203 hidden new 

notions. With 8 elements we already get 4140 in number. 

How impressive the power of mathematical creation is! 

9. Conclusion 

It is always fruitful to ponder methods of an abstract nature. 

Such methods get creative because they are no longer guided by 

intuition but by imagination. Mathematicians agree that 

mathematics is beautiful, at least by itself. But moreover, 

mathematics has proved its ‘unreasonable effectiveness’ in many 

ways. We have many examples in the history of mathematics 

where abstract concepts were created before becoming useful, 

whether sooner or later. A wise lesson: don’t differentiate between 

applied mathematics and pure mathematics, but speak about 

applied mathematics and not-yet-applied mathematics. 
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