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Abstract: Background: Liver works as one of the most versatile organs in the human body. But any kind of disturbance 

occurs in the liver may cause the liver disease. One of the most common liver infections is hepatitis C which is caused by the 

Hepatitis C Virus (HCV). It is well known that liver is the largest solid organ in the human body and also it is called the 

exocrine gland as it secretes bile into the intestine. Aim: The aim of this study is to evaluate the causal relationship of Bilirubin 

with each liver biomarker using the advanced regression techniques. Methods: We use two advanced regression techniques, 

namely Joint Generalized Linear Model (JGLM) and Generalized Additive Model (GAM). For model selection, we check the 

AIC value, GCV score and adjusted R–square as well as the different diagnostic plots like Q–Q plot, Residual vs. Fitted plot 

etc. are displayed. Results: Bilirubin, a human liver disease biomarker, is a brownish yellow substance found in bile and it is 

produced in the liver when the old red blood cells break down. The present study reveals that Bilirubin is positively associated 

(p-value<0.05) with Aspartate Aminotransferase (AST), Creatinine (CREA), Gamma-Glutamyl Transpeptidase (GGT), Protein 

(PROT), Alkaline Phosphatase (ALP)*Albumin (ALB) and marginally associated with Choline Esterase (CHE)* Cholesterol 

(CHOL) (p-value=0.0591). While it is negatively associated (p-value < 0.05) with Age, Sex, Alkaline Phosphatase (ALP), 

Alanine Aminotransferase (ALT), Choline Esterase (CHE), Cholesterol (CHOL), Albumin (ALB), Creatinine 

(CREA)*Gamma-Glutamyl Transpeptidase (GGT) under JGLM. Besides of that, Bilirubin is positively associated with AST, 

CREA, GGT, (CREA*GGT), (CHE*CHOL) whereas it is negatively associated with Sex, ALT, CHE, CHOL. Also, ALB is 

highly positively significant as a non–parametric smoothing term (p-value < 0.001) under GAM. Conclusion: Both the 

advanced regression models JGLM and GAM explain the association between Bilirubin with other liver diseases biomarker in 

case of Hepatitis C. 
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1. Introduction 

Hepatitis is the most common liver disease that occurs 

once the tissue cells within the liver get inflamed owing to 

alcohol or poison. In case of autoimmune hepatitis, some 

infectious diseases are spread when the immune cells within 

the body attack the liver in such a way so that the liver cells 

can be damaged severely. Hepatitis C is a liver infection 

caused by the Hepatitis C Virus (HCV) [30] and nowadays, a 

majority of people becomes infected with the hepatitis C 

virus by sharing needles or alternative instrumentality used to 

prepare and inject medicine. Hepatitis C is a short-term 

condition for certain individuals, but for more than half of the 

people who become infected with the hepatitis C virus, may 

be exposed to a chronic and long-term illness. WHO has set a 

target to reduce new viral hepatitis infections by 90% and 

reduce deaths due to viral hepatitis by 65% by 2030 [34]. 

Generally, there are no symptoms in many individuals with 

hepatitis C. However, after the virus enters the bloodstream, 

between 2 weeks and 6 months abnormalities in human body 

such as dark urine, fatigue, jaundice, joint pain, nausea, 
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stomach pain, vomiting are noticed [29]. These 

complications can be prevented by early diagnosis and 

treatment of chronic hepatitis. For identifying the liver 

disease, many traditional diagnostic tests were measured on 

albumin (ALB), bilirubin (BIL), choline esterase (CHE), γ-

glutamyl-transferase (GGT), aspartate amino-transferase 

(AST), alanine amino-transferase (ALT), Protein (PROT), 

Creatinine (CREA), Alkaline Phosphatase (ALP), 

Cholesterol (CHOL). Bilirubin levels in the blood goes up 

and down in patients with viral hepatitis C. It has been 

observed that when bilirubin levels remain high for long 

period of time, this usually means that major liver failure and 

likely cirrhosis are present. In several articles, it is found that 

there is a correlation between any two biomarkers of liver 

disease [26-28]. The dataset, collected from various patients 

together with some physical and interesting characters is 

supposed to be a multivariate data. As a result, a simple 

correlation between any two markers is useless, instead of 

that partial correlation is preferable. It is recommended to use 

an effective modeling to investigate the relationship between 

any biomarker with the remaining markers. Most of the 

previous research relied upon only on simple or multiple 

regression analysis, which is ineffective for the current 

dataset since the response variable are non-normal, 

heteroscedastic and positive. A number of studies using the 

simple statistical techniques are attempted to identify the 

factor related to liver diseases in case of Hepatitis C [31-33]. 

The objective of this study is to evaluate the causal 

relationship of Bilirubin with each liver biomarker using 

advanced statistical models. Remaining part of this paper has 

been organized as follows, in section 2, we describe the data 

and statistical methodologies - Joint Generalized Linear 

Gamma Model and Generalized Additive Model. Section 3 

represents the results of data analysis and Diagnostic plots. 

Findings and discussions are presented in section 4. Finally, 

in section 5 we conclude the article. 

2. Materials and Statistical Methodology 

2.1. Materials 

This article is based on the secondary data on 615 

individuals with a proven serological and histopathological 

diagnosis of hepatitis C [25] and it can be downloaded from 

“https://archive.ics.uci.edu/ml/datasets/HCV+data”. In this 

dataset, liver biopsies and blood samples for the examination 

of biochemical measurands on 615 hepatitis C patients with 

14 cofactors were taken at the same time. The description of 

the covariates, factors and their levels with the summarized 

statistics such as the mean, standard deviation, range and 

proportion of the levels are provided in Table 1. Here we 

mainly focus on 589 hepatitis C patients with all non-missing 

information considering 12 cofactors by excluding two 

variables (Patient Id and Category) as we assume all the 

patients have hepatitis C virus. Among the cofactors, 11 are 

of continuous type and one is binary variable. In this analysis, 

we have considered BIL (Bilirubin) as the dependent variable 

and the remaining are treated as the independent or 

explanatory variables. 

Table 1. Summary Statistics of variables in the analysis. 

Variable Abbreviation of variable Mean ± SD / Frequency (%) Range 

Age of the patient (Year) Age 47.42 ± 9.93 23 – 77 

Gender (Male=1, Female=2) Sex 
1=363 (61.63%) 

- 
2=226 (38.37%) 

Albumin ALB 41.62 ± 5.76 14.9 - 82.2 

Bilirubin BIL 11.02 ± 17.41 0.8 – 209 

Choline Esterase CHE 8.2 ± 2.19 1.42 - 16.41 

Gamma-Glutamyl Transpeptidase GGT 38.2 ± 54.3 4.5 - 650.9 

Aspartate Aminotransferase AST 33.77 ± 32.87 10.6 – 324 

Alanine Aminotransferase ALT 26.58 ± 20.86 0.9 - 325.3 

Protein PROT 71.89 ± 5.35 44.8 - 86.5 

Creatinine CREA 81.67 ± 50.7 8 - 1079.1 

Alkaline Phosphatase ALP 68.12 ± 25.92 11.3 - 416.6 

Cholesterol CHOL 5.39 ± 1.13 1.43 - 9.67 

 

2.2. Statistical Methods 

Generally, in classical linear regression models, the 

standard assumption about response variable (Y) is that the 

variance is constant over the entire range of parameter values 

[3]. But in literature, it has been found that this assumption is 

not always satisfied by the real-life dataset [1-2]. For 

example, medical science data are usually heterogeneous in 

nature. To stabilize the heteroscedasticity of the data, the 

techniques that has been proposed by Box [6] is the log-

transformation of the response variable. But in practice, a 

single data transformation fails to satisfy the various model 

assumptions and thus variance may not be always positive [2; 

Table 2.7, p. 36]. 

Joint Generalized Linear Model (JGLM): 

Distributions those are useful for the analysis of some 

continuous positive characteristic of the dataset, have non-

Normal error distributions and are usually incorporates within 
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the class of GLM. The exponential and gamma are the such 

distributions which are often useful for modeling the positive 

data that have variance with mean relationship and the 

variance of the response variable is non-constant [4, 5]. Here 

we describe gamma JGLM, which is used to analyze the HCV 

dataset. Nelder and Lee [7] have suggested JGLMs for the 

mean and dispersion in case of heteroscedastic positive data 

��’s. A brief overview of the JGLM is given here: 

E(yi)=µi and var(yi)=σi
2
 V(µi) 

V(.) is the variance function and σi
2
’s are the dispersion 

parameters. There are two components of variance in GLMs, 

one is V(µi) which depends on mean function, and the other 

is σi
2
, which is independent of mean function. The variance 

function V(µ) specifies the distribution of GLM family i.e., if 

V(µ)=1 then the distribution is Normal, if V(µ)=µ then the 

distribution is Poisson and when V(µ)=µ
2
 the distribution is 

Gamma etc. The JGLM for the mean and dispersion 

parameters are 

ηi=g(µi)=xi
t
β and εi=h(σi

2
)=wi

tϒ, 

where g(⋅) and h(⋅) are GLM link functions for the mean and 

the dispersion respectively; and xi
t
, wi

t
 are the row vectors for 

the regression models of mean and dispersion respectively, 

based on the levels of control variables. Maximum likelihood 

(ML) method is used to estimate the mean model parameters, 

and Restricted ML (REML) estimators are used for the 

dispersion model [8, 9]. An extensive discussion on GLM 

approach is found in [10-13]. 

Generalized Additive Model: 

A more general and advanced regression technique GAM was 

developed and popularized by Hastie and Tibshirani in 1990 

[14]. Schimek (2000) [15] and Wood (2006) [16] gave a 

comprehensive overview of the method and associated 

techniques, as well as the algorithms used to analyze the dataset. 

GAM extends the linear and generalized linear models 

where the modeling of the mean functions overlooks the 

assumption of linearity. In spite of the fact, it is assumed that 

the additivity of the mean function belongs to the covariates. 

However, for some covariates mean functions may be 

considered to be linear, whereas non-linear mean functions 

are modelled with smoothing methods like kernel smoothers, 

lowess, smoothing splines, or regression splines. [3, 17]. In 

general, the model has the following structural form: 

g��� = 
� +  � ������
�

���
 

Where, µ=E(Y) for a response variable with some 

exponential family distribution, g(.) is the link function and 

��  are some smooth functions of the covariates ��  for each 

j=1, 2…, p. GAM has greater stability than GLMs because 

they eliminate the linear dependency hypothesis between the 

covariates and the expected value of the response variables. 

Estimation of the smooth function ��  increases the 

complexity of the GAM model and there are number of ways 

to address it. Quite possibly the most well-known choices 

depend on splines, which permit the GAM assessment to be 

decreased to the GLM context [18]. Smoothing splines [19] 

utilizes however many knots as unique values of the 

covariate �� and control the model’s smoothness by adding a 

penalty to the least squares fitting objective [19, 20]. 

3. Statistical Results and Graphical 

Analysis 

In this article, two advanced regression modeling 

techniques have been carried out to study the impact of BIL 

along with the others cofactors to liver patients’ diagnostic. 

Firstly, the response variable BIL is modeled through JGLM 

adopting the Gamma distribution. Apart from this, GAM is 

also adopted to identify the risk factors. The result of both the 

models are summarized in Tables 2 and 3 respectively. In 

both the JGLM and GAM model, some interaction terms 

along with main effects are considered. In Regression and 

Design of experiment, interaction terms are very much 

popular as it implies the cofactors have a joint influence on 

response variable. All the selected effects in a model are not 

necessarily always significant [22]. But sometimes 

insignificant effects are also retained in the model according 

to the marginality rule. In epidemiology, statistical 

insignificant included factors or variables in the fitted models 

are known as confounder [23]. For JGLM model, diagnostic 

plots for mean model and dispersion model are separately 

given in Figures 1 and 2 respectively. Figure 3 represents the 

diagnostic plot for GAM model. 

3.1. Results of Joint Generalized Linear Model (JGLM) 

Log-Normal or Gamma models are generally used to 

analyze the positive data. Here the response variable BIL has 

been modeled using Gamma distribution through JGLM 

technique. The models will be finalized based on the smallest 

AIC. It is well known that the AIC selects a model which 

minimizes the predicted additive errors and squared error loss 

[7]. Also, the separate diagnostic plot for mean model and 

dispersion model are taken into account for model selection. 

Figure 1a and 2a represent the absolute residuals plot with 

respect to the fitted values of the Gamma models respectively. 

Both the figure displays the straight flat diagram, implying 

that the variance is constant with running means. Normal 

probability plot for fitted mean and dispersion model are 

displayed in Figure 1b and 2b respectively. From these 

figures, it can be interpreted that there is no lack of fit or 

departure from symmetricity. 

BIL Gamma fitted mean (μ�) model (from Table 2) 

μ�=exp (2.721 – 0.294 SEX – 0.0006ALP – 0.0046 ALT + 0.0083 AST – 0.174 CHE – 0.2464 CHOL + 0.0049 CREA + 0.0048 

GGT + 0.016 PROT + 0.0219 (CHE*CHOL) – 0.00004 (CREA*GGT) 
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and BIL Gamma fitted variance (σ��) model (from Table 2) 

σ��=exp (2.687 – 0.015 AGE – 0.0245 ALP – 0.0677 ALB + 0.0079AST – 0.105 CHE + 0.0007 (ALP*ALB)) 

 

Figure 1. Diagnostic plot for the joint Gamma fitted Mean models of BMI. 1 (a) Absolute residuals plot with respect to the fitted values. 1 (b) the normal 

probability plot of Residuals. 

 

Figure 2. Diagnostic plot for the joint Gamma fitted Dispersion models of BMI. 2 (a) Absolute residuals plot with respect to the fitted values. 2 (b) Normal Q-

Q plot of Residuals. 

Table 2. Mean and Variance models of Gamma fit results of HCV Dataset. 

Model Covariate Estimate Standard Error t-value p-value 

Mean Model 

Constant 2.72141 0.73358 3.70976 0.000207 

Sex -0.29454 0.07176 -4.10431 0.000040 

ALP -0.00068 0.00159 -0.42885 0.668027 

ALT -0.00460 0.00196 -2.34805 0.018871 

AST 0.008354 0.00187 4.45103 0.0000085 

CHE -0.17452 0.06397 -2.72805 0.0063708 
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Model Covariate Estimate Standard Error t-value p-value 

CHOL -0.24646 0.10987 -2.24314 0.02488 

CREA 0.00498 0.00222 2.23746 0.02525 

GGT 0.00487 0.00207 2.35455 0.01854 

PROT 0.01618 0.00676 2.39221 0.01674 

CHE*CHOL 0.02197 0.01164 1.88698 0.05916 

CREA*GGT -0.000044 0.000020 -2.19677 0.02803 

Dispersion Model 

Constant 2.68725 1.10428 2.43347 0.02085 

AGE -0.01545 0.00597 -2.58448 0.01433 

ALP -0.02456 0.01247 -1.96814 0.05767 

ALB -0.06777 0.02643 -2.56374 0.01510 

AST 0.00792 0.00174 4.54851 0.00002 

CHE -0.10509 0.02877 -3.65187 0.00054 

ALP*ALB 0.000735 0.00033 2.22098 0.03406 

 

In Table 2, summarized forms of the obtained Gamma 

fitted mean and variance models of BIL are given. Therefore, 

the following interpretations are drawn based on the Gamma 

models. 

1) The mean BIL (MBIL) is negatively associated with 

sex (Male=1; Female=2) with p-value < 0.001, 

concluding that BIL is higher for male than female. 

2) ALT is negatively associated with MBIL with p-value 

0.018, which indicates that if ALT level in the blood 

increases BIL decreases. 

3) MBIL and AST have high positive significant 

association between them with p-value < 0.001. It 

implies that if AST increases in Bloodstream BIL also 

increases. This result supports the real-life situation 

also. 

4) MBIL is negatively associated with CHE with p-value 

0.006, indicating that BIL rises as CHE decreases. 

5) MBIL is negatively associated with CHOL having p-

value 0.024, implying that BIL increases in 

Bloodstream as CHOL decreases. 

6) MBIL is positively associated with the interaction 

effect (CHE*CHOL) with p-value 0.059, interpreting 

that BIL may rise in Blood cells, as (CHE*CHOL) 

jointly increases. Here one thing is to be noted that, 

though the marginal effect of CHE and CHOL are 

negatively associated with BIL, the joint effects of 

these two cofactors have some positive significant 

association. 

7) CREA have positive association with MBIL with p-

value 0.025. It means that if CREA increases BIL level 

also increases. 

8) MBIL have positively associated with the cofactor 

GGT with p-value 0.018, implying that BIL rises as 

GGT increases. 

9) MBIL is negatively associated with the interaction 

effect (CREA*GGT) with p-value 0.02, indicating that 

BIL increases as (CREA*GGT) decreases. Note that 

marginal effects of CREA and GGT are positively 

associated with mean BIL, while their interaction effect 

is negatively associated with BIL. This situation 

implies that CREA and GGT increases BIL level, but 

their joint effect decreases BIL. 

10) MBIL have positive significant association with PROT 

with p-value 0.016, implying that BIL increases as 

PROT increases. 

11) Variance of BIL (VBIL) is negatively associated with 

Age with p-value 0.0143, interpreting that BIL 

Variance is higher at younger patients than older. 

12) VBIL have negative association with ALP with p-value 

0.0576, indicates that BIL variance increases as ALP 

decreases. 

13) VBIL is negatively associated with ALB with p-value 

0.015, indicates that BIL variance increases as ALB 

decreases. 

14) VBIL have very high positive significant association 

with AST, with p-value < 0.001. That implies that BIL 

variance rises as AST increases. 

15) The cofactor CHE have highly negative significant 

association with VBIL with p-value < 0.001. It 

indicates that BIL variance increases when CHE also 

increase in Bloodstream. 

16) VBIL is positively and significantly associated with the 

interaction effect (ALP*ALB) with p-value 0.034, 

interpreting that variance of BIL increases as 

(ALP*ALB) increases. Although the marginal effects 

ALP and ALB are both negatively associated, still the 

joint effects of the cofactors are positive association 

with variance of BIL. 

3.2. Results of Generalized Additive Model (GAM) 

The response variable BIL has been modeled through 

GAM using Gamma distribution and logarithm link. GCV 

value along with different model diagnostic plot has been 

used for choosing the best GAM model. GAM consists of 

two part of estimation methods, namely Parametric 

estimation for those cofactors enter in the model 

parametrically and Non-parametric estimation used for 

smoothing cofactors. Heterogeneity and the non-linear 

relationship between response variable and the other 

cofactors are handled through this Non-parametric estimation 

part of GAM. This property gives the GAM models more 

flexible among the others. Both of these part of estimation 

results is summarized in Table 3. Besides the main effects, 

two second order interaction effects and one smoothing 

cofactor have to be included in the final model to point out 

the true relationship between BIL and other cofactors. 

To represent the above results graphically, four different 

diagnostic plots are also been examined. In Figure 3a, 
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Normal probability plot shows the theoretical quantiles 

which are plotted against deviance residuals. Figure 3b 

displays the residuals values which are plotted against the 

fitted values of GAM model. It is almost a flat diagram with 

the running means. This residual plot is the indication of the 

constant variance with the respective means. Histogram of 

the residuals are plotted in Figure 3c, reveals that the 

residuals are normally distributed. Figure 3d represents the 

smoothing factor ALB with confidence belt. It shows that 

after some level, linearity has been attained with respect to its 

smoothness. 

  

  
Figure 3. Regression diagnostic plot of GAM for HCV dataset. 3 (a) Normal Q-Q Plot of Residual. 3 (b) Residual vs Fitted plot. 3 (c) Histogram of Residuals. 

3 (d) Plot of Albumin as a smoothing term. 

Table 3. Results for GAM of HCV data analysis using Gamma distribution with ‘log’ link. 

Estimation of Parametric Coefficients 

Covariates Estimate Standard Error F-Value Pr(>|t|) 

Constant (Intercept) 3.473 0.7852 4.423 0.0000117*** 

Sex -0.3033 0.06963 -4.356 0.0000157*** 

ALT -0.003628 0.001674 -2.167 0.030658 * 

AST 0.004522 0.001178 3.838 0.000138 *** 

CHE -0.2150 0.06352 -3.385 0.000760 *** 

CHOL -0.2713 0.1052 -2.579 0.010151 * 

CREA 0.003861 0.001842 2.096 0.036543 * 
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Estimation of Parametric Coefficients 

Covariates Estimate Standard Error F-Value Pr(>|t|) 

GGT 0.004484 0.001520 2.949 0.003321 ** 

PROT 0.0114 0.007773 1.433 0.152330 

CHE*CHOL 0.02678 0.01145 2.338 0.019722 * 

CREA*GGT 0.00003814 0.00001608 -2.372 0.018036 * 

Approximate Significance of smooth terms (Non-Parametric) 

Smooth Covariate Edf Ref. df Chi.sq p-value 

ALB 8.655 8.964 3.365 0.000337 

Edf: Estimated degrees of freedom; Ref.df: Degrees of freedom before smoothing; Chi. Sq: Chi square value. Significance Level: ‘***’ 0.001; ‘**’ 0.01; ‘*’ 

0.05; ‘.’ 0.1. 

AIC=3594.69; Deviance Explained: 44.7%; GCV Score: 0.39336; Scale Estimate: 0.5417; n=589 

From Table 3, final selected GAM fitted model of the BIL is shown below: 

Log (BIL)=3.473 – 0.303 SEX - 0.003 ALT + 0.004 AST – 0.215 CHE – 0.271 CHOL + CREA 0.003 + GGT 0.004 + 0.0114 

PROT + 0.026 (CHE*CHOL) + 0.000038 (CREA*GGT) + f (ALB) 

In the above formula, except ALB, all the cofactors 

entered in this additive model parametrically. The only 

smoothing expression whose approximate significance is 

determined using a non-parametrical approach (Chi-square 

test) is ALB. 

Results of estimation of Parametric coefficients: 

From Table 3, the results and interpretation of the 

cofactors for parametric estimation are described below: 

(1) The factor Sex (Male=1; Female=2) has very high 

negative significant relationship with BIL with p-value 

< 0.001. It indicates that BIL is higher for male than 

female. 

(2) BIL has partial negative significant association with 

ALT (test measures the amount of this enzyme in the 

blood), having p-value 0.03 which means that if the 

ALT level increases then the BIL value decreases. In 

real phenomena, also lower than normal levels of 

bilirubin aren’t a problem but higher level of ALT in 

blood indicates liver diseases or a viral hepatitis 

infection. 

(3) AST and BIL have very high positive significant 

association between each other having p-value < 0.001. 

If the value of AST increases BIL also increases. Both 

the situation is the indication of some liver damage 

may be due to the hepatitis or cirrhosis. 

(4) CHE (an enzyme required for function in the nervous 

system and is responsible for breaking down 

acetylcholine) has high negative significant association 

with BIL having p-value < 0.001. If the value of CHE 

increases BIL decreases. 

(5) BIL has partial negative significant association with 

CHOL having p-value 0.01. If Cholesterol level 

decreases BIL may also increase. This result also 

supports the real phenomena. 

(6) In this GAM fitted model although the marginal effects 

of CHE and CHOL both are negatively associated with 

BIL but their interaction effect (CHE*CHOL) have 

positive association with BIL, where p-value is 0.019. 

So, if both CHE and CHOL increase then BIL also 

increases. 

(7) CREA has partial positive association with BIL with p- 

value 0.036. Implying that if CREA increases, BIL also 

increases. 

(8) The factor GGT have some high positive association 

with BIL having p-value < 0.001. It means that if BIL 

increases then GGT level also increases. This result 

may suggest that there have some complications in the 

liver function. 

(9) The interaction effect (CREA*GGT) is positively 

significantly associated with BIL with p-value 0.018. 

Results of Non-parametric estimation for approximate 

significance of Smooth term: 

In this GAM fitted model, ALB is the only smoothing 

cofactor. To test the hypothesis, Chi-square test statistic is 

used as it is a nonparametric method of estimation. From 

Table 3, it is observed that smoothness of the cofactor ALB is 

highly significant with p-value 0.0003. Also observed that, 

the GAM fitted model has an AIC value 3594.69. GCV score 

and scale estimate are 0.3933 and 0.5417 respectively, which 

are also very low as compared to the other models. 

4. Discussion 

In this article, association between BIL with other liver 

disease biomarker from Hepatitis C patient has been studied. 

Bilirubin, a biochemical parameter responsible for liver 

infection, is treated here as a response variable. We tried to 

model this BIL variable which is a continuous random variable 

with non-constant variance and non-normal distribution pattern. 

To model this, we use two statistical modelling techniques 

namely JGLM and GAM with the assumption of Gamma 

distribution and logarithm as a link function. The variable 

description and the fitted results are presented in Table 1, 2 and 

3 respectively. The model checking plots such as normal 

probability plot, absolute residual plots are presented in 

Figures 1, 2 and 3 respectively. 

In JGLM model, mean model of BIL is expressed by Sex, 

ALP, ALT, AST, CHE, CHOL, CREA, GGT, PROT, 

(CHE*CHOL), (CREA*GGT) whereas variance of BIL is 

expressed by Age, ALP, ALB, AST, CHE, (ALP*ALB). 

Mean model is more complicated with comparison to 

dispersion model as it contains two interaction effects. Here 
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things to be noted that the natures of marginal effect of CHE 

and CHOL (negative), CREA and GGT (positive) in mean 

model and ALP and ALB (negative) in dispersion model are 

different from their respective interaction effect 

(CHE*CHOL) (positive), (CREA*GGT) (negative) in mean 

model whereas (ALP*ALB) (positive) in dispersion model. 

Also, ALP is insignificant in mean model while it is partially 

significant (p-value 0.05) in dispersion model. Age is 

significant (p-value 0.014) cofactor in dispersion model but it 

is not included for explanation of mean model. PROT is a 

significant cofactor (p-value 0.016) in the mean model but it 

is not used in dispersion model. AST has high positive 

correlation (p-value < 0.001) with BIL both in mean and 

dispersion model. Earlier research also supports this result 

[24]. Similarly, there is also high negative correlation (p-

value <0.001) between CHE and BIL. 

In case of GAM model, the relationship of BIL with other 

biochemical factors as explained considering Sex, ALT, AST, 

CHE, CHOL, CREA, GGT, PROT, (CHE*CHOL), 

(CREA*GGT) and one smoothing cofactor ALB. Interaction 

effect (CHE*CHOL) are positive in nature while the 

marginal effects are opposite in nature, i.e., negatively 

associated. On the other hand, both marginal effect of CREA 

and GGT and interaction effect (CREA*GGT) have identical 

role on BIL; i.e., both are positively correlated with BIL. 

PROT has no significant effect on BIL, which is also found 

in earlier research work [24]. In this model, ALB having a 

positive significant association with BIL and this report 

suggests that this cofactor having some nonlinear 

associations with BIL. 

From all the models it is conclusive that AST and CHE, 

both the enzymes are produced by liver have high significant 

impact on Bilirubin level in bloodstream. One has positive 

impact (AST) and other (CHE) is negatively associated. Best 

of our knowledge, there are a few research articles examine 

the association of BIL with other liver Biomarker of Hepatitis 

C patient, simultaneously with JGLM and GAM in 

regression framework. 

5. Conclusion 

The association and effects of several liver biomarker of 

Hepatitis C patients have been clearly explained throughout 

this article. The current results reported in Tables 2 and 3 are 

not completely conclusive rather acquaintance. The 

developed relationship of BIL with other cofactors are based 

on following regression analysis criteria: (1) The 

determinants are selected based on JGLMs and GAM fitted 

model assuming the response variable follows the Gamma 

distribution, which is appropriate for modeling positive and 

continuous data. (2) Final model is selected according to the 

smallest AIC and in case of GAM model, smallest GCV 

value is the criterion. (3) Regression diagnostic plot of JGLM 

and GAM are verified for final models. (4) From Tables 2 

and 3, it is observed that the standard error of the estimates is 

very small and it is the indication that the explanatory factors 

of BIL are stable [21]. 

Therefore, the current report has some stability and it may 

expect that it will help the medical practitioners and the 

researchers in this field to know the mathematical relationship 

between the different Biomarkers of the hepatitis C patient. 

The current result is focused on many interesting conclusions. 

The present analysis includes the liver Biomarker CHE and it 

is significantly associated with BIL. Also, the high level of 

ALT and AST is the indication of liver cirrhosis. 
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