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Abstract: With heritage in nonlinear adaptive control (as proposed by Slotine) and physics-based control (as proposed by 

Lorenz), recently proposed methods referred to as deterministic artificial intelligence (D.A.I.) claim slight performance 

improvement over the parent methods. This brief communication firstly validates claims of slight improvement, but furthermore 

highlights a key feature: indications that improvements in observer implementations are the proper path for subsequent 

development in the field. The manuscript validates the recently published 97% performance improvement over classical methods 

using nonlinear adaptive methods, with an addition 0.23% performance improvement using D.A.I. compared to nonlinear 

adaptive control. Furthermore, the work also identifies strong correlation between system performance and observer 

performance, which is significant since D.A.I. eliminates controller tuning. Thus, observer improvement is recommended for 

future developments. The recently published 2-norm optimal learning scheme (of Smeresky) is recommended as the next step in 

the lineage of research in the discipline assuming augmentation with nonlinear state observers. 

Keywords: Deterministic Artificial Intelligence, D.A.I., Van Der Pol, Adaptive Control, Physics-Based Controls,  

State Observers, Luenberger Observers 

 

1. Introduction 

This short communication highlights controversial and 

diverging hypotheses focusing on the differences between a 

nonlinear adaptive controller and a D.A.I.-based controller in 

forcing a van der Pol oscillatory system to a prescribed 

circular trajectory common in the literature, where D.A.I. 

refers to deterministic artificial intelligence as proposed by 

Smerseky et al., [1] and by Lobo et al., applied to spacecraft 

attitude control [2]; by Sands applied to unmanned underwater 

vehicles [3] as an improvement to classical methods [4], and 

by Cooper and Heidlauf applied to oscillatory timing circuits 

[5], which is the focus of this manuscript. 

The strengths and challenges of deterministic artificial 

intelligence include: 

1. Strength: broad applicability to disparate scientific 

disciplines; 

2. Strength: elimination of control tuning while maintaining 

optimality; 

3. Strength: combines strength of optimal methods and 

nonlinear adaptive approaches; 

4. Strength: analytic reparameterization enables use of 

simple regression solutions; 

5. Weakness: utilizes physics-based methods to ensure 

optimality, so the method is clearly more strongly applied 

to systems determined by known physics phenomena; 

6. Weakness: necessitates autonomous trajectory 

generation; 

7. Weakness: tuning of observer becomes more paramount. 

While the method of D.A.I. appears attractive since it 

eliminates controller tuning, this manuscript asserts the fact 

that rather than eliminating tuning altogether, tuning of the 

(required) observer becomes relatively more paramount, since 

variations of the forcing function strongly correlated to the 

observer error (as a matter of fact the plots of each are hardly 

distinguishable). The deterministic artificial intelligence 

(D.A.I.) method stems from a combination of nonlinear 

adaptive control [6] as taught by Slotine and physics-based 

controls methods as taught by Lorenz [7], whose combination 
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is recently proposed in a unifying narrative referred to as 

feedforward statements of self-awareness in D.A.I., while the 

self-awareness statements are enhanced by optimal feedback 

by reparametrizing the problem into a standard regression 

form [1]. 

The foundation of D.A.I. lies in its foundational notion of 

self-awareness statements stemming from physics-based 

control, which has been applied to a wide variety of 

disciplines particularly relevant to this manuscript: Kang et al., 

applied to self-sensing machines, [8] and also high frequency 

inductance estimation [9]; Alvi applied to three-phase current 

sensing [10, 11]; Polom applied to transient heat transfer’s 

thermal frequency response [12, 13] and also health 

monitoring systems [14]; Sheng applied to integrated current 

sensing of power modules [15]; Van der Broeck applied to 

power electronic modules [16]; Zhu applied to inductive 

wireless power transfer [17, 18]; Imamura applied to stator 

windings for magnetomotive force [19]; Xu applied to torque 

control accuracy [20]; Flieh applied to rapid servo dynamics 

[21]; Petit applied to spatial deadbeat control for permanent 

magnet synchronous machines [22], and injector-based 

self-sensing of electrical machines [23, 24]; Slininger applied 

to pulsating voltage injection self-sensing [25]. 

Assertion 1. The importance of the applicability of the 

physics-based method of Lorenz is manifest and furthermore 

establish the basis for assertion of self-awareness statements 

in D.A.I. 

After some arithmetic efforts, the physics-based methods 

[26, 27] can be seen inherent in Slotine’s nonlinear adaptive 

method [28] as improved by firstly by Fossen [29] and 

subsequently by Sands [30]. The method of D.A.I. only 

became easily implementable with codification by Baker et al., 

of autonomous trajectory generation [31] resulting in the 

eventual publication of the first book on D.A.I. [32] 

This short manuscript very briefly reviews the forced van 

der Pol oscillator and its use (per the physics-based methods) 

to formulate D.A.I. self-awareness statements. Three 

categories of simulations are presented in direct comparison: 

classical methods, nonlinear adaptive methods, and D.A.I. 

Simulations firstly validate the superior performance of 

nonlinear adaptive control and D.A.I. compared to baseline 

classical control, and the slight improvement of D.A.I. over 

nonlinear adaptive methods. The simulations reveal a strong 

correlation between the performance of D.A.I. and estimation 

performance of requisite state observers, and this assertion 

comprise the main novel contribution in the short 

communication manuscript leading to recommendations for 

the next increments of developments in the lineage of D.A.I. 

research. A secondary contribution is validation of the slight 

performance improvement in the literature using D.A.I. 

compared to nonlinear adaptive control. 

Research motivations and resulting novelties: 

1. Brief re-introduction to burgeoning field of deterministic 

artificial intelligence; 

2. Validation attempt of recently published comparison to 

classical methods as well as disparate state-of-the art 

methods (not previously published) to discern efficacy of 

deterministic artificial intelligence; 

3. Critical evaluation of claim in the literature of 

elimination of tuning producing results that reveal 

elimination of control tuning is replaced by the 

paramountcy of tuning state observers. 

2. Materials and Methods 

The Van der Pol oscillator can be described by position �, 

velocity ��  and acceleration ��  is illustrated in equation (1) 

from reference [5]. 

�� � � � ��1 � �	
 �� � 
��
            (1) 

where � is the damping coefficient of the system and 
��
 is 

a driving function that can be used to control the system 

dynamics. An initial estimate of � (labeled �̂
 is made and 

updated by a learning feature as depicted in figure 1 

necessitating inclusion of a full state observer. 

 

Figure 1. Topology of deterministic artificial intelligence, where the “learn” function mandates inclusion of a full state observer. 

Assertion 2. Deterministic artificial intelligence 

self-awareness statements: Self-assertion statement embody 

the physics-based design methodology of Lorenz in that 

nonlinear function �� � ���, �, �
  constitute the forcing 

function in equation (2) where the subscript ‘d’ indicates 

“desired” states provided by autonomous trajectory generation 

(e.g. per Baker [31]) 

��� � ��� � �� � ��1 � ��
	
 ���           (2) 

Assertion 3. Nonlinear adaptive design methodology of 

Slotine in that nonlinear function �� � ���, �, �
  constitute 

the forcing function in equation (3) where the suffixed two 

terms represent classical proportional + derivative 

augmentations to the feedforward prequel three terms. 


��
 � � � ��� � ��� � ��� � �� � ��1 � ��
	
 ��� �

����� � �
 � ������ � ��
          (3) 

Assertion 4. Alternative instantiations express the unknown 

estimate of � as equation (4) and comparison of this approach 

to the 2-norm optimal estimate proposed by Smeresky [1] is 

offered later as likely future research. Smeresky’s approach 

remains heavily reliant upon the performance of the observer. 

µ� � ����� � �
 � ������ � ��
           (4) 
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The two asserted methods are well-compared in the 

literature, but section 3 will simulate both methods (in 

MATLAB/SIMULINK R2020a with Runge-Kutta integration 

and a fixed step-size of 0.0001 seconds) on a Windows-based 

PC to reveal a strong correlation between performance 

deducing forcing functions and observer accuracy. 

Simulations use a classical proportional, integral, derivative 

(PID) observer topology akin the observer used in [6] to 

estimate spacecraft attitude is employed rather than the 

nonlinear observer attempted by Cooper in [5] directly applied 

to the van der Pol system, theorizing the linear observer 

should be easily exacerbated by the nonlinearities of the 

highly nonlinear van der Pol equation. The classical PID form 

is presumed to be well understood by the reader. 

3. Results 

A Van der Pol system, due to its inherent dynamics, cannot 

follow a circular trajectory [5]. To fairly assess the 

effectiveness of the three control methods (classical control, 

nonlinear adaptive control, and deterministic artificial 

intelligence) the desired trajectory is specified to be a circle of 

radius equal to five as used in the predominant literature [1-3, 

5]. The system is initialized with both position and velocity 

equal to 0.1. The system is given a damping coefficient µ=1 

with an initial estimate, (�̂ � 0.9) assumed for the unity true 

value. Thus, the controllers must overcome the incorrect 

system parameter µ in addition to forcing the system onto the 

unnatural desired trajectory, adding an extra level of difficulty 

to the task of each controller. 

3.1. Comparing Classical Control, Nonlinear Adaptive 

Control, and Deterministic Aritifical Intelligence 

Classical proportional plus integral plus derivative feedback 

controls were designed in accordance with [5], where �� �

2.6818, �� � 0.4142, �" � 0. Nonlinear adaptive control is 

implemented by [6] as modified by [29] and improved in [30] 

where [5] illustrates the repeatable control design procedure 

resulting in adaption gains ��# � 0.2 , ��# � 0.01 , �"# �

0.1. Deterministic artificial intelligence is implemented with 

the physics-based feedforward proposed in [5] where van der 

Pol states are observed with Luenberger topologies per [33] and 

gains ��$ � 1, ��$ � 35, �"$ � 0. Figures 2 and 3 display 

simulations with results, while Table 1 shows summary 

information and metrics for the three trajectories: 

1. Classical proportional + integral + derivative control; 

2. Nonlinear adaptive control (per Slotine, et al. [26]); 

3. D.A.I. self-awareness statements (per Cooper et al. [5]). 

 

Figure 2. (a) Phase space portrait of desired trajectory, nonlinear adaptively controlled trajectory, DAI controlled trajectory and classical proportional, integral, 

derivative control (PID) from (0.1, 0.1). (b) Position tracking error plotted over time for adaptively controlled trajectory, D.A.I. and classical PID. In particular, 

notice the difficulty of control using PID amidst the seeming relative success of both nonlinear adaptive control and D.A.I. 

Figure 2(a) shows the phase space trajectories examined 

and Figure 2(b) shows the positional tracking error for each 

relevant trajectory compared to the desired state. Notice 

classical PID case is firstly completely unable to approach or 

regulate on the set defined by the desired circular (red solid 

line) trajectory. Secondly, the classical form diverges exactly 

as experience by Cooper et. al, [5]. Both the nonlinear 

adaptive method and deterministic artificial intelligence 

exhibit a startup transient followed by steady-state regulation 

on the desired circular trajectory. Tracking error in figure 2b 

validates the performance improvement achieved in [5] using 

nonlinear adaptive control, and the 97.01% improvement is 

listed in table 1. Furthermore, the simulations in figure 2 

reveal (in figure 2b) a slight additional improvement using 

D.A.I (97.24%) compared to nonlinear adaptive control 

(97.01%). 

Table 1. Validating results of the literature: D.A.I. achieves slightly improved tracking over nonlinear adaptive control which is dramatically superior to classical 

methods. 

Method Tracking error Percent improvement 

Classical proportional + integral +derivative control 13.3348 -- 

Nonlinear adaptive control 0.38485 97.01% 

Deterministic artificial intelligence 0.36826 97.24% 
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Figure 3. Illustration of strong correlation between D.A.I. forcing function oscillations to observer errors compared to establishment of steady-state force using 

nonlinear adaptive control. Compare the observer errors in figure 3(a) and the calculated forcing function utilizing D.A.I. (the black dotted lines in figure 3(b), 

while noticing the forcing function using nonlinear adaptive control (the solid-red line in figure 3(b)) is relatively insensitive to observer errors. 

Figure 3 shows the estimation of µ over time for the control 

methods simulated and the resulting forcing functions reveal 

in the key correlation. Figure 3(a) displays observer errors, 

while subfigure (b) displays the calculated forcing functions 

comparing nonlinear adaptive control and deterministic 

artificial intelligence. While the forcing function using 

nonlinear adaptive control achieves non-oscillatory 

steady-state, the forcing function using deterministic artificial 

intelligence exhibits oscillatory steady-state behavior that 

very closely mimics the performance of the Luenberger 

observer of the van der Pol states. 

Illustration of strong correlation between D.A.I. forcing 

function oscillations to observer errors compared to 

establishment of steady-state force using nonlinear adaptive 

control. Notice the forcing function using nonlinear adaptive 

control (the solid-red line in figure 3(b)) is relatively 

insensitive to observer errors. 

3.2. Statistical Analysis of Sensitivity to Variations 

This section reveals the results of Monte Carlo simulations 

varying the assumed initial values of � and assumed values of 

�̂ . More than ten thousand simulations runs (respectively) 

were performed varying assumed values 0.7 ( �̂ ( 1.1 and 

0.9 ( � ( 1.1. Figure 4a. and 4b. respectively display the 

results revealing slight positive biases. 

 

Figure 4. Rate versus voltage errors for 10,000 simulation runs with various values of actual coefficient � and assumed (designed) initial estimate �̂�0
. In the 

context of circuitry applications, the rate and position represent current and voltage, respectively. The observed positive bias in the two subfigures reflects a 

positive bias in tracking the voltage of the desired trajectory of Figure 1(a). 

Monte Carlo simulations reveal relatively greater 

sensitivity to initial estimates of �̂  than variations in the 

actual system parameter � . Both system variations and 

coefficient estimates variations lead to relatively more rate 

tracking errors than voltage tracking errors as displayed in 

figures 4a and 4b. 

4. Conclusions 

This brief communication validates recently published 

results utilizing nonlinear adaptive control and also 

deterministic artificial intelligence (D.A.I.) to force a van der 

Pol oscillatory circuit to track a regular circular trajectory 

amplifying its use as for indigenous timing. In doing so, 

simulations reveal the strong correlation of the D.A.I. 

method’s performance and the performance of the state 

observer used to estimate the control. While simulation of 

both methods reveal roughly 97% performance improvement 

(with D.A.I. doing slightly better than nonlinear adaptive 

control), the clear correlation of D.A.I. forcing function to the 

accuracy of estimation by the observer lead to obvious paths 

for future research. 
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5. Future Research Recommendations 

Despite relatively superior performance (compared to 

nonlinear adaptive control), the newer methodology of 

deterministic artificial intelligence, the feedback mechanism is 

shown in this manuscript to be worthy of future consideration. 

Two avenues of pursuit seem clearly manifest: 1) improvements 

in estimation (e.g. nonlinear observers), and 2) implementation 

of the formerly proposed optimal learning as feedback. The 

2-norm optimal learning of the self-awareness proposed by 

Smeresky et al., [1] is given by a typical least-squares 

formulation illustrated in equations (5) – (7). 

� � ��� � �� � �̂�1 − ��
	
 ��� = )Φ+,Θ. = )��� �� �1 − ��

	
 ���+)1 1 �+/               (5) 

where d subscripts indicate the desired states. Combing equations (1) and (2) gives 

�� + � + ��1 − �	
 �� = � = )��� �� �1 − ��
	
 ���+)1 1 �+/                     (6) 

Equation (4) shows the pseudoinverse solution for )Θ+ = )1 1 �+/ from which an estimate of � can be extracted and used 

to update 
��
 

)1 1 �+/ = �Φ/Φ
01Φ �                                     (7) 

The value of �  is found by feeding the position error 

through a potentially nonlinear observer. The product of � 

and �Φ/Φ
01 provides the estimate of �. 

Secondly, future elimination of the linear observer (of PID 

form or alternatively Luenberger form [33]) in favor of the 

nonlinear observer should be investigated to enhance 

performance in accordance with the correlation demonstrated 

here between performance and observer accuracy. This second 

line of investigation stems naturally from the conclusions 

asserted in this manuscript about the strong correlation 

between observer performance and tracking errors. 
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Appendix 

The following MATLAB code was used to call a SIMULINK 

model comprised of figure 1’s implementation of equations 

(1)-(4) to produce the results presented in the manuscript. 

 

clear all; close all; clc; warning('off','all'); 

 

% COMMENT OUT "clear all; close all; clc" in InitFcn 

CALLBACKS 

% "COMMENT OUT" THESES GAINS IN mdl InitFcn 

CALLBACKS 

 

KpO=[];KdO=[];KiO=[]; Gains=[]; GoodGains=[]; 

Count=0; 

 

for KpO=1:1:2 

for KdO=1:1:2 

for KiO=1:1:2 

sim('IterateObserver_eric_2020a'); 

if mean(TrackingError)<0.01; Gains=[KpO;KdO;KiO]; 

GoodGains=[GoodGains Gains]; end 

clc; Count=Count+1 

end 

end 

end 

 

% x=out.Actual(:,1); 

% xdot=out.Actual(:,2); 

% 

% xD=out.Desired(:,1); 

% xDdot=out.Desired(:,2); 

% 

% TrackingError=xD-x; 

% 

% t=out.tout(:,1); 

% MU=ones(1,max(size(out.tout(:,1)))); 

% uff=out.uff(:,1); 

% u=out.u(:,1); 

% 

% figure(1); subplot(1,2,1); 

% plot(x,xdot,'k:','linewidth',2); hold on; 

plot(xD,xDdot,'r','linewidth',3); hold off; 

axis([-13,13,-13,13]); 

% xlabel('x(t)','fontsize',16,'fontname','Palatino Linotype'); 

% ylabel('xdot(t)','fontsize',16,'fontname','Palatino 

Linotype'); 

% set(gca,'fontsize',16); set(gca,'fontname','Palatino 

Linotype'); grid; 

% 

% subplot(1,2,2); 

% plot(out.tout,TrackingError,'k:','linewidth',2); 

% xlabel('time, t(seconds)','fontsize',16,'fontname','Palatino 

Linotype'); 
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% ylabel('Tracking Error','fontsize',16,'fontname','Palatino 

Linotype'); 

% set(gca,'fontsize',16); set(gca,'fontname','Palatino 

Linotype'); grid; 

% legend(['\mu=' num2str(mean(TrackingError)) '; 

\sigma=' num2str(std(TrackingError)) ]) 

% 

% figure(2); 

% plot(out.tout,out.u,'linewidth',2); 

% xlabel('time, t 

(seconds)','fontsize',16,'fontname','Palatino Linotype'); 

% ylabel('F^*(t)','fontsize',16,'fontname','Palatino 

Linotype'); 

% set(gca,'fontsize',16); set(gca,'fontname','Palatino 

Linotype'); grid; 

% legend(['\mu=' num2str(mean(out.u))]) 

% 

% figure (3); 

% plot(out.tout,MU,'r','linewidth',3); hold on; 

plot(out.tout,out.muHatAdapted,'k:','linewidth',2); hold off; 

% xlabel('time, t 

(seconds)','fontsize',16,'fontname','Palatino Linotype'); 

% ylabel('\mu Adapted','fontsize',16,'fontname','Palatino 

Linotype'); 

% set(gca,'fontsize',16); set(gca,'fontname','Palatino 

Linotype'); grid; 

% legend(['\mu_\mu_(_t_)=' 

num2str(mean(out.muHatAdapted)) '; \sigma_\mu_(_t_)=' 

num2str(std(out.muHatAdapted)) '; K_p=' num2str(KpA) '; 

K_d=' num2str(KdA) '; Ki=' 

num2str(KiA) ],'fontsize',16,'fontname','Palatino Linotype') 

% 

% figure(4); 

% subplot(1,2,1); plot(out.tout,MU,'r','linewidth',3); hold 

on; plot(out.tout,out.muHatLearned,'k:','linewidth',2); hold 

off; 

% xlabel('time, t 

(seconds)','fontsize',16,'fontname','Palatino Linotype'); 

% ylabel('Learned \mu(t) 

Estimate','fontsize',16,'fontname','Palatino Linotype'); 

% set(gca,'fontsize',16); set(gca,'fontname','Palatino 

Linotype'); grid; 

% legend(['\mu_\mu=' num2str(mean(out.muHatLearned)) 

'; \sigma_\mu=' num2str(std(out.muHatLearned))]) 

% 

% subplot(1,2,2); plot(out.tout,out.uff,'r','linewidth',2); 

% hold on; plot(out.tout,out.uHatLearned,'k:','linewidth',2); 

hold off; 

% xlabel('time, t (sec)','fontsize',16,'fontname','Palatino 

Linotype'); 

% ylabel('Learned & Actual Forces, 

f(t)','fontsize',16,'fontname','Palatino Linotype'); 

% set(gca,'fontsize',16); set(gca,'fontname','Palatino 

Linotype'); grid; 

% legend(['\mu_F=' num2str(mean(out.uHatLearned))], 

['\mu_u=' num2str(mean(out.uff))]) 

 

The following MATLAB code was used to call a SIMULINK 

model comprised of figure 1’s implementation of equations 

(1)-(4) to produce the Monte Carlo results presented in the 

manuscript. 

 

clear all; close all; clc; warning('off','all'); 

R=[]; MUHAT0=[]; ERROR=[]; RATEERROR=[]; 

 

% COMMENT OUT "clear all; close all; clc" in InitFcn 

CALLBACKS 

% "COMMENT OUT" muhat0 mdl InitFcn CALLBACKS 

 

muhat0=0.9; 

 

for i=1:10000 

i 

muhat0=muhat0+0.2*randn(1); MUHAT0=[MUHAT0 

muhat0]; 

sim('Iterate_vanderPol_eric_2020a'); 

ERROR=[ERROR 

mean(ans.Actual(:,1)-ans.Desired(:,1))]; 

RATEERROR=[RATEERROR 

mean(ans.Actual(:,2)-ans.Desired(:,2))]; 

end 

 

scatter(ERROR,RATEERROR,'filled'); 

axis([-3,3,-0.3,0.3]) 

set(gca,'fontsize',16); set(gca,'fontname','Palatino 

Linotype'); grid; 

ylabel('Mean Rate Tracking 

error','fontsize',16,'fontname','Palatino 

Linotype','interpreter','tex'); 

xlabel('Mean Tracking 

error','fontsize',16,'fontname','Palatino 

Linotype','interpreter','latex'); 
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