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Abstract: In this paper one way is proposed to construct asymptotic and non-asymptotic confidence regions in the problem of 

closed loop model validation deeply. These two asymptotic and non-asymptotic confidence regions correspond to the infinite and 

finite data points. Firstly one asymptotic confidence region is derived from some statistical properties on noise. The uncertainties 

bound of the model parameter is constructed in the probability sense by using the inner product form of the asymptotic 

covariance matrix, then a new technique for estimating bias and variance contributions to the model error is suggested. Secondly 

we modify sign perturbed sums (SPS) method to construct non-asymptotic confidence regions under a finite number of data 

points, where some modifications are studied for closed loop system. Finally the simulation example results confirm the 

identification theoretical results. 
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1. Introduction 

The automatic control system includes two basic structures: 

one open loop and other closed loop. As there does not exist 

any feedback in open loop structure, so the plant output affects 

the input less. And in closed open structure, the error signals 

coming from the input and feedback output generate one 

correction action and make the output converge to some given 

value. The essence of closed loop system is to decrease the 

error by using the negative feedback function, and correct the 

deviation from the given value automatically. As the closed 

loop structure can suppress the errors coming from the internal 

or external disturbances, so for many industrial production 

processes, safety and production restrictions are strong 

reasons for not allowing control experiments in open-loop and 

the closed loop is most needed in all of our engineering. 

Generally two strategies are used to design the controller in 

closed loop, i.e. model based design and direct data driven 

design. The primary step of model based design is to construct 

the plant model and apply this mathematical model in the 

process of designing controller. Conversely in the direct data 

driven method, the modeling process is not needed and the 

controller is directly designed by using the input-output data. 

Now as the first model based design strategy is more applied, 

so we do much research on system identification to identify 

the plant model. The whole theory of system identification can 

be divided into four categories, i.e. experiment design [1], 

model structure selection [2], model parameter identification 

[3] and model structure validation test [4]. Further the more 

research is concerned on the first three categories. To be the 

author's knowledge, the study on model structure validation 

under closed loop condition is very little. 

There are three common identification methods for closed 

loop system identification, i.e. direct approach, indirect 

approach and joint input-output approach, where the feedback 

is neglected in direct approach and the plant model is 

identified directly using the input-output data. In the indirect 

approach for closed loop system identification, the feedback 

effect is considered and the input-output from the whole 

closed loop condition are used to identify the plant model. The 

joint input-output approach is very similar to indirect 

approach. In [5], three methods are presented to identify 

closed loop system. In [6], researches on the system 

identification theory are introduced in time domain. Similarly 

the frequency domain system identification is given in [7]. A 
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new virtual closed loop method for closed loop identification 

is proposed in [8]. In [9], one projection algorithm is proposed 

on the basis of the prediction error recursive method. In [10], 

when many inputs exist in closed loop, whether can closed 

loop be identified with parts of the inputs controlled? The 

relationship between closed loop identification and closed 

loop control are obtained in [11]. In [12], the linear matrix 

inequality is used to describe the problem of optimal input 

design in closed loop. Further the least cost identification 

experiment problem is analyzed in [13]. The power spectral of 

the input signal is considered to be an objective function and 

the accuracy of the parameter estimations is the constraints 

[14]. In [15], H-infinity norm from robust control is 

introduced to be the objective function in the optimal input 

design problem. Based on the H-infinity norm, the uncertainty 

between the identified model and nominal model is measured 

and the optimal input is chosen by minimizing this uncertainty 

[16]. The selection of the optimal input can also be determined 

from the point of asymptotic behavior about the parameter 

estimation [17]. The Persistent excitation input in closed loop 

is analyzed and we obtain some conditions about how to 

obtain persistent excitation [18]. In [19] the problem of how to 

apply closed loop identification into adaptive control is solved, 

so that bias and covariance terms are isolated separately. All 

above results hold when the number of the observed signals 

will convergent to infinity. 

There are little papers about model structure validation test 

now. Only in [6] and [19], model structure validation in open 

loop identification has been presented and the standard cross 

correlation test is proposed to test the confidence region of the 

cross variance matrix between the prediction error and input 

from the probabilistic sense. Because of the simple structure 

of open loop, the process of deriving the covariance matrix is 

very easy. For model structure validation in engineering, the 

more effective strategy is to do one similar experiment again. 

After exciting the formal system with a group of new inputs, 

we compare if the actual output is consistent with the 

identified output. Although this test is simple, we can not 

analyze the accuracy and credibility of the identified model. In 

our paper [20], two probabilistic model uncertainties and 

optimum input filter are derived from some statistical 

properties of the parameter estimation. The probabilistic 

bounds and optimum input filter are based on an asymptotic 

normal distribution of the parameter estimator and its 

covariance matrix, which was estimated from sampled data. 

Using some results from our former paper [20], in this paper 

we continue to study the problem of model structure 

validation for closed loop system identification. So in order to 

reflect the identification accuracy, here we apply the statistical 

probability framework to derive the variance matrix of the 

unknown parameters firstly. This variance matrix is 

decomposed into one inter product form which is used to 

construct one uncertainty bound about the unknown parameter 

estimation. This uncertainty bound is called by confidence 

region and it constitutes the guaranteed confidence region 

with respect to the model parameter estimation under closed 

loop condition. As statistical probability framework needs 

infinite data points, but in practice, we only have a finite 

number of data points and limited statistical knowledge about 

the noise. So to relax this strict condition on the number of 

data points, we introduce sign-perturbed sums (SPS) to 

construct non-asymptotic confidence region. Due the original 

SPS method is suited for linear regression model, it can not be 

appropriate for our closed loop system. This paper introduces 

and analyzes the modified SPS method for closed loop system. 

This confidence region constructed by the modified SPS 

method contains the true parameters with a user chosen exact 

probability for a finite data points. To the best of our 

knowledge, the asymptotic confidence region or 

non-asymptotic confidence region correspond to only linear 

regression model, not our closed loop system. To achieve our 

ultimate goal of closed loop model validation, much work is 

achieved to extend the existing theories and modify them to be 

suitable for closed loop system. 

2. Problem Description 

Consider the following actual closed loop system with 

output feedback in Figure 1. 

 

Figure 1. Structure of the closed loop system. 
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where ( )0G z  is the true plant model; ( )0H z  is the noise 

filter, they are all linear time invariant transfer functions. 

( )K z  is a stable linear time invariant controller, here we 

assume this controller is priori known. The excited signal 

( )r t  and external disturbance ( )e t  are assumed to be 

uncorrelated, ( )e t  is a white noise with zero mean value and 

variance 0λ . ( )v t  is a colored noise which can be obtained 

by passing white noise ( )e t  through the noise filter ( )0H z . 

( )u t
 

and ( )y t  are the input-output signals corresponding 

to plant model ( )0G z . 

Rewriting excited signal ( )r t  as white noise ( )w t  

passing through shaping filter ( )R z . ( )R z
 

is the power 

spectrum factor with stable non-minimal phase of excited 

signal ( )r t . z  is the delay operator, it means that 

( ) ( )1zu t u t= + . 

As ( ) ( ) ( )r t R z w t= , the power spectrum density of 

excited signal is given as. 

( ) ( ) ( ) ( ) ( ) 2*
r wR z R z R zφ ω φ ω= =      (1) 

In closed loop system structure, through some computations, 

we derive the transfer function form. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0y t G z R z w t G z K z y t H z e t= − +  

Continuing to do some computations and we get. 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0 0

0 0

0

0 0

1 1

1 1

G z R z H z
y t w t e t

G z K z G z K z

R z K z H q
u t w t e t

G z K z G z K z


= + + +


 = − + +

       (2) 

To simplify the analysis process, define the sensitivity 

function as. 

( ) ( ) ( )0
0

1

1
S z

G z K z
=

+
         (2) 

The output of closed loop system can be written as. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0 0 0

0 0 0

y t G z R z S z w t H z S z e t

u t R z S z w t K z H z S z e t

 = +


= −
 (3) 

As now our goal is not emphasized on identification method, 

but on the model structure validation, so the only simple direct 

approach is used to describe the basic ideas. 

3. Asymptotic Confidence Region 

Introduce the unknown parameter vector in closed loop 

system, the parameterized form given by. 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

, ,
,

1 , 1 ,

,
,

1 , 1 ,

G z R q H z
y t w t e t

G z K z G z K z

R z K z H z
u t w t e t

G z K z G z K z

θ θ
θ

θ θ
θ

θ
θ θ


= + + +


 = − + +

    (4) 

where θ  denotes the unknown parameter vector, it exists in 

the parameterized plant model ( ),G z θ
 

and noise model

( ),H z θ  respectively. The goal of closed loop identification 

is to identify the unknown parameter vector ˆ
Nθ

 
from one 

given input-output data set ( ) ( ){ }
1

,
NN

t
Z y t u t

=
= , where N

denotes the number of total observed data. 

According to equation (5), the prediction of ( ),y t θ
 

can be 

calculated as the one step ahead prediction. 

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( )

( ) ( )
( )

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

1

1

, ,
ˆ ,

1 , 1 ,

,
1

1 ,

1 , ,

, 1 ,

1 ,
1

,

, , 1 ,

, ,

H z G z R z
y t w t

G z K q G z K z

H z
y t

G z K z

G z K z G z R z
w t

H z G q K z

G z K z
y t

H z

G z R z H z G z K z
w t y t

H z H z

θ θ
θ

θ θ

θ
θ

θ θ
θ θ

θ
θ

θ θ θ
θ θ

−

−

 
=  

+ +  

  
 + −  
 +   

+
= ×

+

 +
+ − 
  

− −
= +

 (5) 

Computing the one step ahead prediction error or residual, 

now it becomes. 

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

ˆ, ,

1 , ,

, 1 ,

t y t y t

G z K q G z R z
y t w t

H z G z K z

ε θ θ

θ θ
θ θ

= −

 +
= − 

+  

    (6) 

In the standard prediction error algorithm, when using the 

input-output data ( ) ( ){ }
1

,
NN

t
Z y t u t

=
=

 
with the data number

N , the parameter vector is identified by. 

( ) ( )

( ) ( )

2

1

2

1

1ˆ arg min , arg min ,

1
, ,

N
N

N N

t

N
N

N

t

V Z t
N

V Z t
N

θ θ
θ θ ε θ

θ ε θ

=

=

= =

=

∑

∑

      (7) 

Defining the asymptotic limit parameter estimate *θ  as. 

( ){ }* arg min lim , N
N

N
E V Z

θ
θ θ

→∞
=          (8) 

where E  denotes the expectation operator. In the common 

identification process, assume that there always exists one true 
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parameter vector 0θ such that. 

( ) ( ) ( ) ( )0 0 0 0, , ,G z G z H z H zθ θ= =       (9) 

This assumption shows that the identified model is 

contained in the considered model set. Based on some results 

from [6], the asymptotic matrix of the parameter estimate is 

get. 

1

0
ˆcov ,Nθ λ ϕ ϕ −=             (10) 

where ,ϕ ϕ
 

denotes some inter product operator, ϕ
 

is the 

negative gradient of the predictor error, i.e. it can be computed 

from: 

( ) ( ) ( )ˆ, ,
,

t y t
t

ε θ θ
ϕ θ

θ θ
∂ ∂

= − =
∂ ∂

      (11) 

Next we give the calculation process of the negative 

gradient of the predictor error under closed loop condition 

below. As equation (11) is a basic formula in studying 

asymptotic analysis, we substitute equation (5) into equation 

(6) to get. 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( )

( ) ( )
( ) ( )

( ) ( ) ( )
( )

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( )

,
ˆ ,

,

, 1 ,

,

, , 1 ,

, ,

, ,

1 , 1 ,

,

,

, 1 , ,

, 1 ,

, 1 ,

,

���������������������
y t

G z R z
y t w t

H z

H z G z K z
y t

H z

G z R q H z G z K z
w t

H z H z

G z R z H z
w t e t

G z K z G z K z

G z R z
w t

H q

H z G z K z G z R z
w t

H z G z K z

H z G z K z H

H z

θ
θ

θ

θ θ
θ

θ θ θ
θ θ

θ θ
θ θ

θ
θ

θ θ θ
θ θ

θ θ
θ

=

− −
+

− −
= +

 
× + 

+ +  

=

− −
+ ×

+

− −
+ ×

( )
( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

,

1 ,

,

,

, 1 , ,

1 , ,

, 1 ,

1 ,

,

1 ,

, 1 ,

1 ,

z
e t

G z K z

G z R z
w t

H z

H z G z K z G z R z
w t

G z K z H z

H z G z K z
e t

G z K z

G z R z
w t

G z K z

H z G z K z
e t

G z K z

θ
θ

θ
θ

θ θ θ
θ θ

θ θ
θ

θ
θ

θ θ
θ

+

=

− −
+

+

− −
+

+

=
+

− −
+

+

   (12) 

where in the third equity of equation (13), we use the follow 

computation process. 

( )
( ) ( ) ( )
( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( )
( )

( ) ( ) ( )( ) ( ) ( )

, 1 ,1

, , 1 ,

1 , , 1 ,

, 1 ,

, 1

1 ,, 1 ,

H z G z K z

H z H z G z K z

G z K z H z G z K z

H z G z K z

H z

G z K zH z G z K z

θ θ
θ θ θ

θ θ θ
θ θ

θ
θθ θ

− −
+

+

+ + − −
=

+

= =
++

  (13) 

Substituting equation (13) into equation (7) and computing 

the partial derivative operations with respect to unknown 

parameter vectorθ , and then we have. 

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

( )
( ) ( )

( )
( ) ( )

( )
( )

( ) ( )
( ) ( ) ( )

1,

1 1

1

1

1

1

1

G KH G K Ht

H

e t
G K H

G R G K G RG K
w t

G K

G K H
e t

HH G K

G R G RG K
w t

H H G K

θ θ θ θε θ
θ θ

θ θ

θ θ θ θ
θ

θ θ
θθ θ

θ θ θ
θ θ θ

′ ′ − +∂  =
∂

× −
+

′ ′ + − ×
+

 ′ ′
 = −

 +   

 ′ ′
 − −

 +   

  (14) 

where ( )G θ′
 

denotes the partial derivative operation with 

respect toθ , and the delay operator q are all ignored to simply 

the derivations. 

Using the uncorrelated assumption between white noise

( )e t
 

and ( )w t , i.e. it holds that. 

( ) ( ) 0TEe t w t =             (15) 

putting ahead one ( )H θ in equation (9), and rewriting it as. 

( )
( ) ( ) ( ) ( ) ( )(
( ) ( ) ( ) ( ) ( ))

, 1t
G KS H e t

H

G R G RG S K w t

ε θ
θ θ θ

θ θ

θ θ θ θ

∂
′ ′ = − ∂

′ ′ − − 

 (16) 

where we use the parameterized sensitivity function. 

( ) ( )
1

1
S

G K
θ

θ
=

+
              (17) 

As the following equality holds. 

( ) ( ) ( ) ( )
1

R
R G RKS RS

G K
θ θ θ

θ
− = =

+
     (18) 

Rewriting equation (15) as the following matrix form. 
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( )
( )

( ) ( ) ( ) ( ) ( ) ( )
( )

, 1

1 0

t

H

e tKS H RS
G H

w t

ε θ
θ θ

θ θ θ
θ θ

∂
=

∂

  
′ ′ ×     −     

 (19) 

According to equation (11), the asymptotic covariance 

matrix is that.. 

( ) ( )

( ) ( )

1 1

0 0 0

0 0 0 0

0 0

0 0 0

ˆcov , , ,

1

0

T
NP E t t

KS H RS
G H

H

θ θ λ ϕ θ ϕ θ φ φ

λ
φ θ θ

λ λ

− − = = = 

 
′ ′   =   −  

 (20) 

where ( )G θ′  and ( )H θ′  are given as respectively. 

( ) ( ) ( ) ( )
,

G H
G H

θ θ
θ θ

θ θ
∂ ∂

′ ′= =
∂ ∂

       (21) 

On basis of equation (21), we have the asymptotic result. 

0
ˆ

N

Nθ θ
→∞

→                     (22) 

It shows that the parameter estimator ˆ
Nθ

 
will converge to 

its limit 0θ , and further ˆ
Nθ

 
will asymptotically converge 

( N → ∞ ) to normally distributed random variable with mean 

0θ  and variance Pθ . 

( ) ( )0
ˆ 0, ,ℕNN P as Nθθ θ− → → ∞       (23) 

This asymptotic result can be rewritten in a quadratic form, 

and then we get one 2λ  distribution. 

( ) ( )1 2
0 0

ˆ ˆ
NT

N N nN Pθθ θ θ θ λ
→∞

−− − →        (24) 

Where n  is the number of degrees of freedom in the 2λ  

distribution, being equal to the dimension of the parameter 

vector. Equation (25) implies that the random variable ˆ
Nθ  

satisfies one uncertainty bound. 

( )
( ) ( ) ( ){ }

0

1 2
0 0 0 0 ,

ˆ ,

, /

N

T

n

D

D N Pθ α

θ α θ

α θ θ θ θ θ θ λ−

∈

= − − ≤
   (25) 

with 
2
,n αλ  corresponding to a probability level α  in 

2
nλ

distribution, but now in order to quantity the uncertainty on 0θ

rather than ˆ
Nθ , it holds that for every realization of ˆ

Nθ . 

( ) ( )0 0
ˆ ˆ, ,N ND Dθ α θ θ α θ∈ ⇔ ∈        (26) 

It signifies that. 

( )
( ) ( ) ( )

0

1 2
,

ˆ,

ˆ ˆ ˆ, /

N

T

N N N n

D with probability

D N Pθ α

θ α θ α

α θ θ θ θ θ θ λ−

∈

 = − − ≤ 
 

 (27) 

Equations (26) and equation (28) give the confidence 

regions of unknown parameter estimator under closed loop 

condition. The probability level of the event ( )0
ˆ ,N Dθ α θ∈

holds is at least α . 

4. Non-asymptotic Confidence Region 

Both confidence regions (26) and equation (28) are 

guaranteed only asymptotically when the number of measured 

data points tends to infinity, i.e. N → ∞ . But in practice, a 

finite number of measured data points and limited statistical 

knowledge about the noise are given, this fact strongly 

restricts above asymptotic confidence region. In this section, 

we use Sign-Perturbed Sums (SPS) method to construct 

non-asymptotic confidence region under relaxed statistical 

assumption on noise. SPS method is proposed for linear 

regression model in [21], and its advantage is that confidence 

region obtained by SPS method has exact confidence 

probability, i.e. it contains the true parameter with a 

user-chosen exact probability as the number of measured data 

points is finite. Now SPS process is introduced into model 

structure validation for closed loop system, i.e. we extend the 

linear regression model in [21], [22] to closed loop system and 

explain how SPS can be applied to construct guaranteed finite 

sample confidence region for closed loop system. 

For the sake of completeness, from equation (6), we rewrite 

it as that. 

( ) ( )

( ) ( )

2

1

2

1

1ˆ arg min , arg min ,

1
ˆarg min ,

N
N

N N

t

N

t

V Z t
N

y t y t
N

θ θ

θ

θ θ ε θ

θ

=

=

= =

 = − 

∑

∑
  (28) 

and the negative gradient of the predictor error 

( ) ( ) ( )ˆ, ,
,

t y t
t

ε θ θ
ϕ θ

θ θ
∂ ∂

= − =
∂ ∂

        (29) 

Using the necessary condition on equation (8) to obtain one 

normal equation. 

( ) ( )

( ) ( ) ( )

1

1

1
, ,

1
ˆ, , 0

N

t

N

t

t t
N

t y t y t
N

ϕ θ ε θ

ϕ θ θ

=

=

=

 − = 

∑

∑
     (30) 

Due to the parameter estimate ˆ
Nθ

 
is the solution to the 

normal equation, it means that. 
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( ) ( )

( ) ( ) ( )
1

1

1 ˆ ˆ, ,

1 ˆ ˆˆ, , 0

N

N N

t

N

N N

t

t t
N

t y t y t
N

ϕ θ ε θ

ϕ θ θ

=

=

=

 − =  

∑

∑
    (31) 

As SPS method builds the confidence region by perturb 

equation and exploits the information in the data as much as 

possible, while assuming minimal prior statistical knowledge 

on the noise [23]. In the whole SPS method, (m-1) 

sign-perturbed sums are introduced. 

( ) ( ) ( )

( ) ( ) ( )

1

1

, ,

ˆ, , , 1,2 1⋯

N

i it

t

N

it

t

H t t

t y t y t i m

θ ϕ θ α ε θ

ϕ θ α θ

=

=

= =

 − = − 

∑

∑
 (32) 

where { }itα are random signs, i.e. independent and identically 

distributed random variables which takes on the values 1±  

with equal probabilities 
1

2
. When no sign perturbations are 

used, the reference sum is defined. 

( ) ( ) ( )0

1

, ,

N

t

H t tθ ϕ θ ε θ
=

=∑          (33) 

Then SPS method use to construct non-asymptotic 

confidence region is dependent on the following sums. 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

2
0

1

1

2

1

, ,

, ,

N

t

N

i it

t

S t t

S t t

θ θ ϕ θ ε θ

θ θ ϕ θ α ε θ

−

=

−

=


 = Φ




= Φ


∑

∑
    (34) 

where { }1,2 1⋯i m= − and matrices ( )θΦ
 

are perturbed 

covariance estimates. 

( ) ( ) ( )

( ) ( ) ( )

1

1 1

2 2

, ,

N
T

t

T

t tθ ϕ θ ϕ θ

θ θ θ

=


Φ =



Φ Φ = Φ

∑
         (35) 

The above sums (35) coming from [21] are used to 

construct non-asymptotic confidence region for only linear 

regression model, not our closed loop system. To ensure SPS 

method suit for closed loop system, some modifications must 

be added to achieve this goal. The one step ahead prediction is 

modified, after considering random signs. 

( ) ( ) ( ) ( ) ( )( )ˆ , , , , , , ,i i ity t G z u t H z e zθ α θ θ α θ α θ= +   (36) 

Then using the feedback structure, input signal on plant is 

changed as. 

( ) ( ) ( ) ( )ˆ, , , ,i iu t r t K z y tθ α θ α= −      (37) 

Computing the one step ahead prediction error or residual, 

with the random signs. 

( ) ( ) ( )ˆ, , , ,i it y t y tε θ α θ α= −          (38) 

Comparing equations (37), (38), (39) and their 

corresponding expressions, the difference is that here random 

signs itα
 

are immerged into their forms respectively, i.e. 

their relations are listed as. 

( ) ( )
( ) ( )
( ) ( )

, , ,

ˆ ˆ, , ,

, , ,

i

i

i

t t

y t y t

u t u t

ε θ ε θ α

θ θ α

θ θ α

 →
 →
 →

            (39) 

where iα
 

denotes the vector ( )1 2, ⋯i i imα α α , and itα
 

is 

defined as above. 

Based on these three modifications about ( ), , itε θ α ,

( )ˆ , , iy t θ α , ( ), , iu t θ α , the reference sum and (m-1) 

sign-perturbed sums can be evaluated for closed loop system. 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1

2
0

1

1

2

1

, , , , ,

, , , , ,

ˆ, , , ,
, ,

N

c i i i

t

N

ic i i it i

t

i i
i

S t t

S t t

t y t
t

θ θ α ϕ θ α ε θ α

θ θ α ϕ θ α α ε θ α

ε θ α θ α
ϕ θ α

θ θ

−

=

−

=


 = Φ




= Φ


∂ ∂
= − =

∂ ∂

∑

∑  (40) 

Also the perturbed covariance estimate is that. 

( ) ( ) ( )
1

, , , , ,

N
T

i i i

t

t tθ α ϕ θ α ϕ θ α
=

Φ =∑       (41) 

Combing modifications (37)-(42), the non-asymptotic 

confidence region is constructed by modified SPS method, 

where the main procedures are formulated as. 

1. Given two integer parameters 0m q> > , such that 

1
q

p
m

= −                     (42) 

and ( )0,1p ∈
 

is a confidence probability. 

2. Generate N(m-1) independent and identically distributed 

random signs { }itα  with 

( ) ( ) 1
1 1

2
it itP Pα α= = = − =            (43) 

for { } { }1,2 1 , 1,2⋯ ⋯i m and i N= − =  
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3. For the given θ , compute the prediction outputs, inputs 

and errors. 

( ) ( ) ( )
( ) ( )( )

( ) ( ) ( ) ( )
( ) ( ) ( )

ˆ , , , , ,

, ,

ˆ, , , ,

ˆ, , , ,

i i

it

i i

i i

y t G z u t

H z e z

u t r t K z y t

t y t y t

θ α θ θ α

θ α θ

θ α θ α

ε θ α θ α

 =


+


= −
 = −

       (44) 

4. Calculate the gradient of ( ), , itε θ α
 

and the perturbed 

covariance estimate. 

( ) ( ) ( )

( ) ( ) ( )
1

ˆ, , , ,
, ,

, , , , ,

i i
i

N
T

i i i

t

t y t
t

t t

ε θ α θ α
ϕ θ α

θ θ

θ α ϕ θ α ϕ θ α
=

 ∂ ∂
= − = ∂ ∂


Φ =



∑
  (45) 

5. Calculate the factor ( )
1

2 , iθ α
−

Φ
 

such that. 

( ) ( ) ( )
1 1

2 2, , ,
T

i i iθ α θ α θ α
− −

Φ Φ = Φ     (46) 

6. Compute the reference sum and (m-1) sign-perturbed 

sums and compute the rank ( )R θ  of ( ) 2

0cS θ
 

as the 

smallest in the ordering of the variables ( ) 2

icS θ  

7. Construct non-asymptotic confidence region as 

( ){ }ˆ :N R m qθ θΘ = ≤ −          (47) 

One important advantage of SPS method is that the 

confidence region constructed by equation (48) in closed loop 

system, has exact confidence probability for any finite data 

points. The confidence probability of the constructed 

confidence region is exact p , that is 

{ }ˆ 1N

q
P p

m
θ ∈ Θ = − =          (48) 

It means that this non-asymptotic confidence region has 

exact confidence probability as the number of data points is 

finite 

5. Simulation Example 

To prove the model structure validation strategies under 

closed loop condition, we consider one simulation system. 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

0 0

0

y t G z R z w t G z K z y t

H z e t

= −

+
    (49) 

where ( )0G z , ( )0H z  and ( )K z  are assumed to be as 

follows respectively. 

( )

( ) ( )

0

1 2 3 4

1 2 3 4

0

0.01293 0.1062 0.1058 0.01279

1 0.2482 1.091 0.2441 0.9822

1, 1

G z

z z z z

z z z z

H z K z

− − − −

− − − −

=

+ + +
− + − +
= =

 (50) 

Here the noise model is 1 and it shows the external 

disturbance acting on closed loop reduces to the white noise 

disturbance. The feedback is the common positive feedback. 

The noise ( )e t
 

is a white noise with zero mean and unit 

variance, input ( )w t
 

is similar to noise ( )e t . In order to 

analyze the confidence region of the model parameter and 

cross correlation function, we set shaping filter as ( ) 1R z = . 

The parameterized plant model ( ),G z θ  is described as 

that. 

( )
1 2 3 4

1 2 3 4

1 2 3 4
5 6 7 8 9

,
z z z z

G z
z z z z

θ θ θ θθ
θ θ θ θ θ

− − − −

− − − −
+ + +

=
+ + − +

    (51) 

The nine unknown parameters is used to construct the 

unknown parameter vectorθ , i.e. it means that. 

1 2 3 4 5 6 7 8 9

Tθ θ θ θ θ θ θ θ θ θ=      (52) 

Choose the number of observed data set ( ) ( ){ }
1

,
N

t
y t w t

=
 as

500N = , and apply direct approach to identify the unknown 

parameters in parameterized plant model ( )0G z . The 

qualities of nine model parameters affect the output response 

directly. So the identification accuracy or credibility of model 

parameters can be all measured by the output response of 

closed loop. 

 

Figure 2. Confidence region of amplitude in Bode plot. 
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Figure 3. Confidence region of phase in Bode plot. 

The whole output frequency response curves are showed in 

Figure 2, based on estimated model parameters. The red curve 

is the actual true amplitude curve from Bode plot tool. When 

the estimated model parameters are contained in the 

uncertainty bound with probability level 0.99, the amplitude 

curves lie above or low the red curve. From Figure 1, we see 

these three curves are very close and the red amplitude curve 

lies between two confidence amplitude curves with 

probability level 0.99. 

Using Matlab simulation tool to simulate the output 

response of Bode plot in closed loop, the phase plot is get with 

amplitude plot simultaneously. The confidence region phase 

plot is given in Figure 3, and the red phase curve lies also 

between two confidence phase curves with the probability 

level 0.99. This is similar to the derivation of Figure 2. 

 

Figure 4. Comparing of the true model and its identified model. 

To verify the efficiency of the identified model ( )ˆ
NG θ  

and make sure that this identified model can be used to replace 

the true model, we compare the Bode responses through true 

model ( )0G z  and its identified model ( )ˆ
NG θ

 
respectively 

in Figure 4. From Figure 4, we see that these two Bode 

response curves coincide with each other, it means that the 

model error ( )ɶG z  will converge to zero with time increases. 

6. Conclusion 

In this paper, the model structure validation problem is 

analyzed for closed loop condition from two aspects: 

(1) asymptotic confidence region, 

(2) non-asymptotic confidence region. 

Asymptotic system theory is obtained to construct 

asymptotic confidence region as the number of data points is 

infinite, and SPS method is modified to construct guaranteed 

non-asymptotic confidence region for any finite data set. The 

next subject is to construct one virtual variable to reformulate 

this asymptotic variance matrix as one projection form of this 

virtual variable along some vector space? 
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