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Abstract: In oncology clinical trials, the exact time of event occurrence such as tumor progression is usually unknown but the 

time interval within which the event occurs is known. The determination of such survival time can be subject to measurement 

error and influenced by the timing of scheduled assessment. Ignoring interval-censored survival time could lead to serious 

estimation bias. In addition, a crucial characteristic of interval-censored data is how frequently the measurement interval is taken, 

which directly determine the efficiency of statistical inference. Therefore, it is highly desirable to find statistical methods that are 

robust to different assessment frequencies. We compare conventional imputation-based approach with non-parametric 

approaches to handle interval-censored survival data. We apply these approaches to both hypothesis test and the estimations of 

hazard and survival functions. Empirical performance of these methods are assessed through extensive simulation studies with 

various sample sizes. A phase III randomized clinical trial on metastatic colorectal cancer is analyzed by using conventional 

approaches and non-parametric interval-censored analysis approaches. Out findings suggest that the phase III colorectal cancer 

clinical trial failed to show a clinical benefit of adding bevacizumab (B) to standard chemotherapy (CT), and the proposed 

non-parametric interval-censored analysis approaches outperforms the conventional approach for routine applications to 

oncology clinical trials to analyze interval-censored survival data. 

Keywords: Interval-censoring, Finkelstein’s Score Test, Generalized Log-rank Test,  

Non-parametric Maximum Likelihood Estimation, EM Algorithm 

 

1. Introduction 

Interval-censored time-to-event data occur naturally and 

frequently in randomized clinical trials, where the exact time 

of event occurrence is unknown but the time interval within 

which the event occurs is known. The left-point of the time 

interval in the interval-censored data represents the last time 

the individual is known to be event-free, and the right-point of 

the interval represents the earliest time that the individual is 

recorded with an event. There are two important special cases 

of interval-censored data. The first case is current status data, 

where only the observation time and whether or not the event 

has occurred at the time are known. The second case is 

grouped time-to-event data, where the interval-censored time 

for each subject is a member of a collection of 

non-overlapping intervals, and multinomial distribution can 

be used on the number of subjects in the given intervals. This 

paper focuses on case II interval-censored data. 

In oncology clinical trials, progression-free survival is the 

time from randomization date to the time of disease 

progression or death. Due to the latency of disease progression, 

the exact time of disease progression is never known. Most 

progression-free survival are interval-censored time-to-event 

data, since determination of such survival time is always 

subject to measurement error and influenced by the timing of 

scheduled assessment. Several researchers have studied the 

impacts of bias due to ignoring interval-censored survival time. 

For example, Panageas et al. discussed that ignoring the 

interval censored data structure leads to overestimation of 

median progression-free survival [1]; Hess et al. discussed 

that unscheduled assessments may falsely conclude the 

significance of treatment effect [2]; Penson et al. considered 
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that different measurement intervals between treatment arms 

could lead to estimation bias. [3]. These researchers 

recommended to use consistent and symmetric interval 

assessment across treatment arms whenever possible, and use 

interval censoring analysis methodology for 

progression-survival data to minimize potential bias. 

Following these recommendations, this paper aims to provide 

recommendations of interval-censoring analysis for 

progression-free survival data. 

Intuitively, when comparing with right-censored 

time-to-event data, interval-censored data is subject to loss of 

information. As a result, a crucial characteristic of 

interval-censored data analysis is how frequently the 

measurement interval is taken, which directly determine the 

efficiency of statistical inference. Meanwhile, the assessment 

schedule is often predetermined by various external factors 

such as evaluation cost, patient convenience and clinical 

practices. Therefore, it is highly desirable that statistical 

methods are robust to different assessment frequencies and 

schedules for progression-free survival data. 

Statistical methods for right-censored data are widely used 

in pharmaceutical industry. For example, we have 

Kaplan-Meier estimator for non-parametric estimator of 

survival function; log-rank test for non-parametric test of 

treatment effect; semi-parametric Cox proportional hazards 

model is used for treatment effect estimation. The 

corresponding statistical methods for interval-censored data 

have also been developed in the past three decades, for 

example, nonparametric estimation of survival function by 

Turnbull [4], Gentle- man and Geyer [5], and Titman [6]; 

comparison of survival functions by Zhao and Sun [7], and 

Sun et. al. [8]; nonparametric proportional hazards model by 

Finkelstein [9] and Withana [10]. Complete references of 

statistical methods for interval-censored data can be found in 

the review paper by Zhang and Sun [11]. However, very few 

of these new methods have been directly compared with 

right-point and mid-point imputations which are widely used 

as the conventional approaches for interval-censored data. 

Recently, Sun and Chen [12] compared the conventional 

methods with Finkestein’s method of proportional hazard 

model [9] when analyzing interval-censored time-to-event 

data based on Monte Carlo simulation studies, and argued that 

Finkelstein’s method for interval-censored data is superior to 

conventional approaches for interval-censored data. Their 

conclusions are based on limited scenarios and may not be 

valid all the time under different scenarios. In addition, the 

statistical methods for hypothesis testing for interval-censored 

data are also of our interests, which was not extensively 

studied by Sun and Chen. We conduct extensive Monte Carlo 

simulations under various scenarios which may occur in 

clinical trials. We compare the conventional imputation-based 

approaches with Finkelstein’s method in terms of estimation, 

as well as Finkelstein’s score test, generalized log-rank tests [7, 

8] in terms of hypothesis testing. 

The rest of paper is organized as follows, in section 2 we first 

introduce some notation and then review the idea behind 

non-parametric interval-censored data analysis approaches. In 

section 3, we present some results obtained from an extensive 

simulation study where the pros and cons of different statistical 

methods are discussed. In section 4, a Phase III randomized 

clinical trial on metastatic colorectal cancer is analyzed by the 

methods mentioned in section 2. We compare the performances 

of previously mentioned methods. Section 5 contains some 

discussion and concluding remarks. 

2. Inference Procedure 

2.1. Conventional Approach 

The goal of right-point and mid-point imputations is to 

transform the interval-censored data into right-censored data. 

Right-point imputation uses the right-point of the time 

interval as the true event time, while the mid-point 

imputation uses the average of left-point and right-point of 

the time interval as the true event time [13]. After either 

right-point or mid-point imputation, one can use standard 

statistical methods for right-censored data, such as 

Kaplan-Meier estimator, log-rank test, and Cox proportional 

hazard model for estimation, inference, and hypothesis 

testing. When the assessment intervals are symmetric 

between treatment groups, both imputations have the same 

ranks for the time. Therefore, rank-based methods such as 

log-rank test and Cox proportional hazard model, gives 

similar results for right-point and mid-point imputations. 

Moreover, the assessment intervals usually have heavy ties in 

most clinical trials, the methods of handling such ties should 

be very carefully chosen. We recommend Efron’s method [14] 

to deal with tied event times. Among methods of handling 

ties, which include Breslow’s method, Efron’s method, and 

exact method [15], Efron’s method yield estimate that is 

fairly close to the one given by exact method and it is more 

computationally efficient. 

2.2. Non-parametric Methods for Proportional Hazard 

Model 

Let ��� , ���  be the observed event intervals with 

� = 1, ⋯ , �  and 0 ≤ �� ≤ �� ≤ ∞ . A subject is 

right-censored when �� = ∞ . Create m nonoverlapping 

intervals ( �� , ���� ], where 0 = �� < �� < ⋯ < �� = ∞ , 

define increasing ordered intervals of �0, �������
� , �������

� , ∞�. 

For each treatment arm, the hazard function ��� ∣ �� and the 

survival function ��� ∣ �� are set to be constant. Then the 

full log-likelihood function can be written as 

� = ∑log $���� ∣ ��� − ���� ∣ ���&         (1) 

and the likelihood contribution of the i-th patient is 

���� ∣ ��� − ���� ∣ ��� = ∑  �
��� (�� )�$��*� ∣ ��& − �$�� ∣ ��&+ (2) 

where (�� = 1  if �� < �� ≤ ��  and (�� = 0  otherwise. 

When the problem reduces to one-sample, the problem of 

finding the non-parametric maximum likelihood estimator 

(NPMLE) of � becomes that of maximizing � under the 
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constraint that ∑  ��� )�$��*�& − �$��&+ = ∑  ���� ,� = 1 and 

,� ≥ 0 . Different methods to maximize the likelihood 

function for one-sample problem have been proposed, for 

example, EM self-consistency algorithm by Turnbull [4], as 

well as Gentleman and Geyer [5], and iterative convex 

minorant (ICM) algorithm by Groeneboom and Wellner [6]. 

Consider Cox proportional hazard model, �(� ∣ �) =
.��(�)/012$345& , where ��(�)  is the baseline survival 

function. Let 6� = log )log )��$��&++, then Equation 2 can 

be re-parameterized as �$�� ∣ ��& = exp )−exp $:;�� + 6�&+ 

where 6� strictly increases in j with 6� = −∞ and 6� = ∞. 

Maximum likelihood estimates (MLE) of :  and 6�  are 

obtained by maximizing the re-parameterized log-likelihood 

function together using Newton-Raphson algorithm under the 

constraint 6� < ⋯ < 6� . Overserved Fisher’s information 

matrix is used to obtain the standard error of the estimator. 

The approach actually simplifies the situation to a 

finite-dimensional parametric estimation problem. As a result, 

Finkelstein’s maximum likelihood estimation becomes more 

computationally intensive as the number of intervals gets 

larger. 

2.3. Nonparametric Comparisons of Survival Functions 

Suppose there are K treatment arms in a clinical study and 

let S
(k)

(t) denote the survival function of the kth arm with 

k=1, · · ·, K. The null hypothesis to test is 

H0: S
(1)

(t)=S
(2)

(t)=· · ·=S
(K)

(t) for all t 

When assuming each of the n subjects receives one of the K 

treatments, the data for the K samples can be represented as 

{((Li, Ri], Zi), 1 ≤ i ≤ n}, where Zi is the K × 1 vector of 

treatment indicators that are associated with subject i with 

interval-censored time (Li, Ri] whose k element is 1 if it is from 

the k-th population, and 0 otherwise. 

2.3.1. Finkelstein’s Score Test 

For right-censored data, the log-rank test can be obtained as 

a score test on the proportional hazards regression model. One 

way to compare survival functions for interval-censored data 

is to perform a score test on a regression model for 

interval-censored data. The survival functions are compared 

by performing the score test for β=0 based on Finkelstein’s 

method for proportional hazard model, where β is the vector of 

regression coefficients for Zi. The score statistic for testing 

β=0 is 

= = >?@A $B(3,CD,⋯,CE)&
>3 F

3��
            (3) 

2.3.2. Generalized Log-rank Test I 

Zhao and Sun [7] proposed a rank-based approach that is a 

direct generalization of the log- rank test for right-censored 

data. For each pair of (�, G), define (�� to be the indicator of 

the event �� ∈ (�� , ��/, 1 ≤ � ≤ �, 1 ≤ G ≤ I. For subject �, 
define J� = 0 if the observation on K�  is right-censored and 1 

otherwise; L�� = M$J� = 0, �� ≥ ��&, which is equal to 1 if K�  

is right-censored and subject �  is still at risk at �� −. The 

log-rank statistic = = (=�, ⋯ , =N);is thus defined as 

=O = ∑  ���� PQ�O − �RSTR
�R

U            (4) 

for k=1, · · ·, K, where 

Q�O = ∑  ���� J�
VWRXYZ[$\R*&*YZ[$\R&]

∑  E^D_`D VW_.YZ[(\_*)*YZ[(\_)/ ��O     (5) 

��O = ∑  ���a�� ∑  ���� J�
VWRXYZ[$\R*&*YZ[$\R&]

∑  E^D_`D VW_.YZ[(\_*)*YZ[(\_)/ ��O + ∑  ���� L����O(6) 

and Q� = ∑  NO�� Q�O  and �� = ∑  NO�� ��O , which can be 

regarded as the estimates of the total observed failure and risk 

numbers, respectively, at time �� under b�. It can be easily 

shown that if right-censored data are available, the statistic U 

reduce to the log-rank test statistic. Zhao and Sun [7] also 

proposed a multiple imputation approach to estimate the 

covariance matrix Σ  of U. The null hypothesis of the 

homogeneity of the K populations can be tested by comparing 

the test statistic K = =;Σ*= to a χ2 distribution with K-1 

degrees of freedom, where Σ* is a generalized inverse of Σ. 

2.3.3. Generalized Log-rank Test II 

Sun, Zhao and Zhao [8] proposed a new class of K-sample 

test for interval-censored data which includes Finkelstein’s 

score test statistic [9] as a special case. The K-sample test 

statistic is defined as 

=� = ∑  ���� d�(�� , ��)             (7) 

Where 

d�(�� , ��) = ∑  ���� ��
eXYZ[$BR&*YZ[$fR&]

YZ[$BR&*YZ[$fR&      (8) 

where ξ is a known function over (0, 1). When ξ(u)=u log(u) 

this test statistic reduces to Finkelstein’s score test statistic. 

Denote the first components of =� as =�∗, Σ as the covariance 

matrix of =� , Σ∗  is derived by deleting the last row and 

column of Σ, whose expression is provided by the authors. The 

null hypothesis of the homogeneity of the K populations can 

be tested by comparing the statistic 
�
� =�∗;Σ∗*�=�∗  to a hi 

distribution with K-1 degrees of freedom. 

3. Simulation Studies 

3.1. Data Generation 

We generate data to simulate a hypothetical oncology Phase 

III clinical trial with two arms based on allocation ratio of 1:1. 

The sample size is set to be 200, 400 or 600 and the number of 

replications is 1000. The survival time is set to follow an 

exponential distribution with median equals to 8 weeks, 12 

weeks, or 24 weeks for control arm C. The hazard ratio 

between Treatment arm (T) and Control arm © is assumed to 

be either 0.5 or 0.78. In simulations, each exact failure time is 

censored by a pre-specified time invterval to simulate the 

non-informative censoring. We also report the results from 
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Cox-regression and log-rank test based on exact event times in 

order to control the random error from simulations. The 

cut-off date is set to be equal for all patients. The overall 

duration is chose to have an approximately 80% or 60% event 

rate, respectively. 

Table 1 provides overall study duration and the maximum 

number of assessments under different assessment schedules. 

The maximum number of assessments ranges from 3 to 38 for 

treatment comparison, which cover a wide range of scenarios 

in practice. To keep the event rates remaining at desired 

proportions, we add an additional assessment at the end of the 

study. 

Table 1. Overall duration and maximum number of assessments. 

Median Hazard Event Overall Maximum number of assessment 

Survival Ratio Proportion Duration per 6 weeks per 8 weeks per 12 weeks 

8 weeks in control 

1 80% 60 10 8 5 

1 60% 28 5 4 3 

0.5 80% 76 13 10 7 

0.5 60% 32 6 4 3 

0.67 80% 76 13 10 7 

0.67 60% 32 6 4 3 

0.78 80% 64 11 8 6 

0.78 60% 32 6 4 3 

12 weeks in control 

1 80% 88 15 11 8 

1 60% 40 7 5 4 

0.5 80% 116 20 15 10 

0.5 60% 48 8 6 4 

0.67 80% 108 18 14 9 

0.67 60% 48 8 6 4 

0.78 80% 96 16 12 8 

0.78 60% 48 8 6 4 

24 weeks in control 

1 80% 172 29 22 15 

1 60% 80 14 10 7 

0.5 80% 226 38 29 19 

0.5 60% 98 17 13 9 

0.67 80% 206 35 26 18 

0.67 60% 92 16 12 8 

0.78 80% 192 32 24 16 

0.78 60% 86 15 11 8 

 

3.2. Simulation Results 

Tables 2, 3 summarize point estimates under equal 

assessment schedules, with different median survival times in 

control arm (8 weeks, 12 weeks, or 24 weeks), and hazard 

ratios between treatment and control arms (HR=0.5 or 0.78), 

based on total sample size 200. Results from Cox regression of 

exact failure times are used as benchmarks. We use relative 

bias in order to make fair comparison for simulation results 

between different true parameter values. As we can see from 

the results, point estimates based on Finkelstein’s method is 

almost unbiased under different scenarios, while point 

estimates based on conventional method are always 

negatively bias (away from null) and over-estimate treatment 

effects. The biases for conventional method become worse as 

assessment frequency decreases (assessment interval 8 weeks), 

right-censoring proportion increases (> 20%), as well as 

treatment effect between treatment and control arms 

attenuates. The estimates based on Finkelstein’s method are 

very robust to the assessment frequency and censoring in 

general. Based on our extensive simulations (some results are 

not shown here), when maximum number of assessment is 

fewer than 5 times, conventional method would have about at 

least 10% negative bias at log hazard ratio scale, while for 

Finkelstein’s method, the bias is at most 5%. Conventional 

methods and Cox model with exact failure times yield similar 

standard deviations. However, Finkelstein’s method 

overestimates the standard deviations. The 95% coverage 

probability of both conventional method and Finkelstein’s 

method are fairly close to the Cox model with exact failure 

time. 

Tables 4, 5 summarize the empirical Type I error rates at 

α=5% (two-sided) based on sample size of 200 and 400, 

respectively. Consistent with the findings on point estimation 

results in Tables 2, 3, the score test based on conventional 

method tends to be conservative when assessment frequency 

decreases and censoring proportion increases. Finkelstein’s 

Type I errors increases as number of assessments increases. 

On the other hand, Finkelstein’s Wald test Type I error rate are 

very well controled. Log-rank test of mid- point imputations 

also performs well under most scenarios. Generalized 

log-rank tests seem to perform consistently well among all 

tests evaluated in our simulation, when comparing the 

log-rank tests of exact time. In addition, type I errors based on 

any of these interval-censored methods tend to be slightly 

inflated when event rate is low. 

Tables 6, 7 summarize the empirical power at α=5% 

(two-sided) based on sample size of 200 and 400. The findings 

are consistent with each other as well. Finkelstein’s score test 

and Wald test have comparable power as compared to the 

log-rank test of conventional method. When comparing with 

the log-rank tests of exact failure time, it is clear to see that as 
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assessment frequency decreases and censoring proportion 

increases, the interval-censored data based tests become less 

powerful, as the information contained in the data decreases. 

In conclusion, we find that the conventional approaches 

over-estimate treatment effect in point-estimation. 

In particular, when the assessment frequency is low, 

conventional methods may give severely biased estimation. 

For hypothesis testing, when assessments are balanced 

between treatment arms, conventional approaches and 

interval-censoring methods are comparable. In particular, 

conventional approach score test is more conservative in terms 

of type I error, while conventional approach score test is less 

powerful than log-rank tests.  

Table 2. Summary of Point Estimation and Inference for β=-0.693 (HR=0.5), n=200. 

Scenario Method Assess Interval Bias Std. Dev. M. C. Std. Err. 95% Cov. Prob. 

Median 

8 Weeks 

80% 

Event 

Exact Time - 0.6% 0.167 0.167 95.1% 

 6 weeks -1.5% 0.165 0.167 95.2% 

Conventional 8 weeks -2.6% 0.166 0.167 94.9% 

 12 weeks -7.0% 0.162 0.167 94.1% 

 6 weeks 1.1% 0.170 0.171 94.7% 

Finkelstein 8 weeks 1.2% 0.172 0.171 95.0% 

 12 weeks 0.1% 0.175 0.173 94.1% 

Median 

8 Weeks 

60% 

Event 

Exact Time - 1.7% 0.193 0.195 95.8% 

 6 weeks -1.8% 0.193 0.196 95.5% 

Conventional 8 weeks -5.5% 0.192 0.196 95.6% 

 12 weeks -12.8% 0.187 0.196 92.6% 

 6 weeks 1.2% 0.199 0.198 95.7% 

Finkelstein 8 weeks -0.4% 0.202 0.200 95.6% 

 12 weeks -3.3% 0.208 0.205 94.7% 

Median 

12 Weeks 

80% 

Event 

Exact Time - -0.7% 0.164 0.167 96.7% 

 6 weeks 0.3% 0.160 0.167 96.7% 

Conventional 8 weeks -0.4% 0.160 0.167 96.5% 

 12 weeks -2.0% 0.158 0.167 96.7% 

 6 weeks 2.1% 0.163 0.172 96.6% 

Finkelstein 8 weeks 1.9% 0.164 0.171 96.7% 

 12 weeks 1.8% 0.164 0.171 96.4% 

Median 

12 Weeks 

60% 

Event 

Exact Time - -0.2% 0.205 0.195 93.6% 

 6 weeks -1.7% 0.202 0.196 93.5% 

Conventional 8 weeks -2.8% 0.202 0.196 92.7% 

 12 weeks -6.9% 0.197 0.196 93.2% 

 6 weeks 0.1% 0.206 0.197 93.6% 

Finkelstein 8 weeks -0.3% 0.207 0.198 93.2% 

 12 weeks -1.8% 0.208 0.200 93.9% 

Median 

24 Weeks 

80% 

Event 

Exact Time - -0.2% 0.168 0.167 95.3% 

 6 weeks -0.3% 0.168 0.167 95.8% 

Conventional 8 weeks -0.6% 0.168 0.167 95.9% 

 12 weeks -1.0% 0.168 0.167 95.9% 

 6 weeks 1.0% 0.170 0.177 96.6% 

Finkelstein 8 weeks 0.9% 0.170 0.174 96.3% 

 12 weeks 0.9% 0.170 0.172 96.0% 

Median 

24 Weeks 

60% 

Event 

Exact Time - -0.2% 0.205 0.195 93.6% 

 6 weeks 0.0% 0.195 0.195 95.8% 

Conventional 8 weeks -0.7% 0.195 0.194 95.3% 

 12 weeks -1.5% 0.196 0.195 95.7% 

 6 weeks 1.2% 0.197 0.199 96.2% 

Finkelstein 8 weeks 0.7% 0.197 0.198 95.7% 

 12 weeks 0.3% 0.200 0.197 95.6% 

Table 3. Summary of Point Estimation and Inference for β=-0.248 (HR=0.78), n=200. 

Scenario Method Assess Interval Bias Std. Dev. M. C. Std. Err. 95% Cov. Prob. 

 Exact Time - 1.7% 0.159 0.161 96.1% 

Median  6 weeks -0.9% 0.157 0.161 96.0% 

8 Weeks Conventional 8 weeks -2.8% 0.157 0.161 96.0% 

  12 weeks -8.0% 0.153 0.161 95.5% 
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Scenario Method Assess Interval Bias Std. Dev. M. C. Std. Err. 95% Cov. Prob. 

80%  6 weeks 2.4% 0.162 0.165 96.0% 

Event Finkelstein 8 weeks 1.9% 0.164 0.165 95.8% 

  12 weeks 1.0% 0.168 0.168 95.2% 

 Exact Time - 0.3% 0.188 0.185 95.2% 

Median  6 weeks -4.0% 0.186 0.185 94.3% 

8 Weeks Conventional 8 weeks -7.6% 0.183 0.185 95.7% 

  12 weeks -15.6% 0.178 0.185 95.0% 

60%  6 weeks -0.5% 0.193 0.188 93.6% 

Event Finkelstein 8 weeks -1.8% 0.194 0.190 95.2% 

  12 weeks -4.3% 0.203 0.196 94.2% 

 Exact Time - -0.6% 0.163 0.161 95.7% 

Median  6 weeks -1.7% 0.161 0.161 95.7% 

12 Weeks Conventional 8 weeks -2.5% 0.161 0.161 95.7% 

  12 weeks -5.4% 0.157 0.161 95.4% 

80%  6 weeks 0.4% 0.165 0.165 95.6% 

Event Finkelstein 8 weeks 0.3% 0.165 0.165 95.7% 

  12 weeks -0.8% 0.165 0.165 95.7% 

 Exact Time - 1.3% 0.187 0.185 95.5% 

Median  6 weeks -0.7% 0.185 0.185 95.3% 

12 Weeks Conventional 8 weeks -1.6% 0.184 0.186 96.2% 

  12 weeks -6.4% 0.180 0.186 95.7% 

60%  6 weeks 1.3% 0.189 0.187 94.9% 

Event Finkelstein 8 weeks 1.4% 0.190 0.188 95.5% 

  12 weeks -0.6% 0.191 0.190 95.2% 

 Exact Time - -0.1% 0.164 0.162 95.5% 

Median  6 weeks -0.4% 0.164 0.162 95.5% 

24 Weeks Conventional 8 weeks -0.7% 0.164 0.162 95.0% 

  12 weeks -1.3% 0.163 0.162 95.4% 

80%  6 weeks 1.0% 0.166 0.169 95.9% 

Event Finkelstein 8 weeks 0.9% 0.167 0.167 95.6% 

  12 weeks 0.8% 0.166 0.166 95.3% 

 Exact Time - -0.1% 0.187 0.187 95.2% 

Median  6 weeks -0.5% 0.187 0.187 95.6% 

24 Weeks Conventional 8 weeks -0.9% 0.188 0.187 95.5% 

  12 weeks -2.0% 0.186 0.187 95.9% 

60%  6 weeks 0.8% 0.189 0.190 95.7% 

Event Finkelstein 8 weeks 0.5% 0.190 0.189 95.5% 

Table 4. Summary of Type I error rate (%) at α=5% (two-sided), n=200 Median Event Assess Conventional Finkelstein Gen. Log-rank Exact. 

Survival Prop. Interval Score Log-rank Score Wald Test I Test II Log-rank 

  6 weeks 5.7 6.7 7.1 6.6 6.7 6.2  

 80% 8 weeks 5.9 6.6 6.7 6.3 6.6 6.0 6.5 

8  12 weeks 5.6 7.0 7.3 7.0 7.0 6.9  

weeks  6 weeks 3.8 4.1 4.5 4.4 4.1 4.3  

 60% 8 weeks 4.1 4.5 5.0 4.9 4.5 4.8 4.3 

  12 weeks 3.3 5.2 6.2 5.8 5.2 5.3  

  6 weeks 5.8 5.7 6.3 5.6 5.7 5.6  

 80% 8 weeks 4.7 5.0 5.5 5.3 5.0 5.0 5.1 

12  12 weeks 5.3 5.9 6.0 5.7 5.9 5.6  

weeks  6 weeks 5.2 5.4 5.6 5.6 5.4 5.5  

 60% 8 weeks 4.6 5.1 5.4 5.4 5.1 5.3 5.1 

  12 weeks 3.9 4.3 5.0 4.7 4.3 4.4  

  6 weeks 5.3 5.2 6.1 5.0 5.2 5.0  

 80% 8 weeks 5.2 5.3 5.9 4.8 5.3 5.0 5.1 

24  12 weeks 4.9 5.0 5.5 4.9 5.0 4.8  

weeks  6 weeks 4.3 4.1 4.5 3.9 4.1 4.2  

 60% 8 weeks 4.4 4.6 4.9 4.4 4.6 4.2 4.3 

  12 weeks 4.6 4.5 4.7 4.7 4.5 4.6  
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Table 5. Summary of Type I error rate (%) at α=5% (two-sided), n=400 Median Event Assess Conventional Finkelstein Gen. Log-rank Exact. 

Survival Prop. Interval Score Log-rank Score Wald Test I Test II Log-rank 

  6 weeks 5.0 5.1 5.4 5.4 5.1 5.3  

 80% 8 weeks 4.5 4.8 5.0 5.0 4.8 4.9 4.9 

8  12 weeks 3.9 5.8 5.8 5.7 5.8 5.6  

weeks  6 weeks 5.3 5.6 5.7 5.7 5.6 5.7  

 60% 8 weeks 4.8 5.9 5.9 5.6 5.9 5.4 4.6 

  12 weeks 4.2 5.3 5.8 5.6 5.3 5.3  

  6 weeks 4.5 4.7 4.7 4.5 4.7 4.5  

 80% 8 weeks 5.1 5.3 5.5 5.1 5.3 5.2 5.2 

12  12 weeks 4.3 4.8 5.1 5.1 4.8 4.9  

weeks  6 weeks 5.3 5.4 5.6 5.6 5.4 5.5  

 60% 8 weeks 5.1 5.4 5.2 5.2 5.4 5.2 5.2 

  12 weeks 4.5 5.6 5.6 5.5 5.6 5.3  

  6 weeks 4.9 4.9 5.3 4.6 4.9 4.6  

 80% 8 weeks 4.7 4.8 5.3 4.7 4.8 4.6 4.8 

24  12 weeks 4.2 4.3 4.5 4.3 4.3 4.3  

weeks  6 weeks 5.2 5.5 5.7 5.3 5.5 5.4  

 60% 8 weeks 5.5 5.7 5.7 5.4 5.7 5.4 5.3 

  12 weeks 5.4 5.5 5.7 5.7 5.5 5.6  

Table 6. Summary of power (%) at α=5% (two-sided), HR=0.5, n=200 Median Event Assess Conventional Finkelstein Gen. Log-rank Exact. 

Survival Prop. Interval Score Log-rank Score Wald Test I Test II Log-rank 

  6 weeks 97.6 97.7 97.9 97.8 97.7 97.8  

 80% 8 weeks 97.4 97.7 97.7 97.7 97.7 97.6 98.3 

8  12 weeks 96.0 97.3 97.4 97.3 97.3 97.0  

weeks  6 weeks 92.9 93.5 93.4 93.4 93.5 93.4  

 60% 8 weeks 89.1 90.7 90.8 90.5 90.7 90.5 95.7 

  12 weeks 72.5 80.5 80.4 80.3 80.5 80.4  

  6 weeks 99.0 99.0 99.3 99.2 99.0 99.0  

 80% 8 weeks 98.8 98.9 98.9 98.9 98.8 98.8 99.1 

12  12 weeks 98.6 98.9 98.9 98.8 98.9 98.9  

weeks  6 weeks 94.9 95.2 95.1 95.0 95.1 95.1  

 60% 8 weeks 93.1 93.6 93.8 93.6 93.6 93.6 96.3 

  12 weeks 89.0 90.8 90.7 90.7 90.6 90.6  

  6 weeks 98.7 98.7 99.2 98.6 98.7 98.8  

 80% 8 weeks 98.7 98.7 99.2 98.7 98.7 98.7 98.7 

24  12 weeks 98.7 98.7 98.9 98.6 98.7 98.7  

weeks  6 weeks 95.0 95.5 95.9 95.3 95.5 95.6  

 60% 8 weeks 95.2 95.2 95.5 95.4 95.2 95.4 95.6 

  12 weeks 95.0 94.9 95.1 95.1 94.9 94.9  

Table 7. Summary of power (%) at α=5% (two-sided), HR=0.78, n=400 Median Event Assess Conventional Finkelstein Gen. Log-rank Exact. 

Survival Prop. Interval Score Log-rank Score Wald Test I Test II Log-rank 

  6 weeks 77.5 77.8 78.3 78.1 77.8 78.0  

 80% 8 weeks 74.4 75.5 75.8 75.4 75.5 75.3 77.9 

8  12 weeks 70.1 73.0 73.5 73.2 73.0 72.9  

weeks  6 weeks 65.2 66.5 66.7 66.6 66.5 66.4  

 60% 8 weeks 59.5 61.7 62.0 61.9 61.7 61.9 68.1 

  12 weeks 51.1 56.4 56.9 56.8 56.4 56.6  

  6 weeks 77.4 77.8 78.0 77.6 77.8 77.5  

 80% 8 weeks 77.0 77.3 77.9 77.5 77.3 77.3 78.0 

12  12 weeks 74.4 75.7 76.0 75.5 75.7 75.4  

weeks  6 weeks 66.1 66.3 66.5 66.4 66.3 66.4  

 60% 8 weeks 65.2 66.5 66.6 66.6 66.5 66.2 68.2 

  12 weeks 59.7 61.5 61.8 61.7 61.5 61.7  

  6 weeks 78.0 78.6 79.6 77.8 78.6 78.2  

 80% 8 weeks 78.3 78.6 79.1 78.3 78.6 78.5 78.0 

24  12 weeks 77.5 78.0 78.2 77.7 78.0 77.6  

weeks  6 weeks 64.1 64.0 64.5 64.1 64.0 64.0  

 60% 8 weeks 64.3 64.5 64.7 64.5 64.5 64.2 65.5 

  12 weeks 63.3 63.7 64.1 63.7 63.7 63.5  
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4. An Application 

Now we apply the methodologies proposed in previous 

sections to a Phase III colorectal cancer clinical trial (ITACa). 

The full analysis set includes 376 patients, among which 176 

patients in treatment (CT+B) arm A and 194 patients in control 

(CT alone) arm B. At the time of final analysis, 343 failure 

events were observed (306 disease progressions and 37 

deaths), 163 in arm A and 180 in arm B. 

The unstratified log-rank test shows that survival 

distributions between arm A and B are not significant at level 

α=0.05, with p-value 0.681. The estimated hazard ratio 

between group B verse A is 1.027, with p-value 0.772. The 

unstratified log-rank test shows that survival distributions 

between group A and B are not significant at level α=0.05, 

with p-value 0.63. The estimated hazard ratio between group 

B verse A is 0.974 with p-value 0.541. 

To illustrate the nonparametric interval-censored analysis 

methods, we compare the results by the conventional method 

with mid-point imputation, Finkelstein’s method, and 

generalized log-rank tests. When we consider interval-censored 

data structure, the reported assessment date serves as the right 

point for events, and the left point for censoring. The assessment 

date prior to the reported assessment date is used as the left point 

for the events. If the recorded progression date is the first 

assessment date after randomization, the left point is set to be 0. 

For overall survival, the mid-point imputation log-rank test, 

generalized log-rank test I and test II are neither significant at 

α=0.05 with p-values 0.87, 0.653 and 0.591, respectively. The 

hazard ratio based on Fikelstein’s method is 1.109. For progression 

free survival, the mid-point imputation log-rank test, generalized 

log-rank test I and test II are neither significant at α=0.05 with 

p-values 0.591, 0.577 and 0.565 respectively. The hazard ratio 

based on Fikelstein’s method is 0.991. We also compared the 

nonparametric estimates of survival functions for treatment and 

control groups, based on right-point imputation, mid-point 

imputation, and interval-censoring EM-ICM method. The results, 

as well as the median of overall survival and progression-free 

survival between two arms, are shown in Figures 1 and 2. 

 

Figure 1. Nonparametric Survival Function Estimates: Overall Survival. 

 

Figure 2. Nonparametric Survival Function Estimates: Progression-free Survivall. 
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In conclusion, the phase III colorectal cancer clinical trial 

failed to show a clinical benefit of adding bevacizumab (B) to 

standard chemotherapy (CT). A possible future research 

direction is to identify the biomarkers that could predict the 

sensitivity of anti-angiogenic drugs. 

5. Discussions and Conclusions 

In this paper, we compare various approaches to handle 

interval-censored survival data, e.g., conventional approaches 

and non-parametric approaches. The performance of these 

methods are evaluated through an extensive simulation study.  

We discovered that when assessment interval are exactly 

symmetric across treatment arms, the conventional approach 

(right-point imputation) performs similarly to mid-point 

imputation, since the ranks of event times are same. We show 

that regular Cox regression could be severely biased when 

assessment is less frequent or event proportion is low. 

Finkelstein’s non-parametric maximum likelihood estimation 

method, as a natural extension of Cox proportional hazard 

model for right-censored data, performs uniformly better in 

various scenarios we examined. It is remarkably robust to 

different assessment schedules and event proportions. Both 

Wald test and score test based on Finkelstein’s method, as well 

as generalized log-rank tests, have performed well with 

generally acceptable Type I error rates and power relative to the 

convectional approach with log-rank test at given sample sizes. 

In conclusion, when analyzing interval-censored survival 

data, we recommend to always consider and assess the 

possibility of evaluation-time bias. In practice, we strongly 

recommend adopting consistent and symmetric interval 

assessments across treatment arms whenever possible, and use 

sensitivity analysis to investigate the robustness of analysis 

results. Based on Monte Carlo simulation we conduct, we 

conclude that interval-censoring methods, e.g., Finkelstein’s 

method for point estimation, Finkelstein’s score test and 

generalized log-rank tests for hypothesis testing, are preferred 

when analyzing such data if possible. However, 

interval-censoring methods may be less efficient when sample 

size is small or moderate, and the corresponding computation 

may be too intensive when too many events occur. 
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