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Abstract: In this paper, we present several explicit and hybrid strong convergence algorithms for solving the multiple-sets split 

feasibility problem (MSSFP). Firstly, we modify the existing successive, parallel and cyclic algorithms with the hybrid steepest 

descent method; then two new hybrid formulas based on the Mann type method are presented; Two general hybrid algorithms 

which can cover the former ones are further proposed. Strong convergence properties are investigated, and numerical 

experiments shows the compromise is promising. 
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1. Introduction 

Let H  be a real Hilbert space and C  be a nonempty 

closed convex subset of H . The variational inequalities is to 

find *x C∈  such that 

* *
, 0, for all ,Fx x x x C− ≥ ∈            (1) 

where F  is k -Lipschitz and η -strongly monotone 

mapping on .H  Since Yamada [1] introduced a hybrid 

steepest descent method for solving the variational inequalites 

(1), some improved and extended work have been done by Xu 

and Kim [2], Zeng [3], Liu and Cai [4] and Iemtoo and 

Takahashi [5]. Recently, Buong and Duong [6] introduced a 

new hybrid steepest descent algorithm based on the Krasnosel’ 

ski-Mann iteration, afterward, Zhou and Wang [7] improved it 

and proposed a simpler one. Kim and Buong [8] also 

introduced another formula. 

Remark that when there is 
=1

=
t

i
i

C C∩  in (1), and 

1 2, , , tC C C…  are t  closed convex subsets of H  such that 

=1

t

i
i

C ≠ ∅∩ , we can apply the hybrid method to improve 

some algorithms of the multi-sets split feasibility problem 

(MSSFP) [9], which is formulated as 

*

=1

=1

finding a point :=

:=

t

i

i

r

j

j

x C C

such that Ax Q Q

∈

∈

∩

∩
           (2) 

where , 1r t ≥  are integers, 1 2, , , tC C C…  and 1 2, , , rQ Q Q…  

are closed convex subsets of 1H  and 2 ,H  respectively. 

1 2:A H H→  is a bounded linear operator. 

We just to consider the core iterative formula with fixed 

stepsize in this paper. Some algorithms have been invented to 

solve MSSFP (2), see [9, 10, 11, 12]. In [10], Xu proposed 

three weak convergence algorithms i.e., the successive, 

parallel and cyclic iteration methods to solve a simpler 

minimization problem in Hilbert spaces. In [13], Xu proposed 

a strong convergence algorithm for the cyclic type, Guo and 
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Yu [14] presented strong convergence of the others. Then, He 

and Liu [15] presented some variable Krasnosel’ ski-Mann 

(KM) iteration algorithms, which converge weakly to a 

common fixed point. Deng and Chen [16] have applied the 

hybrid method to solve MSSFP, but their algorithms are either 

implicit ones or successive type. 

However, for some piratical problems, the strong 

convergence algorithms in [13] and [14] sometimes may not 

have better iterative results than the weak convergence ones in 

[10, 15, 21, 22]. Therefore, in order to obtain strong 

convergence and more effective iteration formulas, we 

propose several explicit and hybrid strong convergence 

algorithms to solve MSSFP (2), it is also a combination with 

applying the hybrid steepest descent methods of solving (1). 

The paper is organized as follows. In Section 2, we review 

some facts and summarize useful results. In Section 3, several 

explicit and hybrid algorithms are presented orderly, strong 

convergences are also analyzed. Some numerical results are 

compared in Section 4 and Section 5 concludes and leads 

some further discussions. 

2. Preliminaries 

If the solution of MSSFP (2) 1
= ( )C A Q

−Γ ≠ ∅∩ , then 

the MSSFP is equivalent to the minimization problem 

2

=1

1
( ) := ,

2

r

j Q
nx

j

min q x P Ax Axβ
∈Γ

−∑          (3) 

where > 0jβ  for each 
1 j r≤ ≤

, and 
=1

= 1
r

jj
β∑ . The 

gradient of 
q

 is 

( )*

=1

( ) = .

r

j Q
n

j

q x A I P Axβ∇ −∑            (4) 

It is easy to see that q∇  is L -Lipschitzian with 

2

=1
=

r

jj
L A β∑  and (1 / L )-ism. 

Lemma 2.1 [10] Assume that the MSSFP (2) is consistent. 

Let := ( )i C
i

T P I qγ− ∇ , = 1, 2, ,i t… , where 0 < < 2 / Lγ . 

Then the mapping 1= tU T T…  is averaged; the convex 

combination 
=1

:=
t

i ii
S Tα∑  is averaged, where > 0,iα  

=1
= 1;

t

ii
α∑  [ 1] =n nmod tT T+  is also averaged, where the 

mod function takes values { }1,2, , .t…  

Lemma 2.2 [10, 13, 14, 15] Denote a averaged operator T  

be ,U  S  or [ 1]nT + , which are defined in Lemma 2.1. For 

any initial points 0 0,x y  and 0z  in ,H  0,n ≥  the 

sequences { },nx  { }ny  and { }nz  are generated by 

1 = ,n nx Tx+                    (5) 

( )1 = 1n n ny a Ty+ −                 (6) 

and 

( )1 = 1 ,n n n n nz b z b Tz+ − +              (7) 

where { }na and { }nb  are real sequeces in (0,1)  satisfying 

the conditions in [13], [14] and [15], respectively. Then { }nx  

and { }nz converge weakly to a solution of MSSFP (2), when 

the MSSFP (2) is consistent; { }ny converges strongly to the 

minimum-norm solution of MSSFP (2). 

Definition 2.1 Let averaged operators U , S  and [ 1]nT +  

are defined as in Lemma 2.1, let :f H H→  be a 

combination that ( )1 2 1 2, := (1 )n nf x x x xα α− + , 0,n ≥  

where [0,1]nα ∈ . We set the mappings ( )[ 1]:= , ,nX Uf S T +  

( )[ 1]:= , nY Sf U T +  and ( )[ 1]:= ,nZ T f U S+  be averaged 

operators, then let :B H H→  be a averaged operator that 

:= ,n n nB a X b Y c Z+ +  0,n ≥  where na , nb  and nc  are 

sequences in R , and = 1n n na b c+ + . 

Lemma 2.3 [1] Let :F H H→  be a k -Lipschitz 

continuous and η -strongly monotone mapping. For each 

( )0,1λ ∈  and a fixed 
2(0,2 / ),kµ η∈  write 

:= ( )T I Fλ λµ−  

and 

( )2:= 1 1 2 (0,1)kτ µ η µ− − − ∈
. 

Then we have 

(1 ) ,T x T y x y
λ λ λτ− ≤ − −          (8) 

for all , ,x y H∈  :T H Hλ →  is a contraction on H . 

Lemma 2.4 [17] Let C  be a nonempty closed convex 

subset of real Hilbert space H  and let :T C C→  be a 

nonexpansive mapping. Then I T−  is demiclosed on C , i.e. 

if nx ⇀ x C∈  and 0,n nx Tx− →  then = .x Tx  

Lemma 2.5 [18] Let { },nx  { }nz  be bounded sequences in 

a Banach space E  and let { }nβ  be a sequence in [0,1]  

which satisfies the following condition: 

0 < < 1n n
nn

lim limβ β
→∞→∞

≤ . Suppose that 

( )1 = 1n n n n nx x zβ β+ − +  for all 0n ≥  and 

( )1 1 0n n n n
n
lim z z x x+ +
→∞

− − − ≤ ; then = 0.n n
n
lim z x
→∞

−  

Lemma 2.6 [19] Assume { }ns  be a sequence of nonegative 

real numbers satisfying the following relation 

1 (1 ) ,n n n n ns sσ σ δ+ ≤ − +  where { } (0,1)nt ⊂  and 
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{ }nσ ⊂ R  satisfy the following conditions: (i) 

=1
=nn

σ
∞

∞∑ ; (ii) 0n
n
lim δ
→∞

≤  or 
=1

<n nn
σ δ

∞
∞∑ . Then 

0ns →  as n → ∞ . 

3. Main Results 

In this section, we introduce several hybrid strong 

convergence algorithms to solve the multi-sets split feasibility 

problem (2). Namely, we want to find a solution *x  of 

variational inequality (1) and MSSFP (2). For the successive, 

parallel and cyclic algorithms, we have the following 

theorems: 

Theorem 3.1 Let H  be a real Hilbert space and 

:F H H→  be a k -Lipschitzian and η -strongly monotone 

mapping. Denote a averaged operator aT  be ,U  S  or 

[ 1]nT + , which are defined in Lemma 2.1 respectively. Let 

{ }
=1

t

i i
T  be t  averaged mappings of H ,  such that F =

=1
( )

t

i
i

Fix T ≠ ∅∩ , take a point 1u H∈  and 0 1x H∀ ∈ , a 

sequence { }
0n n

x ≥ is generated by the following recursion: 

( )1 = , 0,n n a nx I F T x nλ µ+ − ≥         (9) 

where (0,1)nλ ∈  satisfying ( 1P ) = 0n
n
lim λ
→∞ ; and ( 2P ) 

=0
= ,nn

λ
∞

∞∑  ( )=i C
n

T P I Fγ− , = 1, 2, ,i t…  and 

(0,2 / )Lγ ∈ . Then the sequence { }nx  defined by (9) 

converges strongly a solution of MSSFP (2), and converges in 

norm to the unique solution of the variational inequality 

* *
, 0, .Fx x x x− ≥ ∀ ∈ Γ            (10) 

proof. First, we show that { }nx is monotone and bounded. 

As aT  is nonexpansive, from Lemma 2.4 and (9), take 

,p ∈ Γ  we have 

( )( )1 =n n a n nx p I F T x p Fpλ µ λ µ+ − − − +  

( )1 n nx p Fp
µλ τ
τ

≤ − − +  

0 , .max x p Fp
µ
τ

 ≤ − 
 

 

It indicates that { }nx  is bounded. 

Next, take 

( ) ( ) ( )
1

1 1 1=

n n

n a n n n n a n

x x

I F T x x FT xλ µ λ λ µ
+

− − −

−

− − + −

( ) 1 1 11 .n n n n n a nx x FT xλ τ λ λ µ− − −≤ − − + −  

By virtue of ( 1P
) and ( 2P

) and Lemma 2.7, we have 

1 = 0.n n
n
lim x x+
→∞

−               (11) 

Let = ,n a nu T x  we observe that 

1 1

1 .

n n n n n n

n n n n

x u x x x u

x x Fuλ µ
+ +

+

− ≤ − + −

≤ − +
 

from ( 1P ) and (11), we get 

= 0.n n
n
lim x u
→∞

−               (12) 

Since { }nx is bounded, there is a subsequence n
i

x ⇀
*x , as 

.i → ∞  In general, we may assume that nx ⇀
*,x  as i → ∞ , 

combining with (12) and Lemma 2.5, we have nx ⇀

( )*
ax Fix T∈ . 

From Lemmas 2.1 and 2.2, we know nu ⇀ xɶ , as ,n → ∞  

and x ∈ Γɶ . Therefore, 

* * * * *
, = , 0, .n

n
lim Fx u x Fx x x x
→∞

− − ≥ ∈Γɶ    (13) 

Finally, we prove that 
*

nx x→  in norm. We take 

( )( )

2
*

1

2
* *

=

n

n n n

x x

I F u x Fxλ µ λ µ

+ −

− − −
 

( )( ) 2 2
* 2 2 *

= n n nI F u x Fxλ µ λ µ− − +  

( )( )* *2 ,n n nI F u x Fxλ µ λ µ− − −  

( ) * * *
1 2 ,n n n nx x u x Fxλ τ λ µ≤ − − − −  

2
2 2 * 2 2 * *2n n nFx Fu Fx Fxλ µ λ µ+ + −  

( ) *
= 1 ,n n n nx xσ σ δ− − +  

where =n nσ λ τ , 

* *

2 2
* * *

2
= ,

2 .

n n

n
n

u x Fx

Fx Fu Fx Fx

µδ
τ
λ µ

τ

− −

 + + − 
 

 

It is clear that 
=0

=nn
σ

∞
∞∑  and 0n

n
lim δ
→∞

≤ . Hence, from 

Lemma 2.7 we deduce that 
*

nx x→  as .n → ∞  

Remark 3.1 When =F I  in Theorem 3.1, the 

corresponding algorithm (9) will reduce to algorithm (6), and 
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converges strongly to the minimum norm solution of MSSFP 

(2). 

Theorem 3.2 Let H  be a real Hilbert space and 

:F H H→  be a k -Lipschitzian and η -strongly monotone 

mapping. Let Ω  be a nonempty closed and convex subset of 

H, and { }
=1

t

i i
T  be t  averaged mappings of ,H  such that F

=
=1

( )
t

i
i

Fix T ≠ ∅∩ . Given a starting point 0 ,x ∈ Ω  the 

iteration is generated by: 

( )

0
0

1

1 [ 1]

=1

, = , 0,

= , = 1, 2, , ,

= (1 ) ,

n n

i i
n i n

t
t t

n n n n n n i i n

i

x y x n

y T y i t

x P I F T y T yλ µ ε ε α

−

+ Ω +



 ∈Ω ≥




  
 − + −       

∑

…  (14) 

where > 0,iα  for all i  such that 
=1

= 1
t

ii
α∑ , (0,1],nλ ∈  

[0,1]nε ∈ , 

( )=i C
i

T P I Fγ−
, = 1, 2, ,i t… , 

( )=n mod t C
n mod t

T P I Fγ−  and (0,2 / )Lγ ∈ . Then the 

sequence { }nx defined by (14) converges strongly a solution 

*x of MSSFP (2), and converges in norm to the unique 

solution of the variational inequality (10). 

proof. We know that P xF  is well defined for each x H∈ , 

we show that there exists a unique 
*x ∈F  such that 

* *= ( ) .x P I F xµ−F              (15) 

From Lemma 2.4, we know that :I F Hµ− Ω →  is 

contraction, and hence ( ) :P I Fµ− Ω → ΩF  is also a 

contraction on .Ω  Then the Banach contraction mapping 

principle to deduce (15). 

Write [ 1] =1
= (1 )

tt t
n n n n n i i ni

u T y T yε ε α+ + − ∑ , then for 

p∀ ∈F  and 0,n ≥  that 

1 0 0
1 1= = ,n n n ky p T y T p y p x p− − ≤ − −  

and hence 

1
=

i i
n i n iy p T y T p

−− −  

1

0 = , = 1, 2, , .

i
n

n k

y p

y p x p i t

−≤ −

≤

≤ − −

…

…

        (16) 

At this point, we can estimate 
2

,nu p−  by virtue of 

Lemma 2.1, (14) and (16), we have that 

( )

2

2
2

[ 1]

=1

= 1

n

t
t t

n n n n i i n

i

u p

T y p T y pε ε α+

−

− + − −∑
 

( )
2

[ 1]

=1

1

t
t t

n n n n i i n

i

T y T yε ε α+− − −∑  

( )
2 2 2

1 ,t t
n n n n ny p y p x pε ε≤ − + − − ≤ −  

for all 0n ≥ . Therefore, we have 

, for all 0.n nu p x p n− ≤ − ≥
 

In particular, for ( )* *= ,x P I F xγ− ∈F F  we have 

* *
, for all 0.n nu x x x n− ≤ − ≥       (17) 

the rest of arguments follows exactly as the corresponding part 

in Theorem 3.1, we omit its details. 

Theorem 3.3 Let H  be a real Hilbert space and 

:F H H→  be a k -Lipschitzian and η -strongly monotone 

mapping. Let Ω  be a nonempty closed and convex subset of 

H, and { }
=1

t

i i
T  be t  averaged mappings of ,H  such that F

=
=1

( )
t

i
i

Fix T ≠ ∅∩ . Given a starting point 0 ,x ∈ Ω  the 

iteration is generated by: 

( )

( )

0

0
[ 1]

=1

1

1

= 1 , 0,

= , = 1,2, , ,

= ,

t

n n n n n i i n

i

i i
n i n

t
n n n

x

y T x T x n

y T y i t

x P I F y

ε ε α

λ µ

+

−

+ Ω

∈ Ω

 + − ≥



  − 

∑

…

    (18) 

where > 0,iα  for all i  such that 
=1

= 1
t

ii
α∑ , (0,1],nλ ∈  

[0,1]nε ∈ , ( )=i C
i

T P I Fγ− , = 1, 2, ,i t… , 

( )=n mod t C
n mod t

T P I Fγ−  and (0,2 / )Lγ ∈ . Then the 

sequence { }nx defined by (18) converges strongly to a 

solution *x of MSSFP (2), and converges in norm to the 

unique solution of the variational inequality (10). 

The proof of Theorem 3.3 is similar with Theorem 3.2, we 

also omit it here. 

We further introduce two general hybrid strong algorithms. 

Theorem 3.4 Let H  be a real Hilbert space and 

:F H H→  be a k -Lipschitzian and η -strongly monotone 

mapping. Let Ω  be a nonempty closed and convex subset of 
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H. Let :g H H→  be κ -contraction, and (0, )kκ ∈ . For 

given 0 ,x H∀ ∈  the sequence { }nx is generated by: 

( )
( ) ( )

1 = 1

,

0,

n n n

n n n n n

x x

P g x I F Bx

n

ω

ω λ µ λ µ
+

Ω

−

 + + − 

≥

   (19) 

where { }nω  and { }nλ are two sequences in [0,1] , 

satisfying the following conditions: ( 1)C  = 0,n
n
lim λ
→∞

 and 

=1
= ;nn

λ
∞

∞∑  ( 2C ) 0 < ;n
n

lim ω
→∞

 B  is defined by Definition 

2.3. Then the sequence { }nx converges strongly to a solution 

*x of MSSFP (2), and converges in norm to the unique 

solution of the variational inequality 

( )* * *, 0, .g x Fx x x x− − ≤ ∀ ∈Γ         (20) 

If = 0,g  the sequence { }nx converges strongly to a 

solution of (10). 

proof. First, we prove { }nx is bounded, for ,z ∈ Γ  from 

Definition 2.3, we have 

, for all 0,n nBx z x z n− ≤ − ≥  

and from (19), that 

( ) ( )( )
1

1 ( )

n

n n n n n

x z

x z g x g zω ω λ µ
+ −

≤ − − + −
 

( )( ) ( ) ( )( ) ( )n n ng z F z I F B x zλ µ λ µ+ − + − −

( )( ) ( )( )
= 1 n n n

g z F z
x z

µ
ω λ τ µκ

τ µκ
−

− − − +
−

 

( )( )
, .n

g z F z
max x z

µ
τ µκ

 − ≤ − −  
 

By introduction, for 0,n∀ ≥  we have 

( )
0

( )
, .n

g z F z
x z max x z

µ
τ µκ

 − − ≤ − −  
 

Hence, { }nx is bounded. Consequently, we deduce that 

( )ng x  is also bounded. 

Next, we go on to show that 1 = 0.n n
n
lim x x+
→∞

−  

Set = 2 ,W P IΩ −  we know that W  is nonexpansive. 

From Definition 2.3 we know there exists a positive constant 

(0,1)t ∈  such that = (1 )B t I tV− + , where V  is a 

nonexpansive mapping. We can rewrite (19) as 

1

(1 ) (1 )
= 1 ,

2 2

n n
n n n

t t
x x u

ω ω
+

+ + − + 
 

       (21) 

where 

ˆ
= ,

1

n n n
n

tVx z Wz
u

t

+ +
+

ɶ

 ( )ˆ =n n n n nz g x FBxλ µ λ µ− , 

( ) ( )=n n n n nz g x I F Bxλ µ λ µ+ −ɶ . 

Therefore, by the assumption ( 1)C  and (0,1)t ∈ , we 

deduce that 

(1 ) (1 )
0 < < 1.

2 2

n n

nn

t t
lim lim

ω ω
→∞→∞

+ +
≤        (22) 

Then from (4) and Definition 2.3, we have 

( )( )1 1 1 1ˆ ˆn n n n n nz z g x FBxλ λ µ+ + + +− ≤ − +  

1( ) ,n n nk x xλ µ κ ++ + −               (23) 

and 

( )( )1 1 1 1n n n n n nz z g x FBxλ λ µ+ + + +− ≤ − +ɶ ɶ  

( ) 11 ( ) .n n nk x xλ µ κ ++ + + −             (24) 

from (23) and (24) we obtain 

1 1

( )
1

1

n
n n n n

k
u u x x

t

λ µ κ
+ +

+ − ≤ + − +   

( )( )1 1 1

2
,

1
n n n ng x FBx

t
λ λ µ+ + ++ − +

+
that is 

1 1 1

( )

1

n
n n n n n n

k
u u x x x x

t

λ µ κ
+ + +

+
− − − ≤ −

+
 

( )( )1 1 1

2
.

1
n n n ng x FBx

t
λ λ µ+ + ++ − +

+
 

By virtue of assumption ( 1)C , it is easy to get 

( )1 1 0.n n n n
n
lim u u x x+ +
→∞

− − − ≤         (25) 

In view of ( 1)C  and (25), { }nu is also bounded, therefore, 

by using (22), (25) and Lemma 2.6, we can obtain 

= 0.n n
n
lim u x
→∞

−  

Hence, 

1

(1 )
= = 0.

2

n
n n n n

n n

t
lim x x lim u x

ω
+

→∞ →∞

+
− −     (26) 

Let = ,n nv Bx  we have 
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( )
( )

1 1

.

n n n n n n n

n n n n n

x v x x x v

g x FBx

ω

ω λ µ λ µ
+− ≤ − + − −

+ −
 

Thus, we have 

( )1

1
.n n n n n n n

n

x v x x g x FBxλ µ
ω +− ≤ − + − From 

( 1)C  and (26), we can derive that 

= 0.n n
n
lim x v
→∞

−               (27) 

Since { }nx  is bounded, there exists a subsequence { }n
i

x  

of { }nx  that n
i

x ⇀
*,x  as i → ∞ . Thus, we may assume that 

nx ⇀
*x  as .n → ∞  From (27) and Lemma 2.5, we have nx

⇀ ( )*x Fix B∈ . 

Next, as nx ⇀ ( )*x Fix B∈ , we can deduce that nv ⇀

( ).x Fix B∈ɶ  Therefore, 

( )

( )

*

*

, *

, * 0.

n
n
lim g FB x v x

g FB x x x

→∞
− −

≤ − − ≤ɶ
            (28) 

Finally, from (19), we have 

( )
2 2

* * *
1 1n n n n nx x x x Bx xω ω+ − ≤ − − + −  

( ) 22 2
n n n ng x FBxω λ µ+ −  

( ) *
2 ,n n n n ng x FBx Bx xω λ µ+ − −  

( )

( )

2 2
* *

22 2

1 n n n n

n n n n

x x Bx x

g x FBx

ω ω

ω λ µ

≤ − − + −

+ −
 

( ) ( )* *2 n n n ng x g x Bx xω λ µ+ − −  

* *
2 n n n nFBx FBx Bx xω λ µ− − −  

( )* * *2 ,n n ng x FBx Bx xω λ µ+ − −  

( )
2

*= 1 ,n n n nx xσ σ δ− − +  

where ( )= 2 ,n n n kσ ω λ µ κ−  

( )

( )

2

* *

=
2( )

1
, .

n
n n n

n

g x FBx
L

g FB x Bx x
k

λ µδ
κ

κ

−
−

+ − −
−

 

From Lemma 2.7, ( 1C ) and (28), it is clear that 

=1
=nn

σ
∞

∞∑  and 0.n
n
lim δ
→∞

≤  Hence from Lemma 2.7 we 

obtain that *
0.nx x− →  The proof is completed. 

Similar to Theorem 3.4, another algorithm and its 

convergence without proof is immediately obtained. 

Theorem 3.5 Let H  be a real Hilbert space and 

:F H H→  be a k -Lipschitzian and η -strongly monotone 

mapping. Let Ω  be a nonempty closed and convex subset of 

H. Let :g H H→  be κ -contraction and (0, )kκ ∈ . For 

given 0 ,x H∀ ∈  the sequence { }nx is generated by: 

( )
( ) ( )

1 = 1

,

0,

n n n

n n n n n

x x

P g x B I F x

n

ω

ω λ µ λ µ
+

Ω

−

 + + − 

≥

     (29) 

where { }nω  and { }nλ are two sequences in [0,1] , 

satisfying the following conditions: ( )i  = 0,n
n
lim λ
→∞

 and 

=1
= ;nn

λ
∞

∞∑  ( ii ) 0 < ;n
n

lim ω
→∞

 B  is defined by Definition 

2.3. Then the sequence { }nx converges strongly to the a 

solution of MSSFP (2), and converges in norm to the unique 

solution of the variational inequality (20). If = 0,g  sequence 

{ }nx converges strongly to a solution of (10). 

4. Numerical Results 

In this section. We chose the algorithms (5), (6), (7), (9) and 

(14) to solve a modified test problem in [20], and the 

numerical results were compared. For (5), (6) and (7), set 

[ 1]= nT T + . Set [ 1]= ,a nT T +  =F I  in (9) and (14). All the 

codes were written in Matlab 2011 and run on a PC with 

Pentium (R) dual-core CPU G630 (2.69 GHz). 

Example 4.1. 

Denote 0 = (0,0, ,0) ,Ne R∈…
 1 = (1,1, ,1) Ne R∈…

 and 

2 = (1,1, ,1) .Me R∈…
 The MSSFP with ( )= ij

M N
A a

×
 and 

(0,1)ija ∈  generated randomly. 

{ }= | , = 1, 2, , ;
N

i i iC x x d r i t∈ − ≤ …R

{ }= | , = 1, 2, , .
M

j j jQ y k y l j r∈ ≤ ≤ …R  

where id
 is the center of the ball iC

, 0 110ie d e≤ ≤
, and 

(40,50)ir ∈
 is the radius, id

 and ir  are generated randomly. 

jk  and jl  are boundary of the box jQ , and are also 

generated randomly, satisfying 1 120 30je k e≤ ≤  and 

2 240 80je l e≤ ≤ . 

For each algorithm, set = 1/ ,j rβ  = 1, 2, ,j r…  and 
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= 1.95 / Lγ . Set 
1

=
1

na
n +

 in (6), =
1

n

n
b

n +
 in (7), 

1
=

10
n

n
λ

+
, = 0.1,µ  = 0.5nε  and 

1
=i

t
α  in (9) and (14). 

The stop rule is 4( ) < 10p x −  with initial point 0 0=x e . The 

numerical results are listed in table 1, where n  is the number 

of iterations and s  is the CPU time in seconds, respectively. 

We see that though algorithm (6) is strong convergence, it 

usually takes great time. (5) and (7) can get less time by 

appropriate constant sequence choice, but it is weak 

convergence. However, (9) and (14) can split the difference. 

Table 1. Result comparison of the chose algorithms. 

M×N Algorithms Time 20×20 30×20 40×50 50×50 60×70 

 (5) n 702 6478 4032 6627 10185 

  s 0.2098 2.0816 1.8030 3.3260 8.1348 

 (6) n 94224 111260 139593 174122 143721 

t=30  s 26.8063 35.9333 63.0368 86.1091 114.3822 

 (7) n 735 7312 3599 6201 10717 

r=40  s 0.2116 2.4229 1.6338 3.1217 8.5977 

 (9) n 33 14585 15208 18370 18291 

  s 0.0139 4.6702 6.7923 9.2566 14.7097 

 (14) n 5 475 623 633 613 

  s 0.0739 5.9771 12.6471 13.5881 23.5791 

 

5. Conclusions 

This paper presented several strong convergence algorithms 

with the hybrid steep descent method for solving MSSFP. The 

algorithms can obatin more effective iterative results than the 

strong covergence ones before. However, the main drawback 

of the proposed algorithms is that more complex iteration 

formulas bring large computational complexity. In order to 

have less running time and iteration steps, we may continue to 

choose appropriate variable parameters in the hybrid steepest 

descent method and use variable or adaptive stepsize in the 

MSSFP algorithms. 
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