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Abstract: In this note we construct a family of recurrence generated parametric half hyperbolic tangent activation functions. 

We prove precise upper and lower estimates for the Hausdorff approximation of the sign function by means of this family. 

Numerical examples, illustrating our results are given. 
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1. Introduction 

Sigmoidal functions (also known as “activation functions”) 

find multiple applications to neural networks [1]–[6], [15]–

[19]. 

We study the distance between the sign function and a 

special class of sigmoidal functions, so-called parametric 

activation functions. 

The distance is measured in Hausdorff sense, which is 

natural in a situation when a sign function is involved. Precise 

upper and lower bounds for the Hausdorff distance are 

reported. 

Since then the logistic function finds applications in many 

scientific fields, including biology, ecology, population 

dynamics, chemistry, demography, economics, geoscience, 

mathematical psychology, probability, sociology, political 

science, financial mathematics, statistics, fuzzy set theory, 

insurance mathematics to name a few [7]–[14], [22]–[23]. 

Another application area is medicine, where the logistic 

function is used to model the growth of tumors or to study 

pharmacokinetic reactions. 

Constructive approximation by superposition of sigmoidal 

functions and the relation with neural networks and radial 

basis functions approximations is discussed in [19]. 

Any neural net element computes a linear combination of 

its input signals, and uses a logistic function to produce the 

result; often called “activation” function [20]–[21]. 

2. Preliminaries 

The following are common examples of activation functions: 

a) logistic 

1

1
( ) = ;

1 t
t

e
σ −+

             (1) 

b) Parametric Hyperbolic Tangent Activation (PHTA) 

function [23] 
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c) Parametric Half Hyperbolic Tangent Activation (PHHTA) 

function [56] 

3

1
( ) = , , 1.

1

t

t

e
t t

e

β

βσ β
−

−
− ∈ ≥
+

R         (3) 

In [24] the authors create the binary logistic regression model 

as to find the optimal vector 0 1= [ , , , ]nβ β β β…  that best fits 

0 1 1 2 21, > 0
=

0, otherwise

n nx x x
y

β β β β ε+ + + + +



⋯

 

here ε  represents the error. 
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Evidently, in (1) t  can be regarded as a variable, which is a 

linear weighted combination of independent variable 

1= [ , , ]nx x x…  as 0 1 1 2 2 .n nt x x xβ β β β← + + + +⋯  

Thus, the binary logistic model is [24]: 

( )
0 1 1 2 2

1
( ) =

1
t x x x

n n
F x

e
β β β β− + + + ++ ⋯

        (4) 

where ( )F x  represents the probability of dependent variable 

= 1y . 

 

Figure 1. Nonlinear, parametrized function with restricted output range. 

Training a multilayer perceptron with algorithms 

employing global search strategies has been an important 

research direction in the field of neural networks. 

Multi–layer perceptrons are feed forward neural networks 

featuring universal approximation properties used both in 

regression problems. 

The standard feed forward networks with only a single 

hidden layer can approximate any continuous function 

uniformly on any compact set and any measurable function to 

any desired degree of accuracy [25]–[28]. 

The nonlinear, parametrized function with restricted output 

range is visualized on Figure 1. 

It is straightforward to extend this analysis to networks with 

multiple hidden layers. 

For recurrent neural networks are typical: 

a) stable outputs may be more difficult to evaluate; 

b) unexpected behavior (chaos, oscillation). 

A survey of neural transfer activation functions can be 

found in [29]. 

Moreover, the nodes in the hidden layer are supposed to 

have a sigmoidal activation function which may be one of the 

following: 

a) logistic sigmoid 

1

1
( ) = ;

1 net
net

e βσ −+
             (5) 

b) hyperbolic tangent 
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c) half hyperbolic tangent 
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where net  denotes the input to a node and β  is the slope 

parameter of the sigmoids. 

Definition 1 Define the logistic (Verhulst) function v  on 

R  as 

0

1
( ; ) = .

1 kt
v k t

e−+
               (8) 

Note that the logistic function (8) has an inflection at its 

“center” (0,1/ 2)  and its slope κ  at 0  is equal to / 4k . 

Definition 2 The (basic) step function is: 

0

0, if < 0,

( ) = 1/ 2, if = 0,

1, if > 0,

t

h t t

t





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          (9) 

usually known as Heaviside step function. 

Definition 3 The signum function of a real number t  is 

defined as follows: 

1, if < 0,

( ) = 0, if = 0,

1, if > 0.

t

sgn t t

t

−





        (10) 

Definition 4 [30], [31] The Hausdorff distance (the H–

distance) [30] ( , )f gρ  between two interval functions ,f g  

on Ω ⊆ R , is the distance between their completed graphs 

( )F f  and ( )F g  considered as closed subsets of Ω×R . 

More precisely, 

( )( )
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|| ||},sup inf

B F gA F f

A F fB F g

f g A B

A B

ρ
∈∈

∈∈

−

−
      (11) 



 Biomedical Statistics and Informatics 2017; 2(2): 87-94 89 

 

wherein || . ||  is any norm in 
2
R , e. g. the maximum norm 

|| ( , ) ||= max{| |,| |}t x t x ; hence the distance between the 

points = ( , )A AA t x , = ( , )B BB t x  in 
2
R  is 

|| ||= (| |,| |)A B A BA B max t t x x− − − . 

Let us point out that the Hausdorff distance is a natural 

measuring criteria for the approximation of bounded 

discontinuous functions [8], [32]. 

Kyurkchiev [33] consider the following family of 

recurrence generated sigmoidal logistic functions 
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with 

1

1
(0) = , = 0,1, 2, ,

2
iv i+ …          (13) 

based on the Verhulst logistic function 0 ( )v t . From (12) we 

have 2
1 =

k

ik e+  for = 0,1,2, ,i … . 

Denote the number of recurrences by p . 

The Hausdorff approximation of the Heaviside step 

function by family of recurrence generated sigmoidal 

functions of the form (12) is considered in [33] and the 

following is proved: 

Theorem A. [33] For given p , the H-distance ( )pd k  

between the function 0h  and the function pv  can be 

expressed in terms of the rate parameter k  for any real k e≥  
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Iliev, Kyurkchiev and Markov [55] consider the following 

family of recurrence generated parametric activation functions 
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with 

0 0

2
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Evidently, 1(0) = 0iγ +  for = 0,1,2, ,i … . 

The following Theorem gives upper and lower bounds for 

the Hausdorff approximation d  of the sgn function (10) by 

the family (15). 

Theorem B. [55] For given p , the H-distance pd  

between the sgn function and the function pγ  the following 

inequalities hold for 3β ≥ : 

1
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3. Main Results 

In this Section we construct a family of recurrence 

generated parametric activation functions based on 3( )tσ . 

We prove precise upper and lower estimates for the 

Hausdorff approximation of the sign function by means of this 

family. 

3.1. The Family of Recurrence Generated Parametric Half 

Hyperbolic Tangent Activation (PHHTA) Functions 

We consider the following family of recurrence generated 

parametric activation functions: 
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0 0
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Evidently, 1(0) = 0iδ +  for = 0,1,2, ,i … . 

 

Figure 2. The functions 0 0
( )F d  and 0 0

( )G d  for = 5β . 
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Denote the number of recurrences by p . 

The recurrence generated (PHHTA)-functions 0 ( )tδ , 

1( )tδ , 2 ( )tδ  and 3( )tδ  for various β  are visualized on 

Figure 3–Figure 4. 

 

Figure 3. Approximation of the ( )sgn t  by (PHHTA)-functions for = 1β ; The 

graphics of recurrence generated (PHHTA)-functions: 0δ  (green), 1δ  (red), 

2δ  (blue) and 3δ  (orange); Hausdorff distance: 0 = 0.674832d , 

1
= 0.588575d , 2 = 0.55769d , 3 = 0.545712d . 

 

Figure 4. Approximation of the ( )sgn t  by (PHHTA)-functions for 

= 2.71828β ; The graphics of recurrence generated (PHHTA)-functions: 0
δ  

(green), 1δ  (red), 2δ  (blue) and 3δ  (orange); Hausdorff distance: 

0
= 0.45295d , 1 = 0.287317d , 2 = 0.21027d , 3 = 0.168516d . 

3.2. Approximation Issues 

We study the Hausdorff distance d  between the sign 

function and the family of (PHHTA)-functions (18). 

Special case. Let = 0p . 

The H -distance 0 0( ( ), ( ))d sgn t tδ  between the sgn 

function and the function 0δ  satisfies the relation: 
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The following Theorem gives upper and lower bounds for 

0d  

Theorem 3.1. For the Hausdorff distance 0d  between the 

sgn function and the function 0δ  the following inequalities 

hold for 5β ≥ : 
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Proof. We define the functions 
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0 0 0

1
( ) = 1 (2 )

2
G d dβ− + +          (23) 

From Taylor expansion 

2

0 0 0 0 0( ) ( ) = ( )F d G d O d−  

we see that 0 0( )G d  approximates 0 0( )F d  with 0 0d →  

as 
2

0( )O d  (cf. Figure 2). 

In addition 0 0( ) > 0G d′  and for 5β ≥  

0 0
0 0

( ) = 0; ( ) > 0.l rG d G d  

This completes the proof of the inequalities (21). 

General Case. 

Theorem 3.2 For given p , the H-distance 
pd  between 

the sgn function and the function 
pδ  the following 
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Proof. We note that the function 
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approximates ( )p pF d  with 0pd →  as 
2

( )pO d . 
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In addition ( ) > 0p pG d′  and for 5β ≥  

( ) = 0; ( ) > 0.p l p r
p p

G d G d  

This completes the proof of the inequalities (24). 

4. An Analysis of Recurrence Generated 

Sigmoidal Functions Based on the 

Richards Type Function 

In [57] Turner, Blumenstein and Sebaugh introduced the 

generalization of the logistic law growth of the form: 

( ) ( )
= .

( )

k x
x x

k

τ τβ
τ

 −′  
 

          (25) 

Here ( )τ ⋅  denotes the process of operating on any 

argument ( )⋅  with the operator τ , β  is proportionally 

constant, or ”intrinsic growth coefficient”. 

Let ( ) =x xτ , then equation (25) leads to the ordinary 

logistic law of growth 

= = ( ).
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x x x k x
k k

ββ −′ −          (26) 

Let ( )τ ⋅  is the power function ( )m⋅ , where > 0m . 

Thus (25) becomes 
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m m
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with the solution [58]: 
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An alternative form of a generalized logistic equation has 

been given by Nelder in [59]: 

1
( ) = , > 0.
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For other results, see [60]. 

Garcia [61], [62] presented a generalized model, depending 

on two shape parameters, that includes most of the common 

growth functions as special cases. 

The general equation is 

1 1= ( , ), ,y B B t b a− −              (30) 

where B  is the negative Box–Cox transformation [63] 

1
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Special case: 
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1

= , > 0(Richards-type)

1 t

y

Ae
α α

−+
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Let us consider the following family of recurrence 

generated sigmoidal logistic functions (cf. Figure 5) 
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Definition. The associate to the family ( )i tω  cut function 
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( )i tω  has an inflection at point ( , ( ))i i i iT t tω∗ ∗ ∗
. 

The straight line = '( )( ) ( )i i i i i iy t t t tω ω∗ ∗ ∗− +  cross the 

lines = 0y  and =1y  at the points 
1

it  and 
2

it  

respectively. 
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We next focus on the approximation of the cut function 

( )t
i

Cω  by ( )i tω . 

Note that the slope of the function ( )t
i

Cω  on the interval 

1 2= [ , ]i i

i t t∆  is '( )i itω ∗
. 

Then, noticing that the largest uniform distance iρ  

between the cut and ( )i tω  functions is achieved at the 

endpoints of the underlying interval i∆  we have the 

following 

Theorem. The function defined by (32): 

i) is the function of best uniform approximation to function 

( )t
i

Cω  in the interval i∆ ; 

ii) approximates the cut function ( )t
i

Cω  in uniform metric 

with an error 

1 2= max{ ( ),1 ( )}.i i

i i it tρ ω ω−          (35) 

 

Figure 5. The parameter = 2α . The graphics: function - 
0ω  (thick), recurrence generated function - 

1
ω  (dashed) and recurrence generated function - 

2ω  

(blue). 

5. Conclusion 

In biologically plausible neural networks, the activation 

functions represent the rate of action potential firing in the cell 

[35]. 

A family of recurrence generated parametric activation 

functions is introduced finding application in neural network 

theory and practice. 

Theoretical and numerical results on the approximation in 

Hausdorff sense of the sgn function by means of functions 

belonging to the family are reported in the paper. 

We propose a software module within the programming 

environment CAS Mathematica for the analysis of the 

considered family of recurrence generated (PHHTA) 

functions. 

The module offers the following possibilities: 

� generation of the activation functions under user defined 

values of the parameter β  and number of recursions 

p ; 

� calculation of the H-distance pd , = 0,1,2, ,p …  

between the sgn function and the activation functions 

0 1 2, , , , pδ δ δ δ… ; 

� software tools for animation and visualization. 

The Hausdorff approximation of the interval step function 

by the logistic and other sigmoidal functions is discussed from 

various approximation, computational and modelling aspects 

in [36]–[54]. 
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