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Abstract: In this paper, we first give some comments on the paper [J. Goldman and G. C. Rota, on the foundations of 

combinatorial theory IV finite vector spaces and Eulerian generating functions, Stud. Appl. Math., 49: 239--258 (1970)]. In that 

paper, Goldman and Rota showed two incorrect inversion formulas in Section 3. We point out the formulas and give the correct 

versions with the proof in this this paper first. Then we give some remarks on q -binomial inverse formula concerning its 

applications. 
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1. Introduction 

The basic notations of this commentary are the binomial 

coefficients 

!

!( )!

n n

k k n k

 
=  − 

 

where n  and k  are nonnegative integers with n k≥ , and 

the quantum factorial symbol [1] defined by 
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We also need to introduce the q -analog of the binomial 

coefficients, which we often call them q -binomial 

coefficients or Gaussian polynomials. Before introducing the 

q -binomial coefficients, we first need to give some notations. 

Let x  be a real number, the q -real number of x  is defined 

as [2] 
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In particular, when k  is a positive integer, 

[ ] 1 k

qk q q= + + +⋯  

is called q -positive integer. The k -th order factorial of the 

q -number [ ]qx  is defined as 
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In particular, 
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is called the q -factorial. The q -binomial coefficient is 

defined as 
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In particular, for a positive integer n , 
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This is exactly what we need in this paper. 

In Section 3 (“Eulerian generating functions”) of [3], 

Goldman and Rota showed the following inversion formula, 

namely, the system of equations 
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is equivalent to the system 
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The above inversion formula is exactly equation (5) in 

Section 3 of [3]. Then Goldman and Rota said that the above 

inversion formula is the q -analog (let 1q → ) of the 

classical inversion formula 

0 0

; ( 1)
n n

k

n k k k

k k

n n
b a a b

k k= =

   
= = −   

   
∑ ∑       (1) 

which is equation (6) in Section 3 of [3]. 

Actually, these two inversion formulas are not correct. In 

Section 2, we will give the full reason to show why the two 

formulas are incorrect. Then in Section 3, we will give the 

correct version of the q -binomial inversion formula with the 

proof. In section 4, we will give an example on the 

applications of q -binomial inversion formula and then show 

some remarks on the formula. 

2. Why the Formulas Are Incorrect 

In fact, we just need to show that (1) is incorrect since the 

q -binomial inversion formula Goldman and Rota gave can 

reduce to (1) when 1q →  and if (1) is incorrect, it is 

impossible for the q -binomial inversion formula Goldman 

and Rota gave to be true. 

Now, let us show that (1) is incorrect quickly. By (1), we 

have 

0 0 1 0 1
,b a b a a= = +  

By which we can arrive at 

0 0 1 1 0 1 0
,a b a b a b b= = − = −           (2) 

However, by (1), we get 

0 0 1 0 1
,a b a b b= = −  

which contradicts with (2). 

So, according to the above analysis, we can conclude that 

the two inversion formulas appeared in (2) are not correct. 

Next, we would like to show the correct versions. 

3. The Correct Version with the Proof 

By last section, we know that the two inversion formulas 

showed in the paper of Goldman and Rota are incorrect. 

Actually, the correct version of the classical binomial 

inversion formula appears in many literatures. So, we just post 

the correct version with some references. While for the q

-binomial inversion formula, it is not such easy to guess. 

Hence, we will revise the result given by Goldman and Rota 

and then prove the revised result according to the works of 

Carlitz. 

First, let us post the correct version of the classical binomial 

inversion formula. 

Theorem 3.1. Suppose 0
{ }

n n
a ≥  and 0

{ }
n n

b ≥  are two 

sequences. If 

0

,
n

n k

k

n
a b

k=

 
=  

 
∑  

then we have 
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and vice versa. 

Actually, this theorem can be rewritten into a more 

symmetric form, 
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The proof of this classic theorem can be found in many 

literatures (see for example [4, 5, 6, 7, 8]). Furthermore, the 

beginning of the two summations can be changed into any 

nonnegative integer which is less than n . 

The formulas which directly or indirectly give the formal 

inverse are called inversion formulas in literature. It is a 

powerful tool in combinatorics when it comes to the problems 

of summations, series transformation and etc.. There have 

been many different versions of inversion formulas. For 

example, Lagrange inversion theorem, Möbius inversion 

formula, Fourier inversion theorem, Mellin inversion theorem 

and Post's inversion formula. All these formulas or theorems 

cover a wide scope of Mathematics, including differential 

equation, combinatorics and number theory. Here, we would 

like to give the q -binomial inversion theorem. Next, let us 

move to the correct version of the q -binomial inversion 

formula. 

Theorem 3.2. Suppose 0
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( 1)

2

0

( 1) ,
k kn

k

n k

k

q

a q b
n

k

−

=

= −  
 
 
 

∑
 

then we have 
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and vice versa. 

This q -analog of the classical binomial inversion formula 

is not such easy to guess, especially the q -analogs of two 

( 1)
k−  's in (3) are 

( 1)

2( 1)
k k

k q
−

−  and 
( 1)

2( 1)
k k

kn
k q

+ −
−  

respectively. This is surely not something easily guessed. 

Before giving the full proof of Theorem 3.2, we would like to 

introduce a conclusion by Carlitz. In fact, the following 

conclusion given by Carlitz might be the most general form of 

the q -analog of the classical binomial inversion formula. It 

has great influences on the works later. Even though in the 

researches today, we can still find some conclusions that were 

motivated by the result of Carlitz. 

Lemma 3.1 (Carlitz [9]). Let { }
i

a  and { }
i

b  be two 

sequences of complex numbers, let q  be an arbitrary 

complex number such that 
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With this lemma in hand, we can then prove Theorem 3.2 

quickly. 

Proof. In fact, there are two ways to show Theorem 3.2 with 

the aid of Lemma 3.1. 

The first way is that we can take 1
i

a =  and 0
i

b =  for all 

i  in Lemma 3.1. Then we can arrive at the desired result. 

But if we take 0
i

a =  and 1
i

b =  for all i  in Lemma 3.1, 

we can also obtain the result. 

So, we can conclude that Theorem 3.2 holds true. 

By now, we finished the revision of the paper by Goldman 

and Rota. 

 

4. Remarks on q-Binomial Inverse 

Formula 

In this section, we first show an application of q -binomial 

inversion formula. Then through this example, we will give 

some remarks on the formula. 

Before introducing the example, some notations need to be 

given first. 

For 1n ≥ , let 

( ) ( 1)( 2) ( 1)
n

nx x x x x x n= = − − − +⋯  

denote the falling factorial (sometimes called the descending 

factorial, falling sequential product or lower factorial). When 

0n = , we adopt the convention that ( ) 1
n

x = . Falling factorial 

are very useful in mathematics, see for example [10, 11, 12, 13, 

14, 15]. Motivated by the topic of q -series, we can define the 

q -falling factorial as follows 
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Then, according to Cauchy’s identity or the explicit formula 

for Möbius functions of lattices of subspaces, we can get that 

[16] 
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Considering the identity above, we can then let 
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0
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So, according to Theorem 3.2, we can say that there exists a 

k
b that is a polynomial in terms of k  such that 

( 1)

2

0

( 1) 1
k

k

kn nk
k

k

q

q

k

b
n

+ −

=

−  
 
 
 

=∑
 

and 

n
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Though this is a beautiful identity, while the obscure of 
k

b  

greatly reduced the beauty of this identity. 

Also, the author has proved that [17] there also exists a 
'

kb  

that is a polynomial in terms of k  such that 
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and 
'

kb  satisfies a condition listed in [17]. 

Remark 3.1. The rest question is the explicit forms of 
k

b  

and 
'

kb . Actually, it is an extremely hard question that we 

cannot solve at this time. The problem not only happens here, 

but also happens somewhere else concerning the applications 

of q -binomial inversion formula. 

Remark 3.2. Pairs of inverse relations are very useful in the 

study of combinatorial identities. In 1968, J. Riordan 

published a book named “Combinatorial Identities”. In that 

book, Riordan fully illustrated this point of view. While all he 

used in that book is binomial inversion formula. Of course, q

-series is not such popular at that time that q -analogues are 

absent in his book. Now, with the rapid development of q

-series, the q -analogue of the binomial inversion theorem 

must be introduced. Just like the role of binomial inversion 

formula in proving combinatorial identities, q -binomial 

inversion theorem will play the same role in the further study 

of q -series. In this paper, along with the classic idea of 

proving binomial inversion formula, we gave the form of q

-binomial inversion theorem and then proved it. With q

-binomial inversion theorem in hand, we can now do much 

more on the proof of q -analogues of combinatorial identities. 

But there these identities still have some little problems. The 

reasons have been shown above. 

Remark 3.3. Though q -binomial inversion formula is the 

q -analogue of the binomial inverse formula. While the 

applications of binomial inverse formula is much easier than 

that of q -binomial inversion formula. This may be because 

of the two q -analogues of the two ( 1)
k− ’s in binomial 

inverse formula. 

Remark 3.4. Our future work is to find a way to show the 

explicit form of one sequence that appears in the above two 

identities. Up to now, how to find the explicit form of one 

sequence that appears in the above identities is still an open 

question. 

Remark 3.5. Another inverse relation is called self-inverse. 

It is related to the inverse formula we showed in this paper in 

some sense. It is also an very interesting topic. Sun [18] 

studied self-inverse sequences by using their generating 

functions and gave many interesting examples and results of 

self-inverse sequences. Wang [19] explored self-inverse 

sequences by means of linear transformations, difference 

operators and the umbral calculus. Wang also obtained 

various characterizations of self-inverse sequences from these 

different approaches. For S +  Wang showed that it is a vector 

space over the complex field and determine its dimension. 

Wang still gave simpler proofs to certain results of Sun. It is 

worth noting that our results can give rise to many interesting 

identities. 

5. Conclusion 

In this paper, we first pointed out why the formulas showed 

in the paper of Goldman and Rota is not correct. Then by 

applying the conclusion of Carlitz, we showed the correct 

version of the formulas. After which, we give some remarks 

on the formulas. These remarks include some applications of 

the formula. However, we need to say that these applications, 

in some senses, are incomplete since as one can see that we did 

not find the explicit representations of some functions in the 

applications. Actually, finding the explicit representations of 

these functions is our further work. 
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