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Abstract: The concept of open and closed sets has been extensively discussed on both metric and topological spaces. Various 
properties of these sets have been proved under the underlying spaces. However, scanty literature is available about semi-open 
/semi-closed sets on these spaces. For instance, little effort has been made in introducing these sets as clopen sets in topological 
spaces but no literature exists of the same under metric spaces. In this paper, with reference to the already existing definitions and 
properties of open and closed sets in metric spaces as well as in topological spaces we shall present definitions of semi-open/ semi-
closed sets and furthermore prove basic properties of these sets on metrics spaces. The results of the study will provide a deeper 
understanding as well as extension knowledge for the concept of open and closed sets to their somewhat counter-intuitive terms of 
semi- open /semi-closed. 
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1. Introduction 

We shall mainly give basic definitions and notions related to 
open/ closed sets in both metric and topological spaces which 
eventually shall be utilized in the sequel. 

Let � be any set. Then a function �:	�	 � 	� → 	� is said to 
be a metric on �  if it has the following properties for all 
�, 
, �:	 ∈ � 


1	���, 
	� � 	0 


2	���, 
� � 0	��	���	���
	��	� � 
 


3	���, 
� 	� ��
, �� 


4	���, 
� � ��
, �� � 	���, �� 

The real number ���, 
� is called the distance between � and 

, and the set �  together with a metric d is called a metric 

space ��, ��. The space � can be generalized to � 	with �, the 
discrete metric. 

We point out that given any normed vector space (!, ∥	∥� we 

may treat ! as a metric space by defining ���, 
� �	∥ �	– 
 ∥ 
for every �, 
 ∈ 	! 

We adopt the definition by [2] of a ball about  in �  of 
radius $ as the set  

%&��� � '� ∈ –	�	׀׀	: � ׀׀	� ( 	$)                   (1) 

Given a metric space ��, �� and any real number $ * 	0, the 
open ball of radius $  and center x0 is the set %+ (�,, $ ) 	⊂
�	defined by 

%+(�,, $) = '	� ∈ �: ��	�, �,� ( 	$)                   (2) 

Since the metric � is usually understood, we will generally 
leave off the subscript � and simply write %��,, $). Such a set 
is frequently referred to as an $	-ball. We say that a subset . of 
� is open if, given any point � ∈ ., there exists $	 * 	0 and an 
open ball %��, $� such that %��, $� 	⊂ 	.. 

Probably the most common example of an open set is the 
open unit disk /0 in �1 defined by 

/0 � '��, 
� ∈ �1: �1 � 
1 ( 1).                    (3) 

We see that given any point �,  ∈ /0, we can find an open 
ball ��,, $� ⊂ /0 by choosing 

$ � 1 2 ��,, 0�. The set /0 � '��, 
� ∈ �1: �1 � 
1 � 1) (4) 
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is not open because there is no open ball centered on any of the 
boundary points �1 � 
1 � 1 that is contained entirely within 
/0 [4]. 

If .  is an open subset of a metric space ��, ��,  then its 
complement .3 � � 2 . is said to be closed. In other words, a 
set is closed if and only if its complement is open. For 
example, a moment’s thought should convince you that the 
subset of �1 defined by 

'��, 
� 	∈ 	�1: �1 � 
1 � 1}                      (5) 

is a closed set. The closed ball of radius $ centered at �	0 is the 
set 4�,, $5 defined in the obvious way by  

4�,, $5 	� 	 '�	 ∈ 	�:	��,, $� 	� 	$).                   (6) 

Any open set .  containing a point �  is said to be a 

neighborhood of � , and the set . 2 '�)  is called a deleted 

neighborhood of � . We say that a point � ∈ ��, ��  is an 

accumulation point (also known as a limit point) of 6 ⊂ � if 
every deleted neighborhood of �  intersects 6  [8]. 
{Alternatively, a point �  of 6 ⊂ �  is a limit point if every � 
contains a point 
 7 � such that 
 ∈ 6 [3]}. 

Accumulation points are useful in determining whether or 
not a set is closed. The principal result relating these concepts 
is the following, which of course gives is an alternative 
definition of a closed set. This is illustrated in the following 
theorem. 

Theorem 1.1 [10]: A subset A of a metric space ��, �� is 
closed if and only if 6	 contains all of its accumulation points. 

Let ��, �� be a metric space, and suppose 6 ⊂ �. We define 
(a) The closure of 6, denoted by 8�	6, to be the intersection 

of all closed supersets of 6; 
(b) The interior of 6,  denoted by :�;	6	��$	6,�, to be the 

union of all open subsets of 6	; 
(c) The boundary of 6, denoted by	%�	6	�$	�<6�, to be the 

set of all � ⊂ � such that every open set containing  contains 
both points of 6 and points of 63 � � 2 6. 

(d) The exterior of 6,  denoted by =�;	6,  to be 	�8�	6�3 �
� 2 8�	6 

(e) The derived set of 6, denoted by 6′, to be the set of all 
accumulation points of	6 [4]. 

In [3] the following are given as facts about points in 
interior, exterior and closure as well as on the boundary of a 
set. 

Fact 1: Let ��, �� be a metric space and 6 ⊂ �. A point is 
interior if and only if it has an open ball that is a subset of the 
set 

� ∈ ��;	6 ⇔ ∃	A * 0:	%��, A� ⊂ 6                    (7) 

Fact 2: A point is in the closure if and only if any open ball 
around it intersects the set  

� ∈ Ᾱ ⇔ ∃	A	 * 0:	%��, A� ∩ 6 7 ∅                    (8) 

Fact 3: A point is exterior if and only if an open ball around 
it is entirely outside the set 

� ∈ D�;	6 ⇔	∃A	 * 0:	%��, A� ⊂ �\6                   (9) 

Fact 4: A point is on the boundary if any open ball around it 
intersects the set and intersects the outside of the set 

� ∈ <6 ⇔ ∃A	 * 0:	%��, A� ∩ 6 7 ∅                   (10) 

An open set can also be characterized using the concept of 
interior points as: A subset 6 of a metric space ��, �� is open if 
every point of 6 is an interior point of 6. 

If ��, ��  is a metric space, then 6 ⊂ �  is said to be 
somewhere dense if ��;	�F�	6� 7 	∅.  The set 6  is said to be 
nowhere dense if it is not somewhere dense. If F�	6 � �, then 6 
is said to be dense in X [4]. 

Theorem 1.2 [4]: A subset 6  of a metric space ��, ��  is 
dense if and only if every open subset .	of � contains some 
point of 6. 

Shifting our focus to topological spaces, it is worth noting 
that the theory of topological spaces provides a setting for the 
notions of continuity and convergence which is more general 
than that provided by the theory of metric spaces. 

A topological space denoted by ��, H� is a non-empty set � 
together with a collection of H  subsets, (referred to as open 
sets), that satisfies the following conditions: 

(i) The empty set; and the whole set � are open sets, 
(ii) The union of any collection of open sets is itself an open 

set, 
(iii) The intersection of any finite collection of open sets is 

itself an open set. 
However it is customary to denote this topological space 

simply by � if no confusion will arise. Note that any metric 
space may be regarded as a topological space since all the 
topological space axioms are satisfied by the collection of open 
sets in any metric space. Also, any subset � of � dimensional 
Euclidean space �  is a topological space. For instance, a 
subset ! of � is open in � if and only if, given any point I of 
!, there exists some < * 0 such that 

� ∈ �: |� 2 I| ( 	<	 ⊂ !.                      (11) 

In particular �  is itself a topological space whose topology 
is generated by the Euclidean distance function on � . This 
topology on �  is referred to as the usual topology on �  [1]. 

2. Related Literature Review	

This section presents a review of related literature on basic 
properties of open and closed sets as applied both in metric and 
topological spaces. We also present some results which so far 
exist about semi-open sets in topological spaces. 

2.1. Properties of Open Sets in Metric Spaces 

The fundamental characterizations of open sets are contained 
in the following three theorems. 

Theorem 2.1.1 [10]: Let	��, �� be a metric space. Then any 
open ball is an open set. 

Theorem 2.1.2 [6]: Let ��, �� be a metric space. Then 
(a) Both � and ∅ are open sets. 
(b) The intersection of a finite number of open sets is open. 
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(c) The union of an arbitrary number of open sets is open. 
Remark 2.1.3: It is remarkable that in an arbitrary metric 

space the structure of the open sets can be very complicated. 
However, the most general description of an open set is 
contained in the following. 

Theorem 2.1.4 [4]: A subset . of a metric space ��, �) is 
open if and only if it is the union of open balls. 

Remark 2.1.5: We note that a set is never open in and of 
itself. Rather, a set is open only with respect to a specific 
metric space containing it. For example, the set of numbers 
[0, 1) is not open when considered as a subset of the real line 
because any open interval about the point 0 contains points not 
in [0, 1). However, if [0, 1) is considered to be the entire space 
�, then it is open by Theorem 2.1.2 (a). 

2.2. Properties of Closed Sets in Metric Spaces 

Theorem 2.2.1 [6]: Let (�, �) be a metric space. Then any 
closed ball is a closed set. 

The proof of the closed set analogue of Theorem 2.1.2 is 
discussed by several authors. For instance refer to [8, 6]. This 
is illustrated as in the theorem that follows. 

Theorem 2.2.2 [6]: Let (�, �) be a metric space. Then 
(a) Both � and ∅ are closed sets. 
(b) The intersection of an arbitrary number of closed sets is 

closed. 
(c) The union of a finite number of closed sets is closed. 
The important difference to realize is that the intersection of 

an arbitrary number of closed sets is closed, while only the 
union of a finite number of closed sets is closed. 

WLOG, it thus follows the theorem: 
Theorem 2.2.3 [6]: 
(a) Let 6  be any set in a metric space K.  Then 6	 is 

F	�	�	L	D	�	 ⇔ 6	 is open. 
(b)The space K is both open and closed. 
(c)The null set is both open and closed. 

2.3. Open/Closed and Semi-Open Sets in Topological Spaces 

We present some existing literature about open/closed and 
semi-open sets in topological spaces. 

[1] gives two examples of cases for a topology as: 
Example 1: Given any set �, one can define a topology on � 

where every subset of �  is an open set. This topology is 
referred to as the discrete topology on �. 

Example 2: Given any set �, one can define a topology on � 
in which the only open sets are the empty set; and the whole set 
�. 

Further, by defining a subset M of as a closed set if and only 
if its complement �\	M  is an open set, [1] provides the 
following result from the definition of a topological space. 

Proposition 2.3.1 [1]: Let � be a topological space. Then the 
collection of closed sets of � has the following properties: 

(i) The empty set; and the whole set � are closed sets, 
(ii) The intersection of any collection of closed sets is itself a 

closed set, 
(iii) The union of any finite collection of closed sets is itself 

a closed set. 

Similarly, by giving the following definition of a 
neighborhood, [1] claims that one can readily verify that this 
definition of neighborhoods in topological spaces is 
consistent with that for neighborhoods in metric spaces. This 
notion is presented in Lemma 2.3.2. We first give the 
definition of a neighborhood: - Let � be a topological space, 
and let � be a point of � . Let N  be a subset of �  which 
contains the point �. Then N is said to be a neighborhood of 
the point � if and only if there exists an open set . for which 
� ∈ . and . ⊂ N. 

Lemma 2.3.2 [1]: Let � be a topological space. A subset ! of 
� is open in � if and only if ! is a neighborhood of each point 
belonging to !. 

According to the Wikipedia, the free encyclopedia, a clopen 

set (representing a closed-open set) in a topological space is a 
set which is both open and closed. This set shall refer to a semi 
open/semi-closed set in our study. 

However, we note that the concept of semi-open sets in 
topological spaces was introduced and discussed by [7]. He 
defines a subset 6  of a topological space �  as semi-open 
(written L	. �	.) if and only if there exists an open set O such 
that O ⊂ 6 ⊂ FO where FO denotes the closure operator in �. 
Under this context, [7] presents some properties of semi-open 
sets in the following theorems: 

Theorem 2.3.3 [7]: A subset 6 in a topological space �  is 
L. �.  if and only if 6 ⊂ 	F:�;	6, :�;	 denoting the interior 
operator. 

Theorem 2.3.4 [7]: Let {6P}, Q ∈∧  be a collection of L. �. 
sets in a topological space �	. Then ⋃6P , Q ∈∧ is L. �. 

Theorem 2.3.5 [7]: Let 6  be L. �.  in the topological space 
�	and suppose ⊂ %	 ⊂ F	6	. Then % is L. �. 

[7] also gives the following concluding remark. 
Remark 2.3.6: If O is open in �, then O is semi-open in �. 

The converse is clearly false. 
We shall therefore, extent the known results of open/closed 

sets on metric and topological spaces to semi-open/ semi-
closed sets in metric spaces. 

3. Main Results 

3.1. Precise Analytical Definitions of Semi-Open/  

Semi-Closed Sets in Metric Spaces 

We therefore give our precise definitions of semi-open/ 
semi-closed sets in metric spaces. 

Definition: Semi-open/ semi-closed set 
A subset K  of a metric space 
  is said to be a semi-

open/semi-closed if it contains some of its limit points. 
Alternatively, a subset K of a metric space 
 is said to be semi-
open/semi-closed if the neighborhood of some elements is 
contained in K. 

Example 

K = {
1

�
:	� = 1, 2, 3…… } 

Implies that K = [1, 
0

1
,	
0

U
,…0) 
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We note that 0 is a limit point of K but it is not an element of 
K implying that the set K  is not closed. Also the set K  is not 
open since the neighborhood of 0 is not properly contained in 
K. This then implies that the set K is semi-open/ semi-closed 
set. 

We recall the definitions of a limiting point and 
neighborhood of a point � of a subset K ⊂ 
 as: 

Definition: A Limiting point 
We say that � ∈ K ⊂ 
  is called a limiting point/cluster 

point/accumulation point of subset K if the neighborhood of a 
point	� contains other points other than �, i.e. 

N(�, $)\{�} 	∩ 	K	 ≠ 	∅.                          (12) 

Definition: A Neighborhood 
A neighborhood of the point � ∈ 
	is defined as ∀	A > 0 we 

have 

N(�, A) = |� − 
| < 	A	∀	
 ∈ 	
.                   (13) 

Remark 3.1.1: Semi-open/semi-closed sets can be 
categorized into two main categories on the basis of the 
position of openness and closedness. The categories are: 

(i) Lower open-upper closed set denoted by K	(�, W] where 
K ∈ 
	∀	�, W ∈ K. 

(ii) Lower closed-upper open set denoted by K	[�, W) where 
K ∈ 
	∀	�, W ∈ K. 

Definition: Semi-open/Semi-closed balls (spheres). The set 

K(�, $] = {� ∈ 
: |�	– 	�	| ≤ 	$}                      (14) 

is called lower open-upper closed ball/sphere whereas the set 

K	[�, $) = {� ∈ 
: |�	– 	�	| < 	$}                      (15) 

is called lower closed-upper open ball/sphere. 
Remark 3.1.2: The lower open-upper closed sphere shall 

refer to a semi-closed sphere whereas the lower closed-upper 
open sphere shall be a semi-open sphere. 

Alternative definition of semi-open/semi-closed sets 
Definition: We say that a subset X ⊂ 
 is a semi-open set if  

∀	� ∈ X, ∃	$ > 0:	K	[�, $) 	⊂ 	X,                       (16) 

while a subset ℌ ⊂ 
 is a semi-closed set if 

∀�	 ∈ 	ℌ, ∃	$	 > 	0:	K	(�, $] 	⊂ 	ℌ.                     (17) 

Example. 
Show that [−1, 0) is semi-open. 
Solution. 
By definition we need to show that 

∃	K	[�, $) 	⊂ 	 [−1, 0) 	= X	�. D. [−1, 0) 	= 	X           (18) 

is a semi-open set. 
Taking any arbitrary element � ∈ [−1, 0)  and let $ =

Z��	{−1 − �, �} 
Clearly, $ > 0 and K[�, $) ⊂ [−1, 0). 

 

3.2. Analytical Properties of Semi-Open/Semi-Closed Set in 

Metric Spaces 

Theorem 3.2.1: 
(a) An arbitrary union of semi-open (resp. semi-closed) sets 

is semi-open (resp. semi-closed). 
(b) Finite intersection of semi-open (resp. semi-closed) sets 

is semi-open (resp. semi-closed). 
Proof of (a): 
Case 1: Semi-open sets 

We let X[:	\ ∈ ] be a family of semi-open sets. 
We need to show that X = ⋃X[:	\ ∈ ] is semi-open i.e. 

∃	K[�, $) ⊂ X = ⋃X[:	\ ∈ ]                      (19) 

Let � ∈ ⋃X[:	\ ∈ ] then it implies that � ∈ X[:	\ ∈ ]. 
Since X[:	\ ∈ ] is semi-open, by definition 

∃	$ > 	0:	K[�, $) ⊂ ⋃X[:	\ ∈ ]                   (20) 

So K[�, $) ⊂ ⋃X[:	\ ∈ ] = X implying that G is semi-open. 
Case 2: Semi-closed sets 
To show that arbitrary union of semi-closed set is also semi-

closed, we shall let ℌ[:	\ ∈ ] be a family of semi-closed sets. 
We then show that 

ℌ = ⋃ℌ[:	\ ∈ ] i.e. ∃	K(�, $] ⊂ ℌ = ⋃ℌ[:	\ ∈ ]      (21) 

Let � ∈ ⋃ℌ[:	\ ∈ ], this implies that � ∈ ℌ[:	\ ∈ ]. Since

ℌ[:	\ ∈ ] is semi-closed, by definition 

∃	$ > 0:	L(�, $] ⊆ ℌ[ ⊂ ⋃ℌ[:	\ ∈ ]              (22) 

So K(�, $] ⊂ ⋃ℌ[:	\ ∈ ]	 = ℌ , implying that 	ℌ  is semi-
closed. 

Proof of (b): 
We prove for the case of semi-open sets (the case of semi-

closed is an analogous) 
Let X0, X1, … . X  be a family of semi-open sets. We need to 

show that 
i

n

i

GG
1=

= ∩
is also semi-open. Let  

niGxGx ii

n

i

,...,3,2,1
1

=∀∈⇒∈
=
∩              (23) 

Since X_	∀� = 1, 2, …… , �	�re semi-open 

∃	 ir > 0: K(�_ , $_] ⊂ X_	∀� = 1, 2, … . . �.         (24) 

Taking $ = min	{$_} then clearly $	 > 0 and 

K(�, $] ⊆ K(�_ , $_] ⊆ X_ ⊂ i

n

i

G
1=
∩                    (25) 

GrxS ⊂⇒ ],(  

Therefore, GGrxS i

n

i

=⊂
=1

],( ∩ ⇒ finite intersection of 
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semi-open sets is also semi-open. 
Remark 3.2.2: 
Since in �0 an open ball is an open interval and also a closed 

ball is a closed interval, it follows that in �0 a semi-open/semi-
closed ball is a semi-open/semi-closed interval respectively. 

3.3. Relative Semi-Closed and Semi-Open Subsets 

Recall: We say that a subset M of any metric space 
 is open 
if its complement, M3  is closed, it follows then that a subset ℱ 
of any metric space 
 is semi-closed/lower open-upper closed 
if its complement is semi-open/lower closed-upper open. 

Note: The sets M and ℱ are disjoint. 
Theorem 3.3.1: 
The complement of a semi-closed set is semi-open. 
Proof: 
Equivalently, we show that the complement of a lower open-

upper closed set is the lower closed-upper open. In case 1, we 
consider the lower open end. Now since the lower part is open, 
then its complement must be closed. Suppose K ⊂ 
  is the 
lower open-upper closed set, then we prove that K3  is lower 
closed- upper open set. 

If the lower part of K  is open, then we prove that the 
complement of the lower part is closed. 

Let � → �	 in 
  of the lower part of K  and 
c

lowerpartn SX )(∈ ∀� , we need to show that 
c

lowerpartSx )(∈ . 

Since the lower part of K is open, then 

∃$ > �: |� − 
| < $	∀
 ∈ K(lower part).                     (26) 

Now if 

�n→ �	∃N: |�n−�| < $	∀	� ≥ N                          (27) 

This implies that )(lowerpartn SX ∈ . ⇒ )(lowerpartn SX ∈  and 

c

lowerpartn SX )(∈  is a contradiction, since no element could be 

in )(lowerpartS  and 
c

lowerpartS )(  at the same time. 

In case 2, we consider the upper closed end. Since the upper 
part of K  is closed, then its complement is open. Now we 
suppose that K ⊂ 
 is the lower open-upper closed set then we 
prove that Kc is the lower closed- upper open set. 

This is proved by contradiction. Suppose 
c

upperpartS )(  is not 

open, then it implies that 
c

upperpartS )(  is closed. 

Now since 
c

upperpartS )(  is closed, ∀	$n> 0	and � ∈ Kc
(upper part) 

∃�n: |� → �| < $n                                  (28) 

But � ∈ K since the upper part of K is open.	

Let $ =
0

 
	∀	�	 ∈ 	N, xXn →⇒ ,	 meaning that 

)(upperpartn SX ∈  ∀	� and 
c

upperpartn SxX )(∈→  

⇒ the upper part of S is not closed since it fails to contain 

all its limit points xge .. and therefore, our initial assumption 

that the upper part of the complement of S is not open is 
invalid implying that the upper part of the complement of S

must be open. 
Corollary 3.3.2: The complement of the lower closed-upper 

open set/semi-open set is lower open-upper closed/semi-closed 
set. 

4. Conclusion and Suggestions for Future 

Research 

In this paper, with reference to the already existing 
definitions and properties of open and closed sets in metric 
spaces as well as in topological spaces precise definitions of 
semi-open/ semi-closed sets were given and furthermore basic 
analytical properties of these sets on metrics spaces were 
proved. A version of the definition of semi-closed and semi-
open sets in terms of relative complementation was also 
introduced. However, it is not certain that the analytical 
properties discussed in section 3.2 would also hold under this 
context of relative complementation. This could thus form a 
basis for a venture in the future research as well as extending 
these properties to topological spaces. 
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