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Abstract: The high dielectric constant and low dielectric loss are the most desirable characteristics of the dielectric materials. 
Considering the hazardous nature of lead-based ceramics, many research groups have paid great attention to the research on 
non-lead-based perovskites. The effect of the electric field on the electrical and thermal properties of the Lanthanum doped 
barium Titanate, one of the main important members of the ferroelectric Perovskites family is studied using the method of 
double time thermal Green’s function and Kubo formalism. With the help of the Silverman-Joseph Hamiltonian a general 
expression is derived. The electric field and temperature dependent dielectric constant and specific heat capacity of Ba1-

xLaxTiO3 crystal has been investigated. The dielectric constant decreases with increase in temperature and applied electric field 
component. The variation shows a consequence of the gradual decrease in the Curie temperature of the doped material with the 
increase in defect concentrations. The results also compared with some previous studies done by the author and other workers 
on similar other materials. 
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1. Introduction 

Barium Titanate is one of the most important and 
significant member of the ferroelectric Perovskites family. At 
room temperature, BaTiO3 adopts a tetragonal Perovskites 
type structure and is a ferroelectric with high permittivity. It 
transforms to the cubic, paraelectric state at the Curie 
temperature, TC of approximates to 125°C. Ferroelectricity in 
tetragonal BaTiO3 is due to an average relative displacement 
along the c-axis of titanium from its Centro symmetric 
position in the unit cell and consequently the creation of a 
permanent electric dipole. The study of the electrical and 
thermal properties of the BT ceramic is a very important 
research topic because of its great technical importance as it 
is used in multi- layer ceramic capacitor (MLCC), 
Ferroelectric Random-Access Memories (FRAM) and so 
forth because of its excellent dielectric, piezoelectric and 
ferroelectric properties and difficulty of explaining the 
behaviour thoroughly. Because of the great demand of these 

non-conducting ceramic materials peoples are going to 
reduce the size of all the communication devices as small as 
possible. Because of which materials with high dielectric 
constant like Barium titanate are very important in ceramic 
materials. The changes in the physical properties are also 
remarkable when one system is mixed with the other to form 
a composite system and their study helps in understanding 
basic mechanism of mixed crystal formation. For example, 
solid solution of the BT ceramics with the other ferroelectric 
Perovskites of same class and also with certain compounds 
which are not themselves ferroelectric materials possess 
ferroelectric properties and change in the composition of 
their solid solutions leads to change in the Curie point within 
the broad range of the temperature. 

One of the very interesting properties of the BT ceramics 
is the electric field dependence of the low frequency 
transverse optic mode. Also, various temperature dependent 
properties of ferroelectrics result from the temperature 
dependence of the low lying transverse optic mode of 
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vibration [1, 2]. So, these temperature dependent properties 
indirectly depend upon the applied electric field on these 
ceramics. The dielectric properties and ferroelectric transition 
temperature of the BT ceramic can be controlled by the 
various kinds of the substitutions at Ba2+ on ‘A’ sites or Ti4+ 
on ‘B’ sites. Since its discovery, BT has been used as a high 
permittivity capacitor material because of its high dielectric 
constant. Variation in Chemical composition led to quite 
drastic changes in physical properties while retaining their 
piezoelectric properties. The effect of change in chemical 
composition by adding isovalent substitution such as Ca2+, 
Sr2+, Pb2+ for Ba2+ and Zr4+, Hf4+ for Ti4+ on dielectric 
properties and phase transition temperature of BT ceramics 
has been done [1]. The effect of the heterovalent substitutions 
such as Ni3+, Co3+, Er3+, La3+, Nb5+, W6+ etc. for Ti4+ or Ba2+ 
on dielectric properties and phase transition temperature is 
still a great field of study. These heterovalent impurities 
causes charge imbalance and creates vacancies at ‘A’ or ‘B’ 
or Oxygen sites in Perovskite structure [2-8]. Ferroelectrics 
have many applications like in holographic storage media, 
optical communication, memory displays, modulator beam 
reflectors etc. and also most of the semiconducting 
ferroelectrics ceramics due to their positive temperature 
coefficient of resistivity (PTCR) these are also used in the 
temperature control and many other devices. The barium 
titanate, strontium titanate, and potassium titanate are the 
broadly used PTCR material and most intensively studied [9]. 

The aim of the present paper is the theoretical study of the 
field dependent dielectric properties of La doped Barium 
titanate (BaTiO3) displacive ferroelectric Perovskites by 
forming a model Hamiltonian for the polycrystalline mixture 
of ferroelectric Perovskites and then applying it to Ba1-

xLaxTiO3. Double time temperature dependent Green’s 
function technique is used to obtain thermally averaged 
correlation function and hence the observable quantities with 
the help of modified model Hamiltonian, taking into account 
the anharmonic effect up to the fourth order with 
substitutional defect and electric moment terms. The 
softmode frequency contribution towards dielectric constant 
has been taken in to consideration too. The effect of defects 
and electric field on the real part of dielectric constant of La 
displaced ferroelectric material in paraelectric phase is 
discussed and results obtained are compared with the 
previous theoretical and experimental studies. 

2. General Formulation/Model 

Hamiltonian 

Retarded double time dependent Green’s function is 
recommended to evaluate the expressions for the various 
dynamic properties for optical phonon, when both defect and 
external electric field is considered as [10] 

0
0 ( )G t t′− =<< 0 0

0 0( ); ( )A t A t′ >> iω + ∈=
0 0
0 0( ) [ ( ) : ( )]i t t A t A tθ ′ ′− − < >              (1) 

or 0
0 ( ')G iω ε+ = ( ) ( )G Gω ω′ ′′−            (2) 

where ( )G ω′  and ( )G ω′′  are real and imaginary parts of the 

Green’s function ( )G ω . Differentiating 0
0 ( )G t t′−  as given in 

Eq. (1) with respect to t, its equation of motion is given by 

0 0 0 0 0
0 0 0 0 0( ) ( ) [ ( ); ( )] [ ( ), ]; ( )T

d
i G t t t t A t A t A t H A t

dt
δ′ ′ ′ ′− = − < > + << >>ℏ ℏ ,                                 (3) 

Where the equation of motion is to be solved via the modified Hamiltonian TH . 

Differentiating Eq. (3) with respect to t, and Fourier transforming it, we get 

2 0 0
3 4 3 3 1 0( ) ( ) ( / ) ( / ) ( ); ( ) ,G M t A tω ω ω ω ω π ω π ′+ = + × << >>                                             (4) 

Where 0
3 0 4 (0,0),Cω ω= +                                                                      (5) 

0 2 2 2
4 0 14 (0,0) 24 96D gD E g E Vω ω ′= − + − ,                                                     (6) 

And 1
3

2
( ) ( ) 2 ( )M t F t Y t

ωπ π
ω

 
= + + × 

 
,                                                         (7) 

The expressions for the defect, field and temperature dependent renormalized frequencies of soft mode, acoustic mode and 
optic mode can be easily obtained by starting with 

The soft phonon Green’s function 0 0
0 0( ( ) ; ( ) )A t A t′= << >> , 

Acoustic phonon Green’s function ( ( ) ; ( ) )a a
k kA t A t′ ′= << >> , 

and optic phonon Green’s function 0 0( ( ) ; ( ) )k kA t A t′ ′= << >>  respectively and solving their equations of motion with the help 

of TH . 

Solving these Green’s functions, one gets the values of 0
0 ( )ω∆  as follows: 
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0 0
0 0 ,( ) ( ) ( ) ( )D D Eω ω ω ω∆ = ∆ + ∆ + ∆ɶ                                                           (8) 

Where 0
0 ( )ω∆ɶ  describes the contribution towards 0

0 ( )ω∆  in presence of anharmonicity and electric field terms and is given 

by 

0 0
0 0 1 2 3 4 5 6 7( ) Re [ ( ) ( ) ( ) ( ) ( ) ( ) ( )]ω ω ω ω ω ω ω ω ω∆ = ∆ + ∆ + ∆ + ∆ + ∆ + ∆ + ∆ɶ , (say)                    (9) 

The value of 1∆ - 7∆ ( )ω  are same as studied by the previous workers [11]. The third term , ( )D E ω∆  gives the combined 

effect of defect and electric field. In a similar manner we write 

0 0
0 0 ,( ) ( ) ( ) ( )D D Eω ω ω ωΓ = Γ + Γ + Γɶ                                              (10) 

Where 0
0 ( )ωΓɶ  describes the contribution towards 0

0 ( )ωΓ  in presence of anharmonicity and electric field and is given by 

0
0 ( )ωΓɶ 0

0 1 2 3 4 5 6 7[ ( ) ( ) ( ) ( ) ( ) ( ) ( )] ,ω π ω ω ω ω ω ω ω= Γ + Γ + Γ + Γ + Γ + Γ + Γ                  (11) 

The 1Γ - 7Γ have the same values as derived by the previous workers [11]. 

3. Soft Mode Frequency 

The real part of the pole of 0
0 ( , )DG i Eω ′+ ∈ would give the defect, electric field and temperature dependent soft mode 

frequency Ω  as the self-consistent solution of the equation 

2 0 2 0 0 2 0 2 2 0 0
0 0 0 1 0 0 0

,

( ) 4 (0, 0) 24 96 4 ( ) ( )k k

k

D g D E g E V k A Aλ λ λ

λ
ω ω ω ω ω β +′Ω = − + − + + < > +∆ Ω∑                     (12) 

A knowledge of 0
0 ( )∆ Ω  gives the expression for soft mode 

frequency as 

2 2 2 2
,D D EΩ = Ω + Ω + Ωɶ         (13) 

Here Ωɶ  is the field and temperature dependent element of 

the square of the efficient soft mode frequency Ω . 
It is evident from Eq. (13) that the square of the defect, 

temperature and field dependent soft mode frequency varies 
with the defect and applied external field parameters in 
presence of anharmonicity. The presence of these effects 
stabilizes the soft mode frequency. The temperature 

independent part of the effective soft mode frequency ( Ω ) is 
due to defect. The influence of defect and external applied 
field on this mode also affects the interaction [12] of soft 
mode with other modes, thus giving rise to defect and field 
dependences of various dynamic properties. In the present 
work we have obtained the expression of effective soft mode 

frequency ( Ω ) and it has been shown that the combined 
effect of defect and field dependence in presence of 
anharmonicity on the frequency is observed. Now it is clear 
that the defects contribution towards effective soft mode 
frequency is temperature independent. However, the indirect 
temperature dependence due to defect terms is obtained from 

, ( )D E ω∆ , in the classical limit of high temperature. It is 

interesting to note here that this term , ( )D E ω∆  is also 

missing in the absence of electric field. It is contended that 
this cross dependence or better to say the indirect 
temperature dependence due to defect is caused by applied 

field. , ( )D E ω∆  Will vanish either defect is zero or field is 

not applied. Thus one can easily express the dependence of 
the effective soft mode frequency on the temperature, given 
in Eq. 3.2 as 

2 0 2 0 2 2 2 2
0 0 1 2( ) (96 24 ) Dg V g D E T Tω ω γ γ′ ′Ω = − + − + Ω + + ,    (14) 

With 1 3γ γ γ′ = + ; which have their 

predefined values. 
Thus our expression (14) gives the soft mode frequency 

dependence for an anharmonic ferroelectric Perovskite crystal 
on temperature and external applied electric field, subjected to 
an external applied field. The square of the effective soft mode 
frequency shows the gradual increase when the strength of 
applied electric field varies [13], in presence of defect, which is 
in agreement with the previous results [14]. 

4. Field Dependent Dielectric Constant of 

Ba1-xLaxTiO3 

The effects of applied electric field on the complex 
dielectric constant in anharmonic ferroelectric material are 
calculated in its paraelectric phase with the help of Silverman 
–Joseph Hamiltonian augmented with fourth order phonon 
co-ordinates using double time Green’s function technique 
[15]. The Hamiltonian used here is given by: 

The soft phonon Green’s function is linked to real part of 
dielectric constant as 
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0
0 ( ')G iω + ∈ =<< 0 0 0

0 0( ) ; ( )A t A t′ >>             (15) 

As ( ) 1ω′∈ − =- 2 28 ( )N Gπ µ ω′         (16) 

The real dielectric constant [with the help of Eq. (16)] 
element is given by 

1′∈ − =
2 2 2 2 2

2 2 2 2 02

8 ( )

( ) 4
s

Nπ µ ω

ω ω

− − Ω ∈

− Ω + Γ
; 0

0v ≈ Ω  

Or ′∈ =
2 2 2

2 2 2 2 02

8 ( )

[( ) 4 ]
sNπ µ ω

ω ω
Ω − ∈

Ω − + Γ
; 1′∈ >>         (17) 

Where s∈ , is the invariable dielectric constant of the material, 

µ  is the dipole moment/unit cell and N is the total number of 

unit cell in the specimen and other symbols are as usual. 
The dependence of dielectric constant on frequency [in the 

range 1]ωτ ≤  may be calculated using the relation [16]. 

′∈ =

( )
2 2 2
0 0

22 2 2 02
0

( )

4

s ω ω ω

ω ω ω

∈ −

− + Γ
; 0 0( )ω υ≈ Ω ≈  or 

′∈ =

( )
2 2
0
22 2 2 02

0

( )

4

λ ω ω

ω ω ω

−

− + Γ
              (18) 

Where 2
0( )s Tλ ω=∈  is independent of thermal variation 

at particular point. 
The soft mode frequency is high as compared to the micro 

wave frequency (as 3/ 10 )ω −Ω ≈ and no relaxation effects 

are realized and half width [ 0
0( ) / 2 ]ω ωΓ  is such that

0
0( ) 2ω ωΓ << . 

For optic mode the soft mode frequency can be given as [17] 

ΩADE=- 0 2 0 2
1 2 3( ) 2k kV Y Y T Y Tω ω− + + + , …     (19) 

Where the symbols Y1, Y2 and Y3 are the temperature 
independent, coefficients of T and T

2 respectively in the 
expression of square of soft mode frequency. 

From Eqns. (17), (18) and (19), ( 0
0ν is same as 0

0 )ω  we 

achieved that 

( )T′∈ =
2( ' )cK T T T

λ
ξ+ −

,…         (20) 

Where K is temperature independent constant, ' ( / )cT α β=  

is paraelectric field dependent phase transition temperature, ξ
(= /γ β ) is non-linearity constant, This constant characterizes 

the deviated variation of the temperature dependence of the ′∈  
from the Curie-Weiss law and is corelated to the third-and 
fourth-order coupling coefficients [15]. 

0 2 0
1 2 3( ) 2 , ,k kV Y Y Yα ω ω β γ= − − + = =  

If ξ  is very less and T is not very large (i.e., though in 

paraelectric phase but closer to vicinity of Curie point (Tc) then 
the term ξ T

2
 can be neglected from the denominator term. 

Where  

'
cT =Tc + T∆  …                       (21) 

With  

T∆ =0.0019 × E …                      (22) 

Where E is external applied field in Volt/cm [18]. 

5. General Formulation 

The relation of soft mode frequency with temperature of 
ferroelectric materials is given by [19] 

Ω (T)=[K (T - Tc)]
1/2…                        (23) 

Where K is a constant depend on temperature and electric 
field parameter. Also the electric field dependant soft mode 
frequency can be given as 

2 1/2 1/2
( ) ( 1) ( )E K E T T c′Ω ≅ + −  …            (24) 

Where '
cT =Tc + T∆  with T∆ =1.9 × 10-3 × E, where E is 

applied electric field and measured in Volt/cm [18]. 
From Eqs. (20) and (21) 

1/2
( ) 2 1/2

1/2
( )

( )
( 1)

( )

E C

T C

T T
E

T T

Ω ′−
= +

Ω −
 Or 

1/2
2 1/2

( ) ( ) 1/2

( )
( 1)

( )
C

E T

C

T T
E

T T

′−
Ω = Ω +

−
 

Or 
1/2

2 1/2
( ) ( ) 1/2

( )
( 1)

( )
C

ADE AD

C

T T
E

T T

′−
Ω = Ω +

−
… (25) 

(ΩADE ~ ΩE & ΩAD ~ ΩT) 

Where ΩADE is field and defect dependent soft mode 
frequency and ΩAD is defect dependent soft mode frequency. 

6. Varialtion of Softmode Frequency with 

Temperature 

Using Eq. (25) frequency at soft mode of Ba1-xLaxTiO3 for 
distinct values of x (i.e. x=0.0, 0.3, 0.5, & 1.0) at. % of La in 
different electric field strengths is determined. The Curie 
temperature of Ba1-xLaxTiO3 (BLT) for distinct values of x is 
obtained from Wei Cai et al. [1] by using best fit of data. The 
values of ADΩ (defect dependent soft mode frequency) is 
obtained from the earlier study of Cai et al. (In which they 
have studied the case of zero field) [3]. 

We computed values of frequency at soft mode of Ba1-

xLaxTiO3 with various values of x at. % of La (i.e. x=0, 0.3, 
0.5, 1.0) and Soft mode frequency verses temperature curves 
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of Ba1-xLaxTiO3 (BLT) for different values of x at. % of La 
(i.e. x=0.0, 0.3, 0.5, 1.0) are drawn in figures 1(a) to 1(d) 
respectively. The trend of the curves obtained are showing 
the variations in agreement with the earlier experimental and 
theoretical results of others [16, 17, 18 and 19]. 

 
a) Ba1-xLaxTiO3=(x=0 at. % of La) 

 

b) Ba1-xLaxTiO3=(x=0.3 at. % of La) 

 

c) Ba1-xLaxTiO3=(x=0.5 at. % of La) 

 

d) Ba1-xLaxTiO3=(x=1.0 at. % of La) 

Figure 1. Variation of soft mode frequency (ΩADE) of Ba1-xLaxTiO3 with 

temperature (K) at different applied electric field strengths are as. 

7. Varialtion of Dielectric Constant With 

Temperature 

We have calculated the temperature dependent dielectric 
constant in para electric phase of Ba1-xLaxTiO3. The value of 
Curie constant C (=8.54×104 K) are taken from Naithani [13] 
by best fit of data. 

 

a) Ba1-xLaxTiO3 (x=0.0 at. % of La) 

 

b) Ba1-xLaxTiO3 (x=0.3 at. % of La) 
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c) Ba1-xLaxTiO3 (x=0.5 at. % of La) 

 

d) Ba1-xLaxTiO3 (x=1.0 at. % of La) 

Figure 2. Variation of dielectric constant ( ԑ ') of Ba1-xLaxTiO3 with 

temperature (K) at different applied electric field strengths are as. 

The values of dielectric constant ( )′∈  of Ba1-xLaxTiO3 for 
distinct values of x at. % of La (i.e. x=0.0, 0.3, 0.5, & 1.0) in 
presence of external applied electric field are calculated and 
corresponding variations of dielectric constant with temperature 
at different electric field are shown in Figures 2(a) to 2(d) 
respectively. Taking a reference temperature the value of 
Dielectric Constant increases with rise in applied electric field 
for all cases. It is clearly visible that taking electric field as a 
parameter, dielectric constant decreases with rise of temperature 
in these cases. 

8. Results 

From the above graphs as the Curie temperature changed 
(Increases) in the presence of electric field for these 
Perovskites. Using eqn. (25) we have determined frequency 
at soft mode of Ba1-XLaXTiO3 for distinct concentrations x 
at. %of La (i.e. x=0.0, 0.3, 0.5 & 1.0) in different electric 
field strengths. Hence we have studied the variation of soft 
mode for different electric fields from set of figures {1(a) to 
1(d)}. The trend of the curves obtained are showing the 
variations in agreement with the earlier experimental and 
theoretical results of others [14, 19-23]. 

We have also discussed the variation of dielectric constant 
in the paraelectric phase of BT and have shown these 
variations with the temperature in the set of figures {2(a) to 
2(d)} (5.2) for the different electric field strengths. Taking a 
particular temperature it is observed that the dielectric 
constant decreases as the strength of the externally applied 
electric field increases in all the cases (i.e. of x=0.0, 0.3, 0.5 
& 1.0 at. % of La) because the Curie temperature decreases 
as the concentration of the Lanthanum increases in BLT [24]. 
At a particular single value of applied electric field, the 
dielectric constant decreases as the temperature increases for 
all the cases that we have discussed. 

9. Discussion and Conclusion 

The expression for the dielectric constant for 
anharmonic displacive ferroelectric crystal Ba1-XLaXTiO3 
when subjected to the external electric field is obtained. 
The converted Hamiltonian is used for calculations. This 
conversion is important because the external field 
dependence of the frequency at soft mode and hence the 
dielectric constant is governed by � � � �/��

� 	 . If the 

term 0
0( )E Aα−  in the Hamiltonian is treated without 

conversion, it will give zero Green’s function. It may be 
concluded that higher order anharmonic terms in the 
Hamiltonian stabilize the soft modes because of high 
occupation number should be responsible for an 
appreciable scattering of the rest of the modes. 

The treatment pursued here shows the change in the 
dielectric constant with the changing values of frequency 
and temperature of Ba1-XLaXTiO3 for distinct values of x 
(x=0.0, 0.3, 0.5 & 1.0) at. % of La in the presence of 
electric field. It is now clear from Equations that the 
dependence of dielectric constant on applied field is clear 
consequence of the field dependence of soft mode 
frequency. Therefor if we want to study the field 
dependence of dielectric constant of ABO3 type 
ferroelectrics, so firstly we have to study the dependence 
of applied field on soft mode frequency. It is clear from 
Eq. (9) that soft mode frequency is directly proportional to 
the square of applied electric field strength. 

Figures 1(a) to 1(d) show the variation of frequency at soft 
mode with temperature for different electric field strengths of 
Ba1-XLaXTiO3 for different values of x (x=0.0, 0.3, 0.5, & 1.0) 
at. % of La. It is clear from the figures that as and when 
temperature rises soft mode frequency first rises for all 
values of x and at higher temperature soft mode frequency 
becomes constant for all values of x in Ba1-XLaXTiO3. So the 
soft mode frequency rises with rise of applied electric field 
and is in good agreement with the experimental result of 
other worker’s [13] and in the absence of the electric field the 
results are in good agreement with the result of Kumar et al. 
[14], and in the absence of defect in pure crystals the results 
are in good agreement with the result of Lingwal et al. [13] 

Figures 2(a) to 2(d) show the variation of dielectric 
constant with temperature in distinct values of applied 
external electric field strengths of Ba1-XLaXTiO3 for distinct 
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values of x (x=0, 0.3, 0.5 & 1.0). According to our outcomes 
as temperature rises and approaches to the Curie temperature 
(i.e. T �Tc) dielectric constant increases sharply but a rapid 
fall of dielectric constant is observed as the difference (T-Tc) 
increases. This variation obtained is in acordance with 
experimental results observed by Rupprecht and Bell [25], 
Kumar et. al. [13] and Jona and Shirane [26]. 

The field effect is effective and noticeable at low 
temperature side and less effective along higher temperature 
side as it is clear from figures. As we move away from the 
Curie temperature towards the high temperature side the 
effect due to higher order anharmonic effect dominates upon 
the applied external effect. 
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